The various embodiments and aspects described herein relate to a reusable food pouch for containing fluidic food products that can be consumed through a spout or a feeding tube.
Various reusable food pouches are currently marketed. However, these food pouches may be cumbersome to use and difficult to sanitize. For example, prior art reusable food pouches may have a flexible receptacle for holding the food product. A spout may be attached to the receptacle so that a toddler can suck the food product out of the receptacle when desired. The spout may be covered with a lid that stops fluid flow through the spout so that the user can store the food product within the reusable food pouch during the day and access the same and provide the same to the toddler when desired.
Unfortunately, these prior art reusable food pouches are cumbersome to use and difficult to sanitize.
A reusable food pouch is disclosed herein. The reusable food pouch may be completely disassembled so that all of the components of the reusable food pouch can be thoroughly cleaned and sanitized. Moreover, the reusable food pouch has a removably insertable one-way valve that can be inserted and used or removed depending on the viscosity of the food product being dispensed through the reusable food pouch. More particularly, if the food product has a water-like consistency, then the one-way valve may be inserted in the reusable food pouch to prevent spills if the reusable food pouch is laid on its side. If the food product has a consistency similar to thick oatmeal or applesauce, then the one-way valve may be removed and stored away to allow the toddler to easily suck the food product out of the spout and into his or her mouth.
More particularly, a container for holding flowable food product is disclosed. The container may comprise a deformable receptacle, a cover and a one way valve. The deformable receptacle may have a cavity for holding the flowable material. The receptacle may have a closed bottom and an opening at an upper end of the deformable receptacle. The cover may be attached to the deformable receptacle. The cover may have a reduced narrow spout for forcing the flowable food product out of the spout and into a mouth of a person. The one way valve may be disposed between the deformable receptacle and the cover or removed therefrom depending on a viscosity of the flowable food product. The one way valve is disposed between the receptacle and the cover for more viscous flowable food products and removed therefrom for less viscous flowable food products. Also, the one way valve may be disposed between the deformable receptacle and the cover for liquid food products and the one way valve may be removed from between the deformable receptacle and the cover for liquid food products with solid materials mixed with the liquid food products.
The cover may define an interior surface. The interior surface of the cover has a funnel shape that leads to the spout having a straight cylindrical configuration. The one way valve has an upper surface that may have a configuration identical to the interior surface of the cover.
The one way valve may have an outwardly protruding rib that engages the interior surface of the cover at the spout.
The cover may have a lid that engages with the spout to stop fluid flow through the spout when the lid is engaged to the spout and to allow fluid flow through the spout when the lid is disengaged from the spout.
The cover may have a downwardly protruding lip extending from the interior surface circumscribing the one way valve when the one way valve is seated on the interior surface of the cover.
The one way valve may have a lower surface and pull tab that extends below the lower surface in order to remove the one way valve from the cover when the one way valve is seated on the cover.
The one way valve may have a cross slit formed in a membrane.
In another aspect, a method of providing a flowable food product to a toddler is disclosed. The method may comprise the steps of providing a receptacle, a collar, a cover and a one way valve, the cover having a spout through which the toddler sucks out flowable food product disposed within the receptacle, the collar and cover capable of forming a seal with a flange portion of the receptacle so that a liquid tight seal is formed between the cover, flange portion of the receptacle and the collar; inserting the flange portion of the receptacle through the collar; filling the receptacle with a fluid having a viscosity about equal to a viscosity of water; disposing the one way valve between the flange portion of the receptacle and the cover so that the flowable food product does not flow out of the spout unless sidewalls of the receptacle are being compressed or suction is formed at the spout; and fastening the cover on the collar so as to compress the flange portion of the receptacle between the cover and the collar to form the seal with the flange portion.
In another aspect, a method of providing a flowable food product to a toddler is disclosed. The method may comprise the steps of providing a receptacle, a collar, a cover and a one way valve, the cover having a spout through which the toddler sucks out flowable food product disposed within the receptacle, the collar and cover capable of forming a seal with a flange portion of the receptacle so that a liquid tight seal is formed between the cover, flange portion of the receptacle and the collar; inserting the flange portion of the receptacle through the collar; filling the receptacle with a fluid having a viscosity about equal to a viscosity of a puree of vegetable and fruits; removing the one way valve between the flange portion of the receptacle and the cover so that the flowable food product does flow out of the spout without pressure on sidewalls of the receptacle; and fastening the cover on the collar so as to compress the flange portion of the receptacle between the cover and the collar to form the seal with the flange portion.
