The present invention relates to a flow switch. Specifically although not solely the present invention relates to a flow switch for or of a consumer beverage container such as a beverage or water bottle, that incorporates the switch at the spout end of the container to control the dispensing of liquid from the container.
Specifically although not solely the present invention may also relate to a flow switch that may have application other than for beverage container applications and that will hereinafter be described with reference to the drawings and detailed descriptions.
Further, the subject invention relates generally to the field of sealing mechanisms, and more particularly to, a compact valve assembly for use in a variety of applications, which includes a valve member that is readily actuated between the open and the closed position by a camming mechanism.
Even further, the present invention relates to improvements to flow switch actuation. Specifically although not solely the present invention relates to such improvements for a flow switch for or of a consumer beverage container such as a beverage or water bottle, preferably of a disposable kind, which incorporates a flow switch at the spout end of the container to control the dispensing of liquid from the container.
Specifically although not solely the present invention may also relate to a flow switch which may have application other than for beverage container applications.
Ball valves are well known to those skilled in the art and are commonly used in a variety of applications and industries. Typically, in applications that concern controlling the flow of a fluid, an apertured ball valve is selected. In an apertured ball valve, a generally spherical valve member that has a flow aperture or passage formed therethrough is positioned for rotational movement within a valve housing. The valve operation or function is broken down into two separate stages. First, the ball moves between an open and a closed position by rotating through 90 degrees, such that the aperture or flow passage moves from an orientation coaxial with the flow direction, i.e. when the valve is open, to a position whereby the ball aperture is normal or perpendicular to the flow direction. Second, the valve seals in the closed position to prevent flow through the aperture across the ball valve. Therefore, the on-off control of flow through the valve is achieved by rotating the ball through 90 degrees within the valve housing.
In prior art ball valves; the rotation of the ball (i.e., valve member) is typically effectuated by an actuator mechanism that protrudes from the valve housing and is configured to rotate about an axis perpendicular to that of the valve flow. Such a valve is disclosed in U.S. Pat. No. 6,695,285 to Hotton et al.
Several disadvantages are associated with this type of ball valve. For example, the extension of an actuator from the sidewall of the valve is cumbersome and not desirable for applications where space limitations and physical access to the actuator are a concern. Still further, the actuator in these valves must be rotated or turned through at least 90 degrees in order for the valve to move between the fully open and fully closed positions.
Therefore, it would be beneficial therefore, to provide a valve/seal mechanism that is compact, reliable and readily actuated between the open and closed position and actuated with a minimal amount of rotational movement.
Further, drink containers that are currently in common use for the purposes of containing liquid such as water are common. They normally incorporate a spout that is engaged by a valve to control the dispensing of the liquid from the reservoir of the container. A valve used for such applications is for example described in U.S. Pat. No. 6,758,359. It consists of a valve housing and a movable valve element that moves in an axial direction to open and close the spout.
The valve unit of U.S. Pat. No. 6,758,359 can have significant limitations and disadvantages. When such a valve is used by a consumer the yalve element can require considerable force to move it between opened and closed conditions. Consumers often utilize their teeth to grasp the movable valve element to open it. This can damage teeth, particularly of younger persons having teeth that may not be able to withstand the considerable force required to open the valve unit.
The valve unit of U.S. Pat. No. 6,758,359 is also generally only capable of having a single purpose, being to open and close an outlet opening. It would be an advantage if a bottle could contain a valve that could be utilized for other purposes or have additional functionality.
Whilst in the applicant's published PCT application WO2004/106782 reference is made to the use of a valve for use with a beverage container, the valve largely only has an open/closed function. Further enhancements are desirable, other applications utilizing a more efficient valve to perform sealing or to provide further functionality would be beneficial.
In this specification where reference has been made to patent specifications and other external documents, this is generally for the purpose of providing a context for discussing the features of the invention. Unless specifically stated otherwise, reference to such external documents is not to be construed as an admission that such documents, or such sources of information, in any jurisdiction, are prior art, or form part of the common general knowledge in the art.
It is a further object of the present invention to provide a flow switch which provides improvements over that disclosed in WO2004/106782 or which will at least provide the public with a useful choice.
In a first aspect the present invention consists in a flow switch assembly comprising;
(a) a valve housing that includes an upper body portion and a lower body portion that are rotatably engaged relative each other, the upper and lower body portions defining a chamber, the housing including an inlet and outlet to said chamber
(b) a valve member seated in the chamber of the valve housing for movement between a position (herein after “open position”) establishing at least one passage between said inlet and said outlet and a position (herein after “closed position”) wherein said at least one passage between said inlet and said outlet is non-established (preferably by said valve member sealing at least one of said inlet and outlet),
(c) interactive cam elements associated with (i) at least one of (a) said upper body portion and (b) said lower body portion, and (ii) the valve member, the cam elements positioned to effect movement of the valve member between the open position and the closed position when the upper body portion of the housing is rotated relative to said lower body portion.
Preferably when said valve member is in said open position, said valve member establishes at least one passage between said inlet and outlet.
Preferably said valve member is seated by said valve housing for rotation relative to said valve housing, about a first axis.
Preferably the moving of said valve member between the open position and the closed position by said cam elements is actuated when the upper body portion of the housing is rotated relative to said lower body portion about its axis of rotation that is perpendicular to said first axis.
Preferably said inlet is provided by said lower body portion and said outlet is provided by said upper body.
Preferably said inlet and said outlet are provided in diametrically of said valve member opposed locations.
Preferably the cam elements include (i) at least one cam surface formed at the exterior surface of the valve member and (ii) a cam follower formed at the interior surface of the upper body portion of the housing.
Preferably the cam elements include (i) at least one cam surface formed into the exterior surface of the valve member and (ii) a cam follower formed on the interior surface of the upper body portion of the housing.
Preferably the cam surface is defined by a slot into which the cam follower is located.
Preferably said valve member is seated in said chamber and mounted by axles positioned diametrically opposed to said valve member, for rotation relative to said valve housing about a first axis, and wherein said lower body portion is engaged (directly or indirectly) to said upper body portion to rotate relative to each other about an axis that is non parallel to said first axis wherein said cam elements include a cam follower and at least one cam surface with which said cam follower interacts, said cam follower carried by said upper body portion to rotate along an arc about said second axis lying in a plane perpendicular said second axis where said arc passes through a plane passing through and parallel said first and second axes and wherein said at least one cam surface defines two regions for engagement by said cam follower, a first region to be engaged by said cam follower when said cam follower is rotated toward a first distal end of said arc and a second region to be engaged when said cam follower is rotated towards the other distal end of said arc, said engagement effecting said rotation of said valve member about said first axis
Preferably said first and second axes are perpendicular to each other.
Preferably arc is bisected by said plane passing through and parallel said first and second axes.
Preferably said first and second regions are each disposed proximate one of said axles.
Preferably said first and second regions are each disposed on the same side as the upper housing of a plane in passing through and parallel said first axis and to which said second axis is normal.
