The present invention is directed generally to a cooling systems, and in particular to methods and apparatus for removing heat from cabinets for supporting electronics equipment.
Electronic equipment is typically housed in units referred to variously as electronics cabinets, rack-mount electronic enclosures, electronics racks, and so on. An electronics cabinet typically comprises an enclosure housing electronic devices or components, usually assembled on large printed circuit cards (sometimes referred to as modules) inserted into slots of a card rack. Auxiliary components such as power supplies, power conditioning circuits, and the like are also typically included in the enclosure or housing.
To cool the electronic equipment, fans or blowers, most often positioned in trays, force air over the cards to remove the heat produced by the electronics.
Air conditioning systems are available to cool the air within a closed electronics cabinet by re-circulating the air through an air conditioning unit. Conventional air conditioning units are self contained units capable of producing cool air. The units are typically side mounted to the electronics cabinet, recirculating the internal air of the cabinet between the air conditioning unit and the cabinet.
The power density of electronics racks continues to increase, and the need to maintain proper temperature conditions becomes increasingly more important. Racks in large data centers are typically installed in air-conditioned rooms and have ready access to air-conditioned air. Small centers and small/mid-size businesses using single stand-alone racks, on the other hand, oftentimes do not have access to a source of chilled air.
The present invention includes three major components: (1) an evaporator, or similar device, to remove energy from the air; (2) a compressor, or similar device, to move a coolant through a closed loop; and (3) a condenser, or similar device, to remove energy from the coolant loop. An air conditioning system, using cooling technology not unlike that used in a home refrigerator, is incorporated in an electronics cabinet. A refrigerant circulates through the closed refrigeration loop, from compressor to condenser to evaporator, and back to the compressor. Meanwhile, ambient air enters the electronics cabinet and is cooled by the evaporator. The cooled airflow cools the electronic equipment housed therein. The now-heated airflow is also used to cool the condenser after which the air is exhausted back into the outer environment.
The present invention provides an enhanced method and system for cooling electronics racks for stand-alone or small cluster configurations that house increasingly higher power electronics components. The present invention advances the art of rack cooling by adding a unique air-conditioning system to the rack to cool the electronics housed within the rack.
Advantages of the present invention include:
Details of embodiments of the present invention will now be discussed to illustrate the best mode contemplated by the inventor for practicing the present invention, including variations thereof. Structural elements common among the figures are represented by common reference numerals. It will be evident from the explanations that alternatives and substitutions can be made without departing from the scope and spirit of the present invention.
An illustrative embodiment of the present invention is explained in connection with a schematic representation of an electronics cabinet 100 as shown in
In accordance with an embodiment of the present invention, the electronics cabinet 100 depicted in
The enclosure 102, in accordance with the present invention, includes an air intake 104 and an air exhaust 106. The air intake 104 and air exhaust 106 can be provided as vented openings formed in the enclosure 102, thus allowing for a flow of ambient air through the interior volume 101 of the enclosure. In the particular embodiment shown in
The enclosure 102, in accordance with the present invention, includes one or more racks (or card cages) 114 for supporting the electronic equipment 130 (sometimes referred to as modules). Communication racks used in digital telecommunications, for example, are slotted to receive communication modules (or cards).
The enclosure 102, in accordance with the present invention, includes a cooling (air conditioning, refrigeration, etc.) system 120. The cooling system 120 includes a compressor 122, a condenser 124, an evaporator 126, and a throttling device 128 (e.g., expander, valve, etc.). These elements are connected by tubing 121 to form (define) a refrigeration circuit within which a suitable coolant (refrigerant, not shown) is circulated 123. It will understood that a suitable controller, although not shown, is provided to operate the compressor 122 and throttle 128 to operate in a manner to be discussed in more detail below. Technologies such as microcontrollers, FPGAs (field programmable gate arrays), ASICs (application specific ICs), and the like can be used to implement a suitable controller.
A fan unit 112 or other suitable air moving device provides a flow of air within the enclosure 102, to create an air stream (air flow) 141 that flows from the air intake 104 to the air exhaust 106. The fan unit 112 draws ambient air 142 into the enclosure 102 via the air intake 104 to create the airflow 141, which is illustrated in
In accordance with the present invention, the condenser component 124 of the cooling system 120 is disposed at or close to the air exhaust 106. The condenser 124 typically comprises a coil of tubing (condenser coil) that is positioned with respect to the air exhaust 106 such that the outgoing airflow passes across the condenser coil. The evaporator component 126 of the cooling system 120 is disposed at or close to the air intake 104. The evaporator 126 typically comprise a coil of tubing (evaporator coil) that is positioned with respect to the air intake 104 such that the incoming airflow passes across the evaporator coil.
As a matter of convention, the direction of the flow of air 141 from air inlet 104 toward the air exhaust 106 can be referred to herein as the downstream direction, commonly understood nomenclature when discussing the flow of fluids. Hence the condenser 124 is considered to be located downstream of the evaporator 126. Conversely, the evaporator 126 is positioned upstream of the condenser 124. When convenient, the terms upstream and downstream may be used to indicate direction or relative position of components in terms of the direction of the flow of air 141.
The refrigeration circuit shown in
It can be appreciated of course that other kinds of known refrigeration circuits, such as gas compression or thermoelectric, can be readily adapted for use in accordance with the present invention. For example, a gas compression refrigeration circuit comprises elements similar to a vapor compression unit. The equivalent of an “evaporation” phase is achieved in a low pressure, low temperature heat exchanger, though there is no evaporation per se. The equivalent of a “condensation” phase is achieved in a high pressure, high temperature heat exchanger, though there is no condensation per se. A gas compression refrigeration circuit also employs a compressor and a throttle to provide similar functionality as in the vapor compression unit.