In accordance with other aspects of the present disclosure, there is provided a reusable food pouch used for tube feeding a patient. The reusable food pouch includes a deformable receptacle and a rigid cover attachable to the deformable receptacle, the rigid cover having a feeding tube connector for connection to a feeding tube or a syringe. When the deformable receptacle is squeezed, a flowable food product, e.g. a liquid or semi-liquid food, is forced out of the deformable receptacle and into the feeding tube or syringe.
In one aspect, there is provided a container for holding flowable food product, the container including a deformable receptacle having a cavity for holding the flowable food product, the deformable receptacle having a closed bottom and an opening at an upper end of the deformable receptacle, and the container further including a rigid cover attachable to the upper end of the deformable receptacle. The rigid cover has a male feeding tube connector that is uniquely connectable to a female feeding tube connector of a feeding tube, wherein, with the male feeding tube connector connected to the female feeding tube connector, the deformable receptacle and the feeding tube are in fluid tight fluid communication to allow the flowable food product to be forced out of the opening of the deformable receptacle and into the feeding tube when the deformable receptacle is squeezed.
The male feeding tube connector may comply with a United States Food and Drug Administration (FDA) recognized consensus standard.
The male feeding tube connector may comply with International Organization for Standardization (ISO) 80369-3.
The container may further include a valve removably disposable between the deformable receptacle and the rigid cover. The valve may have an upper surface that has a configuration identical to the interior surface of the rigid cover.
In another aspect, there is provided a container for holding flowable food product, the container including a deformable receptacle having a cavity for holding the flowable food product, the deformable receptacle having a closed bottom and an opening at an upper end of the deformable receptacle, and the container further including a rigid cover attachable to the upper end of the deformable receptacle. The rigid cover has a female feeding tube connector that is uniquely connectable to a male feeding tube connector of a syringe, wherein, with the female feeding tube connector connected to the male feeding tube connector, the deformable receptacle and the syringe are in fluid tight fluid communication to allow the flowable food product to be forced out of the opening of the deformable receptacle and into the syringe when the deformable receptacle is squeezed.
The female feeding tube connector may comply with a United States Food and Drug Administration (FDA) recognized consensus standard.
The female feeding tube connector may comply with International Organization for Standardization (ISO) 80369-3.
The container may further include a valve removably disposable between the deformable receptacle and the cover. The valve may have an upper surface that has a configuration identical to the interior surface of the rigid cover.
In another aspect, there is provided a method of providing a flowable food product to a patient, the method including providing a deformable receptacle having a cavity for holding the flowable food product, the deformable receptacle having a closed bottom and an opening at an upper end of the deformable receptacle, and the method further including filling the deformable receptacle with the flowable food product and attaching a rigid cover to the upper end of the deformable receptacle. The rigid cover has a male feeding tube connector that is uniquely connectable to a female feeding tube connector of a feeding tube, wherein, with the male feeding tube connector connected to the female feeding tube connector, the deformable receptacle and the feeding tube are in fluid tight fluid communication to allow the flowable food product to be forced out of the opening of the deformable receptacle and into the feeding tube when the deformable receptacle is squeezed. The method further includes connecting the male feeding tube connector to the female feeding tube connector of the feeding tube and squeezing the deformable receptacle to force the flowable food product out of the deformable receptacle and into the feeding tube.
The male feeding tube connector may comply with a United States Food and Drug Administration (FDA) recognized consensus standard.
The male feeding tube connector may comply with International Organization for Standardization (ISO) 80369-3.
The method may further include disposing a valve between the deformable receptacle and the rigid cover so that the flowable food product does not flow out of the opening of the deformable receptacle unless sidewalls of the deformable receptacle are being compressed or suction is formed at the male feeding tube connector. The valve may have an upper surface that has a configuration identical to the interior surface of the rigid cover.
In another aspect, there is provided a method of providing a flowable food product to a patient, the method including providing a deformable receptacle having a cavity for holding the flowable food product, the deformable receptacle having a closed bottom and an opening at an upper end of the deformable receptacle, and the method further including filling the deformable receptacle with the flowable food product and attaching a rigid cover to the upper end of the deformable receptacle. The rigid cover may have a female feeding tube connector that is uniquely connectable to a male feeding tube connector of a syringe, wherein, with the female feeding tube connector connected to the male feeding tube connector, the deformable receptacle and the syringe are in fluid tight fluid communication to allow the flowable food product to be forced out of the opening of the deformable receptacle and into the syringe when the deformable receptacle is squeezed. The method further includes connecting the female feeding tube connector to the male feeding tube connector of the syringe, squeezing the deformable receptacle and/or operating a plunger of the syringe to force the flowable food product out of the deformable receptacle and into the syringe, disconnecting the female feeding tube connector from the male feeding tube connector of the syringe, connecting the male feeding tube connector of the syringe to a female feeding tube connector of a feeding tube of the patient, and operating the plunger of the syringe to force the flowable food product out of the syringe and into the feeding tube.