Preferably said first and second regions of said at least one cam surface each define a surface of said at least one cam that are intersected by a plane in which said arc sits, at least when said valve member is intermediate of said open and closed positions.
Preferably said first and second regions are each defined by a discrete said cam surface.
Preferably a single said cam surface is defined that is of a V or U-shaped configuration to define said first and second regions.
Preferably said at least one cam surface is defined by two lobes on the valve member positioned in a “V” shaped configuration of said first and second region.
Preferably said lower body portion provides said inlet to said chamber, and wherein said lower body portion is integrally formed with a container.
Preferably said container is a consumer beverage container.
Preferably a second valve housing is provided, said second valve housing including an upper body portion (the “second upper body portion”) and a lower body portion (the “second lower body portion”), the second upper and lower body portions defining a chamber (the “second chamber”) capturing a valve member (the “second valve member”), the second valve housing including and inlet and outlet to said second chamber,
said second valve member seated in the second chamber of the second valve housing for movement between a position (herein after “open position”) defining a passage (the second passage) between said inlet and said outlet of said second valve housing and a position (herein after “closed position”) wherein said second passage is non-established (preferably by said second valve member sealing at least one of said inlet and outlet of said second chamber),
interactive cam elements associated with said second valve housing and the second valve member for moving the second valve member between the open position and the closed position when the second upper body portion of the second valve housing is rotated relative to said second lower body portion,
wherein a duct is provided intermediate of or defined by said first mentioned upper body portion and said second lower body portion to define a passage between the first mentioned outlet and said second inlet wherein said duck may preferably include an opening.
Preferably said first mentioned upper body portion is engaged or integrally formed with said second lower body portion.
Preferably said first mentioned valve member can move independently of said second valve member.
Preferably said duct retains a tablet.
Preferably said first mentioned inlet is of a size to allow the passing of said tablet from said duct through said inlet when said first mentioned valve member is in said open position.
Preferably, when said valve member is in said open position, said valve member establishes a plurality of said passages between said inlet and outlet.
Preferably said valve member includes a plurality of ducts to define at least two of said passages and wherein at least one of said lower and upper body portions includes a plurality of said inlet and outlets respectively, each duct of said plurality of ducts capable, upon the rotation of said valve member, of moving into and out of a said open position being one where at least one passage is established between (i) an or the inlet of said lower body portion and (ii) an or the outlet of said upper body portion.
Preferably each said plurality of ducts are mutually exclusive in providing a passage between an or the said inlet and an or the outlet, to the other of said plurality of ducts or ducts of said valve member.
Preferably said valve member has a plurality of ducts to each define a said passage at different angles of rotation of said valve member other than when said valve member is in the closed position.
Preferably said plurality of ducts are discrete ducts through said valve member.
Preferably said plurality of ducts is a bifurcated duct.
Preferably said valve member includes a duct therethrough via which said passage is established, said duct including an outlet opening, said valve member being shaped to present said outlet opening projecting beyond said outlet of said housing when said valve member is in said open position.
Preferably a removable overcap is provided, said housing engageable with a removable overcap to conceal said outlet of said housing.
Preferably said overcap can engage with said housing only when said valve member is not in said open position.
Preferably said upper and lower body portions each include overcap receiving regions, said receiving regions of said upper and lower body portions being movable relative to each other to be in and out of register with each other, wherein when in register they are only then capable of engaging said overcap with said housing, said means to engage being in register only when said valve member is not in said open condition.
Preferably a ring is provided to engage about at least part of both of said upper and lower body portions to lock relative rotation there between until such time as said ring is released from said upper and lower body portion.
Preferably said upper and lower body portions include a receptacle to receive a locking element to lock relative rotation of said upper and lower body portions, said receptacle being defined by both said upper and lower body portions.
Preferably said upper body portion and said lower body portion are rotatably engaged with each other to allow relative rotation about an axis, there being provided by said upper and lower body portions a means cooperative to, at a rotational position of said upper and lower body portions corresponding to the valve member being in at least one of said open and closed position, draw said upper and lower body portions together more to thereby effect a clamping of the valve member by said housing to encourage said valve member to thereby sealingly engage one of said inlet and outlet.
Preferably said means cooperative is a cam and cam follower provided by said upper and lower body portions respectively.
Preferably said means cooperative are complementary threads is provided by way of a threaded engagement of said upper and lower body portions.
Preferably said clamping by said valve housing with said valve member occurs at least one of said inlet and outlet to said chamber to seal against said valve member about said inlet and/or outlet.
Preferably one of said upper and lower body portions includes a skirt region with an internally presented interface region to interface with an externally presented interface region of the other of said upper and lower body portions to hold said upper and lower body portions together for said relative rotation about said axis, said skirt region including a cam surface providing cam surface deviation in a direction parallel to said axis and over which a cam follower of the externally presented interface can slide, said deviation being such that the cam follower is displaced in a direction parallel to said axis by said cam surface.
Preferably said upper body portion and said lower body portion are rotatably engaged with each other to allow relative rotation about an axis, and wherein said upper and lower body portions can displace relative each other in a direction parallel the axis, said displacement controlled by a threaded engagement of said upper and lower body portions said threaded engagement being such that at a rotational position of said upper and lower body portions corresponding to the valve member being in at least one of said open and closed position, said upper and lower body portions are in a more proximate displacement to effect a clamping of the valve member by said housing to encourage said valve member to thereby sealingly engage one of said inlet and outlet.
Preferably said upper body portion and said lower body portion are rotatably engaged with each other to allow relative rotation about an axis, and wherein said upper and lower body portions can displace relative each other in a direction parallel the axis, said displacement controlled by a ramped surface of at least one of said upper and lower body portions interacting with a reaction surface or like ramped surface of the other of said upper and lower body portion at a rotational position of said upper and lower body portions corresponding to the valve member being in at least one of said open and closed position, said upper and lower body portions are in a more proximate displacement to effect a clamping of the valve member by said housing to encourage said valve member to thereby sealingly engage one of said inlet and outlet.
Preferably said upper and lower body portions are rotatable relative to each other about an axis, the rotation being indexed by indexing means of said valve housing cooperating between said upper and lower body portions.
Preferably said indexing means encourages the holding of a relative rotational position (herein after “an index position”) of said upper an lower body portions.
Preferably a said index position is when said upper and lower body portions are rotated relative to each other corresponding to said valve member being in said open condition.
Preferably a said index position is when said upper and lower body portions are rotated relative to each other corresponding to said valve member being in said closed condition.
Preferably a plurality of said index positions are provided.
Preferably a spring is provided to bias the rotation of said valve member for rotation towards one of said open and closed conditions.
Preferably said spring is mounted to act between said valve member and said lower body portion to bias said valve member.
Preferably said spring is mounted to act between said upper and lower body portions to bias their relative rotation to bias said valve member.