A thermoelectric refrigeration circuit is a bit different due to differences in the underlying technology, where cooling is achieved by a device called a thermocouple which provides cooling by a thermoelectric effect known as the Peltier effect. While there is no “evaporation phase” per se, there is a cooling phase which occurs as air passes across the “cold side” of the thermocouple. The air is cooled by directing the air stream across the surface of the cold side of the thermocouple. Similarly, there is no “condensation phase” per se, but the removal of heat absorbed by the cold side of the thermocouple. This heat removal occurs on the “hot side” of the thermocouple. Air passing across the hot side can pick up heat from the hot side of the thermocouple. There is no compression or throttling function as with vapor compression and gas compression devices. However, electrical power must nonetheless be supplied to the thermocouple. Such devices are very well understood and many forms of thermocouples are commercially available.
It will be appreciated from the discussion which follows that alternatives to vapor compression type cooling units, such as the gas compression and thermoelectric types can be readily adapted in accordance with the present invention.
The general operation of the electronics cabinet 100 is as follows: Ambient air 142 is drawn (by operation of the fan unit 112) from the surrounding environment into the interior space 101 of the electronics cabinet 100 at an ambient temperature Ta. As the ambient air 142 passes over or through the evaporator 126, energy is extracted from the air lowering its temperature to Tin, where Tin<Ta; i.e., heat exchange occurs between the warm ambient air and the cool surface of the evaporator unit. The resulting air stream 141 of cold air is drawn across the electronics components 130, 130′ where heat exchange between the warm components and the cool air stream serves to cool the components. As the air stream 141 passes across the electronics components 130, 130′, its temperature increases as it picks up heat (Qload) from the components to a value Tout, where Tout>Tin.
Consider now the flow 123 of refrigerant within the refrigeration circuit. The discussion will begin with the flow 123 of refrigerant as it passes through the throttle 128. The temperature and pressure of the refrigerant are both reduced as it passes through the throttle 128, and so the refrigeration circuit delivers a low temperature (and low pressure) refrigerant to the evaporator 126. The refrigerant flowing through the evaporator 126 absorbs heat from the incoming air 142 as it passes across the outer surfaces of evaporator. This exchange of heat cools the air and heats the refrigerant. From the evaporator 126, the heated refrigerant is pulled into the compressor 122, which compresses the heated refrigerant to raise its temperature and pressure. From the compressor 122 the high temperature and high pressure refrigerant is pushed by operation of the compressor into the condenser 124. The pressurized and high temperature refrigerant dumps its heat to the exiting air stream 141 as it passes across the surfaces of the condenser 124. This exchange of heat cools and condenses the refrigerant and further heats the exiting air stream 141, which exits the electronics cabinet 100 as exhaust air 144 at a temperature Texhaust(Texhaust>Tout). Finally, the refrigerant is pushed through the throttling device 128 where the refrigerant pressure and temperature reduces and is once again delivered to the evaporator 126 where the cycle is repeated.
A feature of the present invention is that the cooling system 120 does not circulate the same air through the electronics cabinet 100, but always draws in fresh air. This is an energy saving feature and makes this cooling approach unique. By comparison, conventional air conditioning systems for electronics racks use external clamp-on side cars that use recirculation of the cooling air.
It was discovered that cooling the air entering the electronics rack will allow greater power dissipation from the devices comprising the electronic components 130, 130′. This effect is evidenced in the heat transfer graph of
In the flow-through system according to the present invention, the refrigerator cools the air, the air cools the electronics, but then the air is effectively dumped. A zero temperature reduction means to simply let the air flow through without powering the flow-through refrigeration system; i.e., the system consumes zero power. In a conventional recirculation system, however, the refrigerator cools the air, the air cools the electronics, but then the air is used to cool the electronics again (and again, and again, etc). The air is heated as it cools the electronics, so power is required to cool the air back down to its starting point (that is zero temperature reduction). Thus, power is consumed by the conventional cooling system, even if zero temperature reduction is desired.
Refer now to
Turn now to
Under certain operating conditions or environments, however, such as high electronics power and/or high ambient temperature, the air stream 141 leaving the rack(s) 114 can be too hot to adequately cool the condenser 124. For such situations, additional fans/blowers 512 can be positioned just upstream of the condenser 124 to mix some fresh (cooler) ambient air 143 with the flow of air 141 leaving the electronics section in a chamber 502 (Ta<Tout) to provide more effective cooling of the condenser.
In the foregoing figures, one fan tray 112 is shown positioned near the air exhaust 106. It is understood that these figures are merely schematic representations, and that actual specific configurations of fans for creating a suitable airflow within the enclosure 102 will depend largely on the physical configuration of the enclosure, the physical configuration of internal components, the desired cooling effect, and so on. The size of the enclosure, the size of card cages, and the type and number of components being cooled would be typical factors to consider.
For example, depending of the volumetric air flow requirements and air pressure drop requirements, a second fan tray can provided. Referring to
The foregoing figures teach various embodiments of different aspects of the present invention. It can be appreciated that these teachings can be combined in many ways to obtain configurations of cooling cabinets suited for different operating environments and operating conditions. For example, the alternative evaporator and condenser configurations represented by