The female feeding tube connector may comply with a United States Food and Drug Administration (FDA) recognized consensus standard.
The female feeding tube connector may comply with International Organization for Standardization (ISO) 80369-3.
The method may further include disposing a valve between the deformable receptacle and the rigid cover so that the flowable food product does not flow out of the opening of the deformable receptacle unless sidewalls of the deformable receptacle are being compressed or suction is formed at the female feeding tube connector. The valve may have an upper surface that has a configuration identical to the interior surface of the rigid cover.
These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:
Referring now to the drawings, a reusable food pouch 10 is shown which can be used to feed a toddler a food product having a water-like liquid consistency (e.g., apple juice) or a somewhat more viscous consistency (e.g., applesauce). The reusable food pouch 10 has a removably insertable one-way valve 12 that when inserted provides a no spill functionality to the reusable food pouch 10 for water-like liquids and when removed provides free flow functionality to the reusable food pouch 10 for heavier consistency food products such as applesauce. The reusable food pouch 10 is capable of being disassembled and each component washed for reuse.
The reusable food pouch 10 has a deformable receptacle 14 which holds the food product therein. The deformable receptacle 14 is preferably fabricated from a silicone material but other materials are also contemplated. By way of example and not limitation, the receptacle 14 may be fabricated from an elastomeric material, plastic material, paper material and other materials that are known in the art or developed in the future. The receptacle 14 can be deformed as the toddler sucks on a spout 16 (see
After the food product is removed from the reusable food pouch 10, the receptacle 14 can be expanded back outward for refilling of the receptacle 14 and reuse of the reusable food pouch 10. The receptacle 14 can be expanded back outward either through the resiliency of the material from which the receptacle 14 is fabricated or by manual means. For example, if the receptacle 14 is fabricated from a silicone material, the physical characteristics of the silicone material may be designed so that its normal position is that as shown in
In contrast, if heavier consistency food is being disposed within the receptacle 14, the user may remove the one-way valve 12 for free flow of the heavier consistency food product through the spout 16. In this instance, the side walls 18 will extend back outward each time the toddler removes his or her mouth from the spout 16. To consume more food product from the receptacle 14, the toddler must initially squeeze the side walls 18 (see
Although the receptacle 14 has been described as being resilient in that the side walls 18 of the receptacle 14 expand back outward without human intervention, it is also contemplated that the receptacle 14 may be deformable but not resilient in that it is biased back outward through manual means or human intervention. In order to expand the side walls 18 of the receptacle 14, the user must apply pressure within the receptacle 14 to expand the side walls 18 back outward either through filling the receptacle 14 with water or physically inserting an object (e.g., finger or spoon) into an upper opening 20 of the receptacle 14 and spread out the sidewalls 18.
The receptacle 14 may also have graduation marks 22 to indicate an amount of fluid within the receptacle 14. By way of example and not limitation, when the side walls 18 of the receptacle 14 are not compressed, each graduation mark can represent one fluid ounce.
The receptacle 14 may also have a flat bottom 72 that is sufficiently rigid to allow the reusable food pouch 10 to be capable of being stood upright on a support surface.
All components of the reusable food pouch 10 may be fabricated from 100% food grade non-toxic materials that are BPA, PVC and PHTHALATE free.
The reusable food pouch 10 may have a lid 24 that can be traversed between the closed position (see
The lid 24 is hinged to a cover 32 through a hinge mechanism 34. The cover 32 may have an upwardly directed flange 36 that circumscribes the spout 16. The upper end of the flange 36 may be flared outwardly and engage one or more inwardly directed protrusions 38 formed on the interior surface of the lid 24 in order to keep the lid 24 in the closed position. To traverse the lid 24 to the opened position, the user may press upward on a finger tab 40.