Preferably said valve member is mounted by said lower body portion by axles that define an axis of rotation about which said valve member can rotate and relative to which said lower body portion remains stationary and said upper body portion can rotate about said axis relative said lower body portion that is non parallel to said first axis.
In a further aspect the present invention consists in a consumer beverage container comprising;
a container portion
a lower valve body portion integrally formed with said container portion,
an upper valve body portion rotatably engaged with said lower valve body portion and defining with said lower valve body portion a chamber, said lower valve body portion including at least one passage creating an inlet to said chamber to allow fluid passage between said container portion and said chamber, the upper valve body portion including an outlet to said chamber,
a valve member seated in the chamber, said valve member mounted for movement between a position (herein after “open position”) defining at least one passage between said inlet and said outlet and a position (herein after “closed position”) wherein said at least one passage between said inlet and outlet is non-established (preferably said valve member sealing at least one of said inlet and outlet),
means operatively associated with (i) at least one of (a) said upper and (b) lower valve body portions, and (ii) the valve member, for moving the valve member between the open position and the closed position when the upper valve body portion of the housing is rotated relative to said lower valve body portion.
In a further aspect the present invention consists in a consumer beverage container including a container defining body having an outlet for transferring fluid to and from said container defining body and a flow switch assembly as herein described to operatively control the transfer of fluid.
Preferably the lower body portion of said flow switch is integrally formed with said container defining body.
In a further aspect the present invention consists in a consumer beverage container comprising a container body portion having a flow switch assembly controlled outlet wherein said flow switch assembly is one as herein described.
Preferably said first mentioned lower body portion is integrally formed with said container defining body.
Preferably said first mentioned lower body portion is engaged with said container body portion.
In a further aspect the present invention consists in a flow switch assembly comprising;
(a) a valve housing that includes an upper body portion and a lower body portion that are rotatable relative each other, the upper and lower body portions defining a chamber, said lower body portion including a plurality of inlets to said chamber and said upper body portion including at least one outlet to said chamber,
(b) a valve member seated in the chamber of the valve housing, said valve member mounted for movement relative to said valve housing between discrete positions each of said discrete positions allowing the establishment by said valve member of a passage between one of said inlets and (a) or the said outlet,
(c) interactive camming elements associated with said valve housing and the valve member for moving the valve member between the discrete positions when the upper body portion of the housing is rotated relative to said lower body portion.
Preferably said valve member is mounted for movement relative to said valve housing between discrete positions being ones (i) defining of a passage between a said inlet and a or the said outlet and (ii) defining a closed position, wherein said valve member seals at least one of (a) all of said inlets and (b) said outlet(s).
In a further aspect the present invention consists in a flow switch assembly comprising;
(a) a valve housing that includes an upper body portion and a lower body portion that are rotatably engaged to each other, the upper and lower body portions defining a chamber, said lower body portion including at least one inlet to said chamber and said upper body portion including a plurality of outlets to said chamber,
(b) a valve member seated in the chamber of the valve housing, said valve member mounted for movement relative to said valve housing between discrete positions each of said discrete positions allowing the establishing by said valve member of a passage between (a) or the said inlet and one of said outlets,
(c) interactive cam elements associated with said valve housing and the valve member for moving the valve member between the discrete positions when the upper body portion of the housing is rotated relative to said lower body portion.
Preferably said valve member is mounted for movement relative to said valve housing between discrete positions being ones (i) defining a passage between one of said outlets and a or the said outlet and (ii) defining a closed position, wherein said valve member seals at least one of (a) all of said outlets and (b) said inlet(s).
In a further aspect the present invention consists in a container comprising;
a housing that includes an upper body portion and a lower body portion, the upper and lower body portions defining a chamber, the housing including an outlet to said chamber,
a container member seated in the chamber of the housing, said container member including a reservoir to contain a substance and including at least one outlet for said substance, said container member mounted for movement between a position (herein after “open position”) allowing at least one passage to be formed between said outlet of said container member and said outlet to said chamber and a position (herein after “closed position”) wherein said container member seals said outlet of said chamber,
interactive camming elements associated with said housing and the container member for moving the container member between the open position and the closed position when the upper body portion of the housing is rotated relative to said lower body portion.
Preferably said container member includes only one outlet that is rotatable to be contiguous with said outlet of said housing when said container member is rotated to said open position.
Preferably, when said container member is in said open position, said container member establishes at least one passage to allow displacement of said substance between said fluid outlet and outlet of said housing.
Preferably said container member is mounted by said valve housing for rotation relative to said valve housing, about a first axis.
Preferably said container member is substantially spherical in its outer perimeter shape.
Preferably said chamber of said housing is of a substantially complementary shape to said spherical container member.
Preferably said housing includes at least one other outlet in addition to said first mentioned outlet and with which said outlet of said container member can create a passage to allow transfer of said substance from said reservoir.
Preferably said outlet(s) of said housing are provided by said upper body portion.
Preferably at least one tablet is disposed in said valve member and wherein at least one of
(a) said outlet; and
(b) said passage created when said valve member is in the open condition, prevents displacement of said tablet through said outlet when said valve member is in the open position yet said inlet is of a shape to allow said tablet to pass therethrough when said valve member is in said open position.
Preferably said valve element can include a tablet and wherein said outlet is of a shape that prevents the passage of said tablet through said outlet.
Preferably said outlet is of a smaller size than said inlet.
Preferably said passage is formed by at least one duct passing through said valve member, said duct having an inlet and an outlet that when in an open position of the valve member are presented to the inlet and outlet of said housing respectively to create said passage.
Preferably a said duct includes a constriction between said inlet and outlet.
Preferably said duct includes a tablet that is prevented by said constriction from displacing through said outlet of said valve member.
Preferably said duct includes a tablet that is prevented by said constriction from displacing through said outlet of said valve member.
Preferably said passage formed in the open position includes a constriction wherein said tablet is prevented by said constriction from displacing through said outlet of said valve member.
In a further aspect the present invention consists in a flow switch assembly comprising;
(a) a valve housing that includes an upper body portion and a lower body portion that are rotatably engaged relative each other, the upper and lower body portions defining a chamber, the housing including an inlet and outlet to said chamber
(b) a valve member seated in said chamber of the valve housing and rotatable about an axis of rotation between two limits of rotation, said valve member including a plurality of ducts each including an inlet and an outlet opening to said inlet and outlet of said housing to create at least two passages between said inlet and outlet of said housing wherein at least one of said passages is created at different rotational positions of said valve member between its limits of rotation,
(c) interactive cam elements operatively associated with (i) at least one of (a) said upper body portion and (b) lower body portion, and (ii) the valve member, for moving the valve member between its limits of rotation when the upper body portion of the housing is rotated relative to said lower body portion.
In another aspect the present invention consists in a flow switch assembly comprising;
a. a valve housing which includes an upper body portion and a lower body portion, the upper and lower body portions defining a chamber to capture a valve member, the housing including an inlet and outlet to said chamber, the upper body portion being rotatable relative the lower body portion and about a first axis of rotation, between a first rotational position and a second rotational position,
b. a valve member seated in the chamber of the valve housing, said valve member mounted for movement between a position (herein after “open position”) allowing fluid passage between and/or via said inlet and that corresponds to the first rotational position and said outlet and a position (herein after “closed position”) wherein said valve member seals at least one of said inlet and outlet and that corresponds to the second rotational position
c. at least one cam carried by the upper valve housing for rotational movement along a path about said first axis of rotation
d. a first cam follower carried by the valve member and presented in the path of the at least one cam when the upper body portion moves between the first position and the second position and towards the second position to be engaged by the at least one cam to thereby displace the valve member towards the closed position,
e. a second cam follower carried by the valve member and presented in the path of the at least one cam when the upper body portion moves between the first position and the second position and towards the first position to be engaged by the at least one cam to thereby displace the valve member towards the open position.
Preferably there are two cams, one of which is operative in moving the valve member toward the closed condition by its engagement with the first cam follower upon rotation of the upper housing towards its first position and the other of which is operative in moving the valve member toward the open condition by its engagement with the second cam follower upon rotation of the upper housing towards its second position.
Preferably each of the two cams are a lug.
Preferably the valve member is mounted for rotational movement within the housing about an axis of rotation (herein after “second axis of rotation”) that is non parallel the first axis of rotation.
Preferably the second axis of rotation is perpendicular the first axis of rotation.
Preferably the second axis of rotation is defined by two axles provided at opposite sides of the valve member.
Preferably the axles form part of the valve member and are located by journals of the lower body portion.
Preferably the axles form part of the lower body portion and are located by journals of the valve member.
Preferably the first cam follower is positioned proximate more a first of the axles as is its corresponding cam.
Preferably the second cam follower is positioned proximate more the first of the axles as its corresponding cam.
Preferably the second cam follower is positioned proximate more the second of the axles as is its corresponding cam.
Preferably the first and second cam followers are parallel each other and are each proximate a first of the axles, and wherein two cams are carried by the upper housing to each interact with a respective first and second cam follower.
Preferably the first and second cam followers are positioned radially relative to the axle.
Preferably the first and second cam followers present an arcuate surface for interaction with the cam(s).
Preferably when said valve member is in said open position, said valve member establishes at least one passage to allow fluid communication between said inlet and outlet.
Preferably said valve member is mounted by said chamber for rotation relative to said valve housing, about a first axis.
Preferably said inlet is provided by said lower body portion and said outlet is provided by said upper body.
Preferably said inlet and said outlet are provided in diametrically to said valve member opposed locations.
Preferably each of the cam followers is formed at the exterior surface of the valve member and a cam(s) is formed on the interior surface of the upper body portion of the housing.
Preferably each of the cam followers is formed into the valve member.
Preferably said lower body portion provides said inlet to said chamber, and wherein said lower body portion is integrally formed with a container said container including an opening contiguous said inlet to said chamber.
Preferably said container is a consumer beverage container.
In a further aspect the present invention consists in a consumer beverage container comprising;
a container portion that includes a lower valve body portion integrally formed with said container portion,
an upper valve body portion, rotatably engaged with said lower valve body portion and defining with said lower valve body portion a chamber to capture a valve member, said lower valve body portion including a passage creating an inlet to said chamber to allow fluid passage between said container portion and said chamber, the upper valve body portion including an outlet to said chamber,
a valve member seated by the chamber, said valve member mounted for movement between a position (herein after “open position”) allowing fluid passage between and/or via said inlet and said outlet and a position (herein after “closed position”) wherein said valve member seals at least one of said inlet and outlet,
a cam of at least one of (a) said upper and (b) lower valve body portions, and two cam followers of the valve member, to interact with each other for moving the valve member between the open position and the closed position when the upper valve body portion of the housing is rotated relative to said lower valve body portion.
In a further aspect the present invention consists in a fluid container comprising;
a housing which includes an upper body portion and a lower body portion, the upper and lower body portions defining a chamber capturing a container member, the housing including an outlet to said chamber,
a container member seated by the chamber of the housing, said container member including a reservoir to contain fluid and including at least one fluid outlet, said container member mounted for movement between a position (herein after “open position”) allowing fluid passage between and/or via said fluid outlet of said container member and said outlet to said chamber and a position (herein after “closed position”) wherein said container member seals said outlet of said chamber,
a cam of at least one of (a) said upper and (b) lower valve body portions, and two cam followers of the valve member, to interact with each other for moving the valve member between the open position and the closed position when the upper valve body portion of the housing is rotated relative to said lower valve body portion.
Preferably said container member includes only one fluid outlet which is rotatable relative to and to be contiguous with said outlet of said housing when said container member is rotated to said open position.
Preferably when said container member is in said open position, said container member establishes at least one passage to allow fluid communication between said fluid outlet and outlet of said housing.
Preferably said container member is mounted in said chamber for rotation relative to said valve housing, about a first axis.
Preferably the moving of said container member between the open position and the closed position by the interaction of the cam and cam followers is actuated when the upper body portion of the housing is rotated relative to said lower body portion about an axis which is perpendicular to said first axis.
In a further aspect the present invention consists in a flow switch as hereinbefore described and as described with reference to any one or more of the accompanying figures.
In a further aspect the present invention consists in a flow switch as described with reference to any one or more of the accompanying figures.
In a further aspect the present invention consists in a beverage container including a flow switch as hereinbefore described and as described with reference to any one or more of the accompanying drawings.
In a further aspect the present invention consists in a beverage container including a flow switch as described with reference to any one or more of the accompanying drawings.
In a further aspect the present invention consists in a beverage container as hereinbefore described and as described with reference to any one or more of the accompanying drawings.
In a further aspect the present invention consists in a beverage container as described with reference to any one or more of the accompanying drawings.
Where reference herein is made to a “valve” it is understand to be a reference to a “flow switch” of the kind herein described. Furthermore whilst reference may predominantly be made to such a flow switch or valve being used for beverage containers, it will be appreciated by a person skilled in the art that other applications for the control of fluid flow by the flow switch of the present invention can be catered for including but not limited to plumbing.
This invention may also be said broadly to consist in the parts, elements and features referred to or indicated in the specification of the application, individually or collectively, and any or all combinations of any two or more of said parts, elements or features, and where specific integers are mentioned herein which have known equivalents in the art to which this invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth.
The subject application is directed to a valve/seal assembly that is adapted for use in a variety of applications, such as for example, medical, consumer beverage, pharmaceutical containers, automobile, household appliance and marine. The disclosed valve includes, inter alia, a valve housing having an upper body portion and a lower body portion and a generally spherical valve member. The upper and lower body portions of the housing define an internal chamber for accommodating the valve member and a central axis for the valve. The housing also has axially aligned inlet and outlet ports formed in the upper and lower body portions, respectively.