The receptacle 14 may have a neck portion 42 (see
The collar 52 may be fabricated from a hard material (e.g., plastic) that is not deformable like the receptacle 14. The collar 52, as stated above, has threads 60 that mate with internal threads 62 (see
After the receptacle 14 is assembled onto the collar 52, the one-way valve 12 may be mounted to the underside of the cover 32 (see
The one-way valve 12 additionally has a valving mechanism 84 which extends straight upward from the upper surface 74 as a cylindrical wall 86. A membrane 88 is recessed within the cylindrical wall 86 and has a cross slit 90. The membrane 88 may have a slightly upwardly bowed configuration so that fluid can pass through the cross slit 90 in the direction 92 shown in
With the one-way valve 12 mounted to the cover 32 and the receptacle 14 mounted to the collar 52, the threads 62 of the cover 32 are threadably engaged to the threads 60 of the collar 52. When the cover 32 is cinched onto the collar 52, the one-way valve 12 and the flange portion 48 are compressed between the cover 32 and the collar 52. In particular, the upper surface 54 of the collar 52 has a thickness 102 larger than the flange 80 of the cover 32 and capable of pressing on the one-way valve 12 in order to form a liquid tight seal therebetween.
Moreover, the outer diameter 106 (see
To disassemble the reusable food pouch 10, the cover 32 is unthreaded from the collar 52. The receptacle 14 being deformable is pulled out of the collar 52. Additionally, the one-way valve 12 is removed from the cover 32. To assist the user in removing the one-way valve 12, the one-way valve 12 may have a pull tab 104 on the bottom of the one-way valve 12. The one-way valve 12 may be fabricated from a elastomeric material including but not limited to silicone material, plastic material and other materials known in the art or developed in the future. The one-way valve 12 is preferably resilient in that the one-way valve 12 will spring back to its non-biased state. More particularly, the membrane 88 is resiliently deformable in order to allow fluid to pass through the cross slit 90 when pressure is applied to the side walls 18 of the receptacle 14 and to prevent air from entering through the cross slit 90 by traversing the cross slits 90 back to its original configuration.
As noted above, the cover 32 may also have a lid 24 which is pivotally attached to the cover 32 with a hinging mechanism 34. In the opened position, as shown in
The lid 24, as discussed above, may be operative to seal the spout 16. To this end, the lid 24 may have a sealing mechanism 110 formed on the underside of the lid 24 so that the ceiling mechanism 110 engages the spout 16 when the lid 24 is traversed to the closed position. The sealing mechanism 110 may be a cylindrical wall 112 that is sized and configured to press against the spout 16 in order to provide a fluid tight seal therebetween, namely, between the cylindrical wall 112 and the spout 16. To this end, an inner diameter 114 of the cylindrical wall 112 may be equal to an outer diameter 116 of the spout 16. The contact between the cylindrical wall 112 and the spout 16 may form the fluid tight seal. Moreover, the lid 24 may have a lower surface 118 which may optionally engage the upper surface 120 of the spout 16 to further form a liquid tight seal to prevent fluid from flowing out of the spout 16 when the lid 24 is in the closed position.
The lid 24 may remain in the closed position, as discussed above, with the protrusion 38 that interferes with the upper edge of the flange 36 of the cover 32. In order to traverse the lid 24 to the opened position, the user may press upward 122 (see
The flowable food product and whether the one way valve is used in the pouch have been described in part by its viscosity. If the viscosity is low or similar to that of water, then the pouch has been described so that the one way valve is utilized as part of the reusable food pouch. Conversely, if the viscosity is high or similar to that of applesauce, then the pouch has been described so that the one way valve is not utilized as part of the reusable food pouch. More particularly, the one way valve may be removed from the pouch and stored when the flowable food product being dispensed has a viscosity of less than about 5 Pa-s. Conversely, the one way valve may be used with the pouch when the flowable food product being dispensed has a viscosity of greater than 5 Pa-s.
Various aspects of the present disclosure pertain to a reusable food pouch 10A, 10B used for tube feeding a patient as shown in
As shown in
The male feeding tube connector 154 is uniquely connectable to the female feeding tube connector 156, for example, by virtue of having a structure designed to mate only with the female feeding tube connector 156 from among commonly used medical devices. As such, the male feeding tube connector 154 and the female feeding tube connector 156 may function as a connector pair 158. Oftentimes a patient's body may be connected to multiple tubes, masks, etc. whose input and output connector designs may look similar and may function similarly enough that incorrect connections may be attempted. If the patient or the patient's caretaker confuses these connectors with each other and inadvertently connects a feeding set or syringe to a patient's trach tube, ventilator, or IV line, or inadvertently connects the patient's urinary catheter to the patient's feeding tube, the results can be catastrophic to the patient. By making the male feeding tube connector 154 uniquely connectable to the female feeding tube connector 156, such inadvertent connection of the male feeding tube connector 154 to the wrong tube, mask, etc. can be prevented.