The generally spherical valve member is seated within the internal chamber of the valve housing and has an axial bore extending therethrough. The valve member is mounted for movement between an open position; wherein the axial bore of the valve member is axially aligned with the inlet and outlet ports of the valve housing, and a closed position; wherein the axial bore of the valve member is out of alignment with the inlet and outlet ports of the valve housing. Preferably, the valve member moves between the open position and the closed position when the upper body portion of the housing is rotated about the central axis between about 57 degrees and about 77 degrees with respect to the lower body portion. It is presently envisioned that the valve member is mounted for axial rotation within the interior chamber about an axis extending perpendicular to the central axis defined by the upper and lower body portion of the valve housing.
Preferably, the valve member includes a sealing surface adapted for sealing engagement with a valve seat formed in the housing when the valve is in the closed position. In applications where a pressure is applied to the fluid or air metered by the valve, the sealing surface of the valve member is adapted to include an annular recess having an o-ring disposed therein.
The valve assembly further includes a mechanism that is operatively associated with the valve housing and the valve member for moving the valve member between the open position and the closed position when the upper body portion of the housing is rotated about the central axis with respect to the lower body portion. In a preferred embodiment, the mechanism for actuating the valve assembly is a camming mechanism.
In a present embodiment, the camming mechanism includes cam surfaces formed on the exterior surface of the valve member and a cam pin formed on the interior surface of the upper body portion of the housing. It is envisioned that the cam surfaces formed on the exterior surface of the valve member are defined by a pair of cam lobes formed at angles to one another. The cam lobes can be arcuate or linear in configuration.
In a further embodiment of the present invention, the camming mechanism includes at least one arcuate recess formed on the exterior surface of the valve member and a cam pin formed on the interior surface of the upper body portion of the housing for engaging with the cam recess.
In a preferred embodiment, the housing for the valve assembly includes means associated with the inlet port for engaging the valve with a receptacle or tubing. Additionally, if desired, the housing can includes means associated with the outlet port for engaging the valve with a receptacle or tubing.
In applications that require the valve to include a tamper-proof feature to ensure the purity of the substance contained within the bore of the valve member or in the receptacle or container, upon which the valve is affixed to, the valve further includes a frangible ring engaged with exterior of the valve housing to provide a visual indication of whether the valve has been opened. Alternatively or in combination, the valve can include a frangible sealing disc inserted into the interior chamber of the valve to again provide a visual indication of whether the valve has been opened. This sealing disc also functions as a secondary seal for the valve until its initial use. In this embodiment, it is envisioned that the valve member includes a mechanism for puncturing the disc when the valve is opened. For example, a sharp protuberance can be formed on the bottom of the valve member which cuts the sealing disc when the valve is moved from the closed to the open position.
In an alternative embodiment, the axial bore of the valve member is adapted and configured for receiving and storing an article of manufacture when the valve is in the closed position. For example, an award or small prize may be stored in the bore and revealed when the valve is opened. Still further, the valve could be mounted to a water bottle and the bore of the valve could contain a vitamin or supplement which is dropped into the water when the valve is opened.
It is further envisioned that the valve can include a mechanism associated with the valve housing for facilitating the axial rotation of the upper body portion of the housing relative to the lower body portion.
In an alternative embodiment, a plurality of flow passages are formed in the valve member and extend therethrough along an axis that is perpendicular to the axial bore such that when the valve is in the closed position, fluid or air traverses the valve through the plurality of flow passages.
The present disclosure is also directed to a surgical access device which includes, among other things, a valve housing, an elongated cannula sleeve operatively associated with the housing, a generally spherical valve member disposed within an interior chamber defined in the housing and a mechanism operatively associated with the valve housing and the valve member for moving the valve member between the open position and the closed position.
The valve housing defines an interior chamber and a valve seat for accommodating the valve member. Axially aligned inlet and outlet ports are formed in the housing and extend from the valve exterior to the interior chamber.
The elongated cannula sleeve that is operatively associated with the valve housing, has an elongated passageway extending therethrough that defines a longitudinal axis aligned with the inlet and outlet ports of the valve housing. In a disclosed embodiment, the cannula sleeve depends from a cannula housing associated with the valve housing. It is envisioned that the cannula housing can be detachably connected to the valve housing.
The generally spherical valve member is seated within the valve housing and has an axial bore extending therethrough. The valve member is mounted for movement between an open position and a closed position. In the open position, the axial bore of the valve member is axially aligned with the elongated passageway of the cannula sleeve and the inlet and outlet ports of the valve housing. In the closed position, the axial bore of the valve member extends perpendicular to the elongated passageway of the cannula sleeve and the inlet and outlet ports of the valve housing. It is envisioned that the valve member is mounted for axial rotation within the valve interior chamber about an axis extending perpendicular to the axially aligned inlet and outlet ports of the valve housing.
It is presently envisioned that the valve member includes a convex sealing surface, which is aligned with the inlet port of the valve housing when the valve member is in the closed position. In alternative embodiments that require a pressure tight seal, the sealing surface of the valve member includes an annular recess having an o-ring disposed therein.
In a preferred embodiment, the mechanism for moving the valve member includes cam surfaces formed on the exterior surface of the valve member and a cam pin mounted for movement relative to the cam surfaces of the valve member. Preferably, the cam pin extends radially inwardly from a drive ring supported on the valve housing and mounted for rotation about the longitudinal axis of the cannula sleeve. The rotation of the drive ring causes corresponding rotation of the valve member within the valve seat of the valve housing.
In a disclosed embodiment of the surgical access device, the cam surfaces formed on the exterior surface of the valve member are defined by a pair of cam lobes oriented with respect to the axis of rotation of the valve member at angles to one another.
In an alternative embodiment, the mechanism operatively associated with the valve housing and the valve member for moving the valve member between the open position and the closed position includes at least one arcuate recess formed on the exterior surface of the valve member and a cam pin formed on the interior surface of the housing for engaging with the cam recess.
It is presently preferred that the surgical access device further includes a membrane seal located proximal to the valve seat, the membrane seal having an opening axially aligned with the elongated passageway of the cannula sleeve. The opening is dimensioned to accommodate the passage of a surgical instrument therethrough.
Those skilled in the art would readily appreciate that the components of the disclosed valve assembly, or portions thereof, may be manufactured from any rigid, semi-rigid, hard or semi-hard material, such as plastic, rubber, metal or a composite. Still further, in medical applications the valve assembly can be made out of titanium or a similar biocompatible material.
Additionally, the generally spherical valve member can be formed to have an interference fit with the valve seat so as to provide a tighter seal. By forming the valve member or valve seat slightly out-of-round, a tighter seal is created and more force is required to open the valve.
It is also envisioned that a telescoping nozzle or sleeve can be disposed within the axial bore of the valve member and when the valve is moved to the open position, the nozzle or sleeve extends out of the valve inlet. This feature is useful in a variety of applications, such as for example, beverage or gasoline containers.