In all respects other than the replacement of the spout 16 with the male feeding tube connector 154, the cover 32A may be identical to the cover 32. For example, like the cover 32, the cover 32A may be fabricated from a hard material such as plastic and may thus be rigid, and the cover 32A may have the same structural features as the cover 32 for engaging with the valve 12, collar 52, and lid 24.
Connecting the male feeding tube connector 154 and the female feeding tube connector 156 may place the deformable receptacle 14 in fluid tight fluid communication with the feeding tube 150. When the deformable receptacle 14 is thereafter squeezed, flowable food product may be forced out of the opening 20 of the deformable receptacle 14 (see
For subsequent refilling and/or cleaning of the reusable food pouch 10A, the male feeding tube connector 154 may be disconnected from the female feeding tube connector 156 and the reusable food pouch 10A including the cover 32A may be disassembled in the same way as the reusable food pouch 10 having the cover 32. Thereafter, the reusable food pouch 10A may be cleaned, refilled, and reassembled for further use.
As described above in relation to the reusable food pouch 10, the optional one-way valve 12 provides a no spill functionality to the reusable food pouch 10A for water-like liquids. Removing the one-way valve 12 provides free flow functionality to the reusable food pouch 10A for heavier consistency food products. Additionally, the one-way valve 12 prevents air or liquid from reentering the deformable receptacle 14 when the patient or patient's caretaker stops squeezing the deformable receptacle 14. For example, while squeezing the deformable receptacle 14 to feed the patient, the person squeezing the deformable receptacle 14 might wish to take a break if his/her hand gets tired or might wish to reposition his/her hand. For these reasons, or by accident, the person might stop squeezing for a short time. During these moments when the deformable receptacle 14 is not being squeezed, the deformable receptacle 14 may have a tendency to re-expand due to its resiliency, sucking recently expelled food product back into the deformable receptacle 14. The one-way valve 12 avoids this issue by preventing backflow of already-expelled food product in the feeding tube. Thus, a potentially unsanitary backflow condition can be avoided.
With the reusable food pouch 10A assembled, the process continues with connecting the male feeding tube connector 154 of the cover 32A to the female feeding tube connector 156 of the feeding tube 150 (step 1040). During this step, the one-way valve 12 may provide additional functionality in preventing air from entering the deformable receptacle 14 when the user is trying to connect the male and female connectors 154, 156. Just after assembly and prior to connecting the male feeding tube connector 154 to the female feeding tube connector 156 in step 1040, the user squeezes the deformable receptacle 14 slightly in order to force out any excess air in the deformable receptacle 14. The reusable food pouch 10A will be ready to provide food to the patient without first expelling air, which may help to avoid excess gas buildup in the patient's digestive system. After the patient or patient's caretaker squeezes the deformable receptacle 14 slightly to force excess air out, the deformable receptacle 14 will be in the deformed or compressed position with the food product near the exit of the reusable food pouch 10A ready to be expelled by the slightest squeeze. Without the one way valve, when the user releases the deformable receptacle, air would reenter the deformable receptacle through the spout. The resiliency of the receptacle 14 tends to draw air back in. However, with the one way valve, air does not reenter the spout because the one way valve is keeping the air out and keep air from entering the deformable receptacle through the spout. The user may then easily connect the male feeding tube connector 154 to the female feeding tube connector 156 using only two hands. Since the one-way valve prevents air from reentering the deformable receptacle 14, it is not necessary to hold the deformable receptacle 14 in a partly compressed state while connecting the male and female connectors. In this way, the one-way valve 12 may make it easier for one person to connect the male and female connectors 154, 156 without air entering the receptacle 14. With the deformable receptacle 14 and the feeding tube 150 now in fluid tight fluid communication, the deformable receptacle 14 may be squeezed to force the flowable food product out of the deformable receptacle 14 and into the feeding tube 150 (step 1050).
The reusable food pouch 10B shown in
In all respects other than the replacement of the spout 16 with the female feeding tube connector 164, the cover 32B may be identical to the cover 32. For example, like the cover 32, the cover 32B may be fabricated from a hard material such as plastic and may thus be rigid, and the cover 32B may have the same structural features as the cover 32 for engaging with the valve 12, collar 52, and lid 24.
Connecting the female feeding tube connector 164 and the male feeding tube connector 166 may place the deformable receptacle 14 in fluid tight fluid communication with the syringe 160. When the deformable receptacle 14 is thereafter squeezed and/or the plunger of the syringe 160 is operated (e.g. pulled), flowable food product may be forced out of the opening 20 of the deformable receptacle 14 (see
Alternatively, a person loading the syringe 160 may squeeze the deformable receptacle 14 to load the syringe 160. For example, with one hand, a person may squeeze the deformable receptacle 14, causing the plunger of the syringe 160 to move outward as the flowable food product enters the syringe 160. With the other hand, the person may slightly push the plunger inward so as to regulate the filling of the syringe 160 and, in some cases, prevent the plunger from fully detaching from the syringe 160. If the deformable receptacle 14 is squeezed to load the syringe 160, it is further contemplated that the person might simultaneously squeeze the deformable receptacle 14 and pull the plunger of the syringe 160, thereby distributing the muscle work between two hands and making the person loading the syringe 160 less likely to become sore or fatigued. A person using a combination of squeezing the deformable receptacle 14 and pulling the plunger of the syringe 160 may easily adjust his/her reliance on the squeezing action or the plunger action throughout the day in response to muscle fatigue in one or both hands.
The assisting person or patient may thereafter disconnect the female feeding tube connector 164 from the male feeding tube connector 166 and feed the patient by connecting the syringe 160 to a feeding tube of the patient and operating (e.g. pushing) the plunger of the syringe 160. For subsequent refilling and/or cleaning of the reusable food pouch 10B, the reusable food pouch 10B including the cover 32B may be disassembled in the same way as the reusable food pouch 10 having the cover 32. Thereafter, the reusable food pouch 10B may be cleaned, refilled, and reassembled for further use.
With the reusable food pouch 10B thus assembled, the process continues with connecting the female feeding tube connector 164 of the cover 32B to the male feeding tube connector 166 of the syringe 160 (step 1240). Then, with the deformable receptacle 14 and the syringe 160 now in fluid tight fluid communication, the deformable receptacle 14 is squeezed and/or the plunger of the syringe 160 is operated as described above to force the flowable food product out of the deformable receptacle 14 and into the syringe 160 (step 1250).
Once the syringe 160 is loaded with the desired amount of the flowable food product, the female feeding tube connector 164 of the cover 32B is disconnected from the male feeding tube connector 166 of the syringe 160 (step 1260) and the male feeding tube connector 166 of the syringe 160 is connected to a female feeding tube connector of the patient's feeding tube such as the female feeding tube connector 156 of the feeding tube 150 shown in
By including a feeding tube connector 154, 164 that is uniquely connectable to a feeding tube connector 156, 166 of a feeding tube 150 or syringe 160, such as one having an ENFit™ connector design, the cover 32A, 32B allows the reusable food pouch 10A, 10B to be used for tube feeding a patient while minimizing the risk of inadvertently providing the flowable food product to an incorrect tube, mask, etc. that is not supposed to receive food. At the same time, the design of the reusable food pouch 10A, 10B including the deformable receptacle 14 allows a patient or a person assisting the patient to perform tube feeding in unconventional ways that may be advantageous relative to conventional options such as gravity feeding or pump feeding, or conventional syringe feeding. Electric pumps and IV poles used for conventional tube feeding may be expensive and require training to use. They may also be bulky or take up a lot of space, which has the effect of making the patient less mobile or limiting the places where the patient may tube feed. By using the reusable food pouch 10A as described with respect to
As described above, the reusable food pouch 10A, 10B may include the one-way valve 12 of the reusable food pouch 10. In this regard, the cover 32A, 32B may be designed to have an undersurface 76 that is identical to the undersurface 76 of the cover 32. In this way, the upper surface 74 of the one-way valve 12 may mate with the undersurface 76 of any of the covers 32, 32A, 32B. Alternatively, if the undersurface 76 of the cover 32A, 32B is modified to accommodate the replacement of the spout 16 with the male feeding tube connector 154 or female feeding tube connector 156, then the upper surface 74 of the one-way valve 12 may be correspondingly modified to mate with the modified undersurface 76 of the cover 32A, 32B.