Still further, it is envisioned that the valve assembly of the present invention can be connected to stepper motor and thereby be operated remotely.
For convenient references aspects of the present invention are explained with and without reference to prior art by way of the drawings in which;
a is a perspective view in partial cross-section of the valve housing, which forms part of the surgical access device of
b is a perspective view in partial cross-section of the valve housing of the subject invention, wherein the valve member is in transition from the open position of
c is a perspective view in partial cross-section of the valve housing of the subject invention, wherein the valve member is disposed in a closed position so that the axial bore of the valve member is oriented perpendicular to the axially aligned inlet and outlet ports of the valve housing;
a is a view from another side of the valve member of
b is an end view like the end view shown in
c is a side view of a valve member showing a cam surface of a continuous form rather than being defined by two discrete cam lobes as shown in
a illustrates the top end of a consumer beverage container having integrally formed, a lower body portion of the valve housing,
a is a plan view of a valve member illustrating a passage not extending through the valve member but created in part by the valve member,
b is a side view of the valve member of
c illustrates a variation to the configuration shown in
d illustrates a further variation,
e illustrates yet a further variation to those shown with reference to
a illustrate multiple flow path enabling variations of a flow switch assembly of the present invention,
a is a perspective view of a variation to the lock described with reference to
b is a further variation to that shown in
a is an alternative side view of a flow switch assembly illustrating the incorporation of ratchet surfaces that can mate with each other for the purposes of an indexed locking of the upper and lower housing or providing an interference fit between the upper and lower housings to restrict or restrain or limit relative movement,
Referring now to
The generally spherical valve member 50 is seated within the internal chamber 16 of the valve housing and has an axial bore 52 extending therethrough. The valve member 50 is mounted for movement within the internal chamber 16 of the housing 10 between an open position and a closed position.
With continuing reference to
The valve member 50 includes a sealing surface 54 which is adapted for sealing engagement with annular valve seat 18 formed in the housing 10 when the valve is in the closed position. In applications where a pressure is applied to the fluid or air that is metered by the valve assembly, the sealing surface 54 of the valve member 50 includes an annular recess 56 (see
Diametrically opposed pivot pins 58 (only one pin is shown in
A camming mechanism is operatively associated with the valve housing 10 and the valve member 50 for moving the valve member 50 between the open position of
Referring again to
Those skilled in the art would readily appreciate that in lieu of the cam lobes 60a and 60b, a single arcuate recess or pair of recesses can be formed in the exterior surface of valve member 50. In this embodiment, the length of cam pin 22 would be selected so that it extends into the camming recess(es) and actuates the valve member 50 between the open and closed positions upon the relative axial rotation of the two body portions 20/30 of the housing 10 with respect to each other.
Referring again to
A water pressure test was conducted on a valve assembly similar to that described above. The entire valve was manufactured from a rigid thermoplastic and did not include O-ring seals. The camming lobes were constructed such that 67 degrees of rotation was required to move the valve between the open and the closed position. The axial bore of the valve was approximately ¾″ in diameter. Six feet of water was applied to the valve through a ⅜″ tube that was secured to the valve outlet. No leaking of the valve was observed and therefore, it was concluded that this embodiment of the valve assembly was capable of sealing fluid at a pressure of 3 psi (minimum).
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Valve assembly 500 is similar in structure and function to valve assembly 100. However, unlike valve assembly 100, valve assembly 500 includes actuator arms 528a through 528d that facilitate the relative rotation of the upper body portion 520 of the valve assembly 500 with respect to the lower body portion 530 thereby moving the valve member between the open and closed positions. O-rings 525 are provided to seal the connections of the components and prevent leakage from the flow path.
Referring now to
Referring now to
The flow passages 753 extend along an axis that is perpendicular to the axial bore 752 such that when the valve member is in the closed position, fluid traverses the valve through the plurality of flow passages 753. Hence when the valve assembly 700 is in the open position, a single jet of water is emitted from the showerhead assembly and when it is in the closed position, water streams from the flow passages 753. O-ring seals 755a, 755b and 757a, 757b are provided at both ends of the axial bore 752 and flow passages 753 to properly seal the valve when in the open and closed positions, respectively.
The showerhead disclosed in
Those skilled in the art will readily appreciate that the showerhead assembly described hereinabove can be adapted for use for metering an air supply rather than fluid.
Referring now to
Referring now to
Minimally invasive surgical procedures are commonly performed by passing surgical instruments through a narrow tube or cannula inserted through a small entrance incision formed in a patient's body using a trocar or obturator. For example, laparoscopic surgical procedures are performed within the abdominal cavity through small incisions formed in the abdominal wall. During a laparoscopic procedure, insufflating gases are introduced into the abdominal cavity to raise the abdominal wall or peritoneum away from the vital organs within the abdominal cavity, thereby providing an adequate region in which to operate.
During a laparoscopic procedure, it is necessary to maintain the atmospheric integrity of the abdominal cavity, and thus prohibit the egress of insufflation gases for the surgical site. It is common therefore, to provide a seal assembly within the cannula so that when instruments are present within the cannula and when instruments are withdrawn form the cannula, the tubular passageway extending therethrough is tightly sealed to prevent the egress of insufflating gases. For example, it is known to employ an elastomeric seal member with an aperture or slit that may be forced open when the instrument is passed therethrough. The seal member prevents the egress of insufflation gasses when the instrument is present and absent from the cannula. There are known disadvantages to employing such seals. In particular, the opening or slit can tear when an instrument is forced therethrough, thus rendering the seal in effective to prevent the egress of insufflating gases from the cannula sleeve.
Therefore as will be described hereinbelow, surgical instrument 900 has been equipped with the valve assembly of the present invention to prevent the egress of insufflating gases through the cannula in the absence of a surgical instrument. Surgical instrument 900 is intended for use as an access device, and more particularly, as a device to facilitate the introduction of a surgical instrument into a person's body during a minimally invasive surgical procedure. Surgical instruments introduced into a patient's body through the surgical instrument 900 of the subject invention can include for example, clip appliers, graspers, dissectors, retractors, staplers, laser fibers, photographic devices, endoscopes, laparoscopes, tubes; and the like.
Surgical instrument or access device 900 includes a proximal valve housing 910 having an inlet port 912 for receiving surgical instruments. Valve housing 910 includes an upper body portion 920 and a lower body portion 930 which define, among other things, a generally hemispherical internal chamber 916 for accommodating a generally spherical valve member 950. Internal chamber 916 communicates with an outlet port 914 of the valve housing 910 which is axially aligned with the inlet port 912. Valve housing 910 is operatively associated with a lower cannula housing 980. Preferably, the valve housing 910 and cannula housing 980 are formed of a polycarbonate material.
An elongated cannula sleeve 982 extends distally from the cannula housing 980. Cannula sleeve 982 has an elongated passageway 984 extending therethrough, which defines a longitudinal axis defined by reference character “X”. Passageway 984 is axially aligned with the inlet port 912 and outlet port 914 of valve housing 910. Cannula sleeve 982 may be formed of stainless steel or another suitable rigid material such as polycarbonate materials or the like. An inlet conduit 986 is incorporated into cannula housing 980 to permit the passage of insufflation gases through the cannula sleeve 982 and into the patient's body cavity. The inlet conduit 986 can include a stopcock valve, which is not shown.
Valve member 950, which is preferably formed from a polycarbonate material, is mounted for axial rotation within the interior chamber 916 about an axis extending perpendicular to the longitudinal axis of the cannula sleeve 982. Diametrically opposed pivot pins 958 (only one pin is shown in
Valve member 950 is mounted for movement between an open position and a closed position. In the open position of valve member 950, which is shown in
As described with respect to previous embodiments, a camming mechanism is operatively associated with the valve housing 910 and the valve member 950 for moving the valve member 950 between the open position of
Drive ring 920 is rotatably mounted on the proximal end of valve housing 910 and includes diametrically opposed radially inwardly extending guide ribs 924 which cooperate with an annular guide surface 938 formed on the exterior of the lower body portion 930 of the valve housing 910. Stop surfaces 940 limit the rotational motion of upper body portion/drive ring 920 relative to the longitudinal axis of the cannula sleeve 982.
A fluted manipulation knob 990 is cooperatively engaged with the drive ring 920. Manipulation knob 990 includes inlet port 992, which is aligned with the axial passageway 984 of cannula sleeve 982 and defines in part the inlet port 912 of valve housing 910. The engagement of drive ring 920 and manipulation knob 990 is accomplished through the coupling of a pair of diametrically opposed radially outwardly extending engagement tabs 926 on drive ring 920 (only one tab is shown in
A flange 942 projects radially outwardly from the lower portion 930 of valve housing 910 to provide leverage to the surgeon when the manipulation knob 990 is rotated. Valve housing 910 further includes a membrane seal 996 located proximal to the interior chamber 916 and retained within an annular recess. Membrane seal 996 has a central slitted opening 998 that is axially aligned with the outlet port 912 of valve housing 910 and the passageway 984 of the cannula sleeve 982. Central opening 998 is dimensioned and configured to accommodate the passage of a surgical instrument therethrough. The membrane seal 996 will help to prevent the egress of insufflation gasses from the access device 900 when an instrument is present therein and the valve member 950 is in an open position.
Referring now to
Although the valve assembly of the subject invention and surgical access device incorporating the same have been described with respect to preferred embodiments, those skilled in the art will readily appreciate that changes and modifications may be made thereto without departing from the spirit and scope of the subject invention as defined by the appended claims.
Additionally, the valve assembly of the subject invention can be used in alternative applications not described hereinabove. For example, the valve can be installed in a sink drain to eliminate the need for a plug. Additionally, the valve can replace bungs or plugs used to seal penetrations in the hull of boats. Still further, the valve can replace caps on hand creams, toothpaste, etc.
Referring now to
The flow switch assembly 1 includes, inter alia, a valve housing 2 having an upper body portion 3 and a lower body portion 4 and a valve member 5 preferably of a spherical shape. The upper and lower body portions 3,5 of the housing 2 define an internal cavity 6 to capture the valve member 5. The flow switch assembly may have a central axis “X”. The housing 2 preferably also has inlet and outlet ports 7 and 8 respectively, formed in the lower and upper body portions 4 and 3 respectively. These are diametrically opposed on each side of the valve member 5, but with respect to the present invention this axial alignment need not necessarily be so (see for example,
The valve member 5 is seated within the internal cavity 6 of the valve housing 2 and has a passage 9 extending therethrough. The valve member 5 is mounted for movement within the internal cavity 6 of the housing 2 between an open position and a closed position.
Valve member 5 (which is preferably spherical in shape but could be slightly non-spherical) moves between the open position and the closed position when the upper body portion 3 of the housing is rotated about the central axis “X” with respect to the lower body portion 4. The valve member 5 is mounted for rotation within the interior chamber about an axis “Y” (see
The valve member 5 may include a sealing surface 11 that is adapted for sealing engagement with annular valve seat 12 formed in the housing 2 when the valve is in a closed position.
Two, preferably diametrically opposed, pivot pins 13 (only one pin is shown in
A camming or driving mechanism is operatively associated with the valve housing 2 and the valve member 5 for moving the valve member 5 between the open position of
With reference to
As also shown in
a illustrates a positioning of the cam pin 17 in a undesirable position. Referring to
Although not shown in
Whilst reference herein is made to longitudinal and latitudinal lines having direct reference to a spherical valve element, it will be appreciated that other forms of valve elements will have similar principles at work given that such will still have two poles.
A further variation to the cam lobes is shown with reference to
However one of the potential disadvantages of parallel cam lobes as shown in
A person skilled in the art will realize that variations to this preferred configuration can occur including where the XY plane and the ZY planes are not perpendicular of each other.
The degree of play may be dependent on the degree of separation of the reaction surfaces at the latitude of the upper body portion at where the cam pin is mounted. Where the surfaces are of a V-shaped configuration, the closer that the cam pin is mounted towards the apex of the V, the less play there will be. The apex of the V (whether or not the surfaces in fact touch each other) may be at the pole of the valve member or may terminate at a latitude of the valve member away from the pole.
Also shown in
With reference to
The example of
The lower body portion 4 may be defined integrally with the beverage container 10. Various methods of manufacture can be employed. Such may include an injection molding or by a blow molding of such. Whilst the tolerances in blow molding may not be as accurate as in injection molding, the flow switch assembly 1 can be designed so that with lower tolerances, adequate sealing and closure of the flow switch assembly 1 can still be established. The lower body portion 4 need not in fact be of a tolerance to encourage a sealing of the container 10, by the valve member 5. In this regard, sealing may be achieved by the interaction of the valve member 5 with the upper body portion 3. The lower body portion 4 need only be of a tolerance sufficient to cradle the valve member 5 and to provide the recesses 14 and 15 for defining a pivot for the pivot pins 13.
With reference to
In the specific example shown in
Partial opening and closure may also be a relative positional relationship that can exist between the two valve members. The passage (or opening of the upper/lower body portion) through one of the valve members 105 may be significantly larger than the passage through the other valve member thereby allowing for one of the valve members to remain in an open or closed condition for longer than the other of the valve members during a rotation of the upper body portion 103. Such a configuration can also control different flow rates.