The sealing mechanism 110 of the lid 24, which may include the cylindrical wall 112 and upper surface 118 as shown in
Two or more of the covers 32, 32A, 32B may be provided together with the deformable receptacle 14 as a reusable food pouch kit along with one or more lids 24 valves 12, and/or collars 52. In this way, a person may freely exchange the covers 32, 32A, 32B (and possibly corresponding lids 24 and/or valves 12 as described above) depending on how the reusable food pouch 10, 10A, 10B will be used. For example, a patient may be fed on one occasion with the reusable food pouch 10A having the cover 32A connected to the patient's feeding tube 150 and on another occasion with the reusable food pouch 10B having the cover 32B via a syringe 160, where the deformable receptacle 14 and other parts are shared and the cover 32A is simply swapped for the cover 32B.
In the example of
Similarly, in the example of
The examples of
As explained above, the reusable food pouch 10A, 10B described in relation to
As described above, the receptacle 14 may have graduation marks 22 to indicate an amount of fluid within the receptacle 14. The graduation marks 22 may be in the form of ridges that protrude from the receptacle 14. Such graduation marks 22 or other tactile features may provided to function as a grip for the reusable food pouch 10, 10A, 10B that helps prevent the reusable food pouch 10, 10A, 10B from slipping in a person's hand. Such a grip is especially useful in the case of a patient self-feeding him/herself while in a weakened state, where the patient's grasp of the receptacle 14 may be weak or unsteady.
In the examples described in relation to
The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein, including various ways of forming the lid 24. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.
The present application claims benefit of U.S. Provisional App. Ser. No. 62/607,740 filed on Dec. 19, 2017 and is a continuation-in-part application of U.S. patent application Ser. No. 15/697,794, filed on Sep. 7, 2017, which is a continuation application of U.S. patent application Ser. No. 14/685,441, filed on Apr. 13, 2015, which is a continuation-in-part application of U.S. Design patent application Ser. No. 29/476,683, filed on Dec. 16, 2013, the entire contents of each of which are incorporated herein by reference.
Not Applicable
Number | Name | Date | Kind |
---|---|---|---|
811801 | Smith | Feb 1906 | A |
2520157 | Little | Aug 1950 | A |
2743044 | Deemer et al. | Apr 1956 | A |
2804995 | Fee | Sep 1957 | A |
3157314 | Nadler | Nov 1964 | A |
3219220 | Hakim | Nov 1965 | A |
3488002 | Francis | Jan 1970 | A |
D223438 | Lluch | Apr 1972 | S |
D240968 | Hurst | Aug 1976 | S |
4376762 | Hauschild et al. | Mar 1983 | A |
5301840 | Sun | Apr 1994 | A |
5339995 | Brown et al. | Aug 1994 | A |
5758802 | Wallays | Jun 1998 | A |
D413067 | Haley | Aug 1999 | S |
5992662 | Holt et al. | Nov 1999 | A |
6112951 | Mueller | Sep 2000 | A |
6427874 | Brown et al. | Aug 2002 | B2 |
6575204 | Godfrey | Jun 2003 | B1 |
6672479 | Shiraishi et al. | Jan 2004 | B2 |
6695173 | Fontana | Feb 2004 | B1 |
6705492 | Lowry | Mar 2004 | B2 |
6708850 | Uetake et al. | Mar 2004 | B2 |
6994225 | Hakim | Feb 2006 | B2 |
7207467 | Raja | Apr 2007 | B1 |
D602369 | Potts et al. | Oct 2009 | S |
D627895 | Pheil et al. | Nov 2010 | S |
D628078 | Valderrama et al. | Nov 2010 | S |
7959036 | Koh | Jun 2011 | B2 |
D657684 | Venkataraman et al. | Apr 2012 | S |
D660174 | Schmertz et al. | May 2012 | S |
8333286 | Spinelli | Dec 2012 | B2 |
8602237 | Wurster et al. | Dec 2013 | B2 |
D705072 | Fedewa et al. | May 2014 | S |
D730533 | Wilson | May 2015 | S |
9789988 | Wilson | Oct 2017 | B2 |
20020014499 | Bonningue | Feb 2002 | A1 |