The assembly of
The valve member 105 (or the openings through either or both its related body portions) distal most from the bottle may provide an opening or passage there through that is of a size insufficient to allow a tablet to pass through the passage or opening of the valve 105. Therefore the only way that the tablet can pass is through an opening or passage through the valve 105 proximate most the bottle so as to allow for the displacement of the tablet into the bottle only. This will prevent the removal of the tablet from the cavity or duct 191 and will only allow for the tablet to pass into the container region of the bottle.
c illustrates a variation to that shown in
With reference to
With reference to
With reference to
With reference to
The spout region 222 is preferably defined by a cutting away of part of an otherwise spherical (or otherwise shaped) valve member 205. The cutaway portions of the valve member 205 allow for a spout region 222 to be defined as part of the valve member 205. The upper body portion 203 may be modified to allow for the spout region 222 to be capable of projecting beyond the upper surface 223 of the upper body portion 203. In a closed condition the valve member 205 is still capable of being rotated to prevent communication between the inlet port 207 and the outlet port 208 of the valve member 205. Indeed in this example the outlet port 208 serves the function to allow for the outlet spout 222 to pass therethrough when the flow switch assembly 201 is in the open condition. In this position, the spout allows fluid communication or fluid passage via said outlet 208 of said upper body portion 203. In this condition, the fluid or solid passage or fluid communication is not strictly between said inlet and outlet of said housing but between the inlet of the housing and the outlet spout, via the outlet of the housing.
The upper body portion 203 may be shaped to include an outlet port 208 that may include a slot or channel 224 via which the spout region 222 of the valve member 205 can pass in moving between the open condition and the closed condition of the flow switch assembly 201. However such a slot or channel 224 need not necessarily be provided and the outlet port 208 may be of a size to accommodate full rotation of a fully spherical valve member 205. When in the closed condition the partially spherical surface 225 of the spout region 222 is still capable of sealing against a complimentary surface of the internal cavity 206 defined by the upper and lower body portions 203 and 204 to close the flow switch.
With reference to
With reference to
The valve member 405 includes sealing surfaces 428 that are capable of seating with respective seating surfaces 429 of one or both of the upper and lower body portions 403 and 404. Such seating occurs when the valve member is in a condition to define a valve assembly in a closed condition as shown in
The flow switch assembly 401 shown in
The ramped surfaces 431 interact with the cam follower 433 at points of relative rotation between the upper and lower body portions when the valve member is at and immediately prior to both or one of the open and closed conditions. The interaction between the ramped surfaces and the cam follower is such that when sealing between the sealing surfaces 428 and the seating surfaces 429 is required (i.e. when the valve assembly is in a closed condition and preferably also when it is in the open condition), the ramped surfaces encourage a displacement in or parallel to the axial direction XX of the upper and lower body portions to bring these together.
The bringing together of the upper and lower body portions as a result of the interaction between the ramped surfaces and the cam follower will result in a pressing of the seating surfaces 429 onto the sealing surfaces 428. Such a clamping or pressing results in a better seal being established between the sealing surfaces 428 and seating surfaces 429. The relative tangential positioning of the ramped surfaces and cam follower or followers of the upper and lower body portions respectively, will allow for such a clamping to be established at the appropriate points of relative rotation between the upper and lower body portions corresponding to appropriate angular positions of the valve member.
Whilst the wedge 430 may include two ramp surfaces, one on each side of the apex 432, it will be appreciated that the wedge may only include one ramped surface for the purposes of interaction with one cam follower. In such an example, clamping would only occur in one of the open or closed positions of the valve member (preferably the closed condition).
Whilst reference has herein been made to cam surfaces and cam followers, it will be appreciated by a person skilled in the art that such clamping may be established by a leaf spring arrangement being representative of a cam of the kind as hereinbefore described. A leaf spring arrangement may be provided to allow for a cam follower to run up the surface of a leaf spring and progressively allow for relative movement between the upper and lower body portions to be biased in a direction for sealing.
With reference to the
With reference to
With reference to
The provision of an overcap 621 that can only engage with a flow switch assembly 601 when the assembly is in a fully closed condition provides the benefit to ensure that the valve is complete closed by a user before the overcap is engaged to the valve assembly. This may have application for example where the valve assembly is used as a valve on a petrol tank of a vehicle. The overcap 621 can hence only be engaged to the flow switch assembly when the petrol tank has been fully closed by the flow switch assembly. This should avoid the flow switch assembly remaining open or partially open. An alternative to the overcap locking mechanism as shown, is a locking pin provided to prevent rotation between the upper and lower body portions. Such a locking pin may extend through apertures of the upper and lower body portions like that shown with reference to the overcap to prevent the relative movement between the upper and lower body portions.
Alternatively the overcap locking mechanism or locking pin may be used to keep the valve in an open position.
With reference to
With reference to
With reference to
The upper body portion 1203 may be rotated clockwise such that the points P at where the springs 1291 engage the upper body portion are displaced to positions P1. The release of the upper body portion 1203 by for example a hand rotating the upper body portion to positions P1, will result in the upper body portion returning back to the position where the points P are on the axis AA. Such biasing of rotation of the upper body portion 1203 may be to allow for an over centre or toggle position to be assumed by the upper body portion 1203 in relation to the springs 1291. Such an over centre position may allow for the upper body portion 1203 to remain in such a position without having to be held by a hand of a user in such a position. Such a mechanism would operate similar to an over centre toggle latch or spring or the like. The valve that incorporates such a bias as for example shown in
With reference to
However, preferably the lobes 16a and 16b as for example shown with reference to
With reference to
Wherein reference has been made to the fluid passage 9 or passage for solids, being through the valve member 5 it will be appreciated and with reference to
As has hereinbefore been mentioned the flow switch or valve assembly of the present invention may include a tablet or pill or similar. With reference to
Referring now to
Reference is made to the description of the invention of PCT/NZ06/000087 which is hereby incorporated by way of reference.
With reference to
As also shown in
a illustrates a positioning of the cam 17 in a undesirable position. Referring to
Although not shown in
Whilst reference herein is made to longitudinal and latitudinal lines having direct reference to a spherical valve element, it will be appreciated that other forms of valve elements will have similar principles at work given that such will still have two poles.
A further variation to the cam lobes is shown with reference to
However one of the potential disadvantages of proximate parallel cam lobes or equivalent slot as shown in
A person skilled in the art will realize that variations to this preferred configuration can occur including where the XY plane and the ZY planes are not perpendicular of each other.
The degree of play may be dependent on the separation of the reaction surfaces at the latitude of the upper body portion at where the cam is mounted. Alternatively two cams 63, 64 as shown in
With reference to
A variation to the configuration shown in
With reference to
With reference to
With reference to
This application is a continuation-in-part of U.S. application Ser. No. 11/640,009 filed Dec. 15, 2006 and further claims priority from U.S. application Ser. No. 11/413,741 filed Apr. 28, 2006, which in itself claims priority from U.S. Provisional Patent Application Ser. No. 60/675,668 filed Apr. 28, 2005; and the subject application further claims the benefit of priority from U.S. Provisional Patent Application Ser. No. 60/818,825 filed Jul. 6, 2006, the disclosures of each of said applications are herein incorporated by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
60818825 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11640009 | Dec 2006 | US |
Child | 11825577 | US |