20040035815 | Webb et al. | Feb 2004 | A1 |
20050263475 | Carlson et al. | Dec 2005 | A1 |
20060226109 | Ellegaard et al. | Oct 2006 | A1 |
20060243756 | Kawakita | Nov 2006 | A1 |
20060273059 | Mendenhall et al. | Dec 2006 | A1 |
20070029352 | Norris et al. | Feb 2007 | A1 |
20070056964 | Holcomb | Mar 2007 | A1 |
20070114246 | Awbrey et al. | May 2007 | A1 |
20070272711 | MacLeod et al. | Nov 2007 | A1 |
20070295354 | Costa | Dec 2007 | A1 |
20090108009 | Yeung | Apr 2009 | A1 |
20090242562 | Valderrama et al. | Oct 2009 | A1 |
20090321377 | Pfenniger et al. | Dec 2009 | A1 |
20100230373 | Lo | Sep 2010 | A1 |
20100252578 | Koh | Oct 2010 | A1 |
20110248051 | Koh | Oct 2011 | A1 |
20110284491 | Bryan et al. | Nov 2011 | A1 |
20120043293 | Bryan et al. | Feb 2012 | A1 |
20120097710 | Ahmer | Apr 2012 | A1 |
20120305582 | Dunn et al. | Dec 2012 | A1 |
20120315353 | Becsi | Dec 2012 | A1 |
20130119008 | Pfenniger et al. | May 2013 | A1 |
20130306632 | Dunn et al. | Nov 2013 | A1 |
20140107608 | McBean et al. | Apr 2014 | A1 |
20150217911 | Wilson | Aug 2015 | A1 |
20170361968 | Wilson | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
202004014944 | Mar 2005 | DE |
202012012139 | Jan 2013 | DE |
2005004788 | Jan 2005 | WO |
Entry |
---|
Additional Resources: Medical Device Connectors; FDA website at https://www.fda.gov/medical-devices/medical-device-connectors/additional-resources-medical-device-connectors; retreived Feb. 28, 2020 (Year: 2020). |
Amazon.com, Squooshi 4 Count Reusable Food Pouch, Large Panda/Walrus, 4.5 Ounce, http://www.amazon.com/squooshireusable-pouch-large-walrus-4-count/dp/b00awjhcdw/ref=sr_1_1?ie=UTF8&qid=1384457479&sr=8-1&keywords=squooshi-count-reusable-pouch-walrus; Published as early as May 24, 2013. |
Amazon.com, Boon Squirt Baby Food Dispensing Spoon, http://www.amazon.com/Boon-Squirt-Dispensing-Spoon-Orange/dp/B000WEHO76/ref=sr_1_2?s=baby-products&ie=UTF8&qid=1384460473&sr=1-2&keywords=boon+squirt, Published as early as Nov. 14, 2013. |
Amazon.com, Infantino Keeper Squeeze Pouch, http://www.amazon.com/Infantino-208-107-Keeper-Squeeze-Pouch/dp/B00B9ZHLRU/ref=sr_1_3?ie=UTF8&qid=1369177164&sr=8-3&keywords=Infantino+Squeeze, Published as early as May 23, 2013. |
Amazon.com, Munchkin 4 Ounce Easy Squeezy Spoon, http://www.amazon.com/munchkin-ounce-squeezy-spoon-colors/dp/b004hmqpj2, Published as early as Nov. 14, 2013. |
Beaba, Babypote, http://beabausa.com/products-categories/feeding/babypote/, Published as early as Nov. 14, 2013. |
TheSiliCompany, Sili Squeeze, http://thesilico.com/products.html, Published as early as Nov. 14, 2013. |
Enfant article, translation not available, Published as early as May 2004. |
Best Baby article, translation not available, Published as early as May 2004. |
Amazon.com, CUISIPRO Silicone Pastry Brush, https://www.amazon.com/Cuisipro-747148-Silicone-Brush/dp/B001RRHT9K, Published as early as Dec. 2, 2012. |
Amazon.com, iSi “Squid” Brush and Baster, https://www.amazon.com/iSi-K8611-Silicone-Squid-Baster/dp/B0002JA1Y4/ref=cm_cr_arp_d_product_top?ie=UTF8, Published as early as Nov. 22, 2005. |
Squeasy Gear—Tube feeding blog, <URL: http://squeasygear.com/blog/tag/Tube+Feeding>, Published as early as Aug. 10, 2017. |
BFed, Making Blenderized Tube Feeding That Flow, <URL: https://www.udelivermedical.com/making-blenderized-tube-feeding-that-flow/>, Published as early as May 4, 2018. |
Number | Date | Country | |
---|---|---|---|
20180265238 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62607740 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14685441 | Apr 2015 | US |
Child | 15697794 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15697794 | Sep 2017 | US |
Child | 15985432 | US | |
Parent | 29476683 | Dec 2013 | US |
Child | 14685441 | US |