None.
Flowable materials such as liquids, powders, and other materials that, in the aggregate, conform to the shape of a container from the bottom up, are often stored in containers. Such containers can assume many forms including silos, tanks, bladders, boxes, jars, bottles, cartridges, tubes, vials, cavities, and tubes. When such containers are remotely located, concealed, or in motion, or where the container wall is rigid and/or opaque, it is often desirable to equip the container (or the apparatus receiving the container) with a sensor that can detect the level of flowable material in the container.
As used herein, the term “level” refers to a vertical position of the flowable material's top surface, and depending on the shape of the container, and on the topography, motion, and composition of the top surface, the position may be approximate (e.g., anywhere in a range between highest and lowest points on the top surface), averaged (e.g, over spatial and time dimensions), or correspond with a particular position characteristic of the top surface (e.g, meniscus, topographic maximum, time-windowed minimum). Such variations are generally design options that, given suitable calibration, can be implemented at will by the designer of the level sensing system.
Traditional level sensor designs often require moving parts, which are vulnerable to friction, corrosion, and the accumulation of dirt or debris, each of which can vary the operation of the sensor in a way that introduces uncertainty into the measured level. Designs that do not require moving parts often rely on physical characteristics of the flowable material, and when such physical properties vary (e.g., due to changes in temperature), designs that fail to compensate for such variations are again susceptible to measurement uncertainty. Incorporating compensation for such effects typically contributes undesirable complexity and cost to the level sensing system.
Accordingly, there is herein disclosed designs and techniques that enable inexpensive implementation of a robust level sensing system that compensates for variations in the physical characteristics of the flowable material. In at least some embodiments, a container includes a cavity for holding a flowable material. The container includes an electrode arrangement having at least two electrodes along a given vertical span of the container to create corresponding capacitances that are indicative of a level of the material within that vertical span. Due differing electrode shapes or positions, one of the capacitances has a first dependence on the level that is different than the other capacitance's dependence on the level.
In at least some embodiments, an apparatus for receiving a container of flowable material includes an electrode arrangement positioned to be adjacent to the container's cavity. As before, the electrode arrangement has at least two electrodes along a given vertical span of the container to create corresponding capacitances having different dependencies on the level of the material within that vertical span. The apparatus further includes a circuit coupled to the electrode arrangement to sense the capacitances and to determine a ratio of the capacitances which is indicative of the level while being insensitive to variations in the physical characteristics of the flowable material.
In at least some embodiments, a method of detecting a level of a material in a container includes: (i) measuring a first capacitance between a drive electrode and a first sensing electrode having a vertical span along a wall of the container; (ii) measuring a second capacitance between the drive electrode and a second sensing electrode also having said vertical span along the wall of the container, the second capacitance having a dependence on said level that is different from a dependence of the first capacitance; and (iii) determining a ratio of variances in the first and second capacitances, the variances being relative to first and second capacitances for a container empty of the material. The ratio is indicative of said level and insensitive to temperature and permittivity of the material.
The embodiments identified above can be implemented individually or together, and as indicated by the appended claims, they may further include any one or more of the following features in any suitable combination: 1. At least one of the two electrodes has a width that varies as a function of the level. 2. At least one of the two electrodes is triangular. 3. One of the two electrodes is triangular having a width that increases as a function of the level, and the other of the two electrodes is triangular having a width that decreases as a function of the level. 4. At least one of the capacitances varies quadratically as a function of the level. 5. The electrode arrangement further includes a drive electrode capacitively coupled to each of the two electrodes. 6. At least one of the two electrodes has a separation from the drive electrode, the separation varying as a function of said level. 7. At least one of the two electrodes has a covered perimeter that varies as a function of the level with a dependence that is different from a covered perimeter of another of the two electrodes. 8. The circuit derives a measured level from the ratio. 9. A warning indicator that is activated when the ratio or indicated level is below a predetermined threshold.
In the drawing:
It should be understood, however, that the specific embodiments given in the drawings and detailed description do not limit the disclosure. On the contrary, they provide the foundation for one of ordinary skill to discern the alternative forms, equivalents, and modifications that are encompassed in the scope of the appended claims.
To illustrate the challenges of level sensing and some of the shortcomings of existing solutions,
The capacitance of a parallel plate capacitor can be approximated as:
where ε0 is the vacuum permittivity, A is the electrode area, and d is the distance between the electrodes. The relative permittivity k depends on the composition of the material between the electrodes (including the walls if the electrodes are positioned outside the container). If the container is empty, the relative permittivity k is approximately 1. If the container is full, the relative permittivity k is approximately equal to that of the flowable material. For most flowable materials of interest, this value is substantially different than 1. Water (and many water solutions such as ink), for example, has a relative permittivity of about 80. Methanol has a permittivity of about 30. Print toner can vary substantially, but generally exceeds a relative permittivity of 5.
The capacitance between parallel electrodes 106, 108, when the container is partly filled can be approximated as the sum of two capacitors having different relative permittivities (the first of the two capacitors being that portion of the electrodes separated by air, and the second of the two capacitors being that portion of the electrodes separated by flowable material):
If compared and normalized with respect to the empty-container capacitance (the capacitance when L=0), this expression provides a linear indication of the level L, assuming the relative permittivity k is known:
In situations where different materials may be placed in the container, or where the flowable material has a relative permittivity that is strongly dependent on temperature (e.g., water), this sensor configuration becomes unreliable without some form of compensation. In existing solutions, such compensation tends to be undesirably complex and/or expensive.
When the container 102 is partly filled with a flowable material having level L, the covered area of the electrodes is:
where B is the base length of the triangular electrodes. Note that these areas (and hence the variations in capacitance) vary quadratically as a function of level L. Employing these areas in the foregoing analysis yields:
While these normalized variations in capacitance remain sensitive to relative permittivity of the flowable material, it may be observed that their variations are different functions of the level L. Accordingly, taking their ratio yields:
Notably, this ratio varies from one to zero as the container goes from full to empty. Moreover, this ratio is insensitive to the permittivity of the flowable material and any temperature variation thereof.
In the illustrated system, connectors 304 couple the electrodes to a controller board 306 having a driver circuit 308. A processor or programmable controller 310 may operate in accordance with software instructions in a memory 312, which cause the processor 310 to configure and trigger operation of the driver circuit 308, enabling it to sense the capacitances formed by the arrangement of electrodes on boards 300, 302. The software instructions may further configure the processor to form a ratio of capacitances having different dependencies on the level of flowable material in the container, thereby deriving a measure of the level which is insensitive to temperature and other physical parameters of the flowable material. The software instructions may still further configure the processor to report the level via a host interface 314 to a host computer, and/or to compare the level to one or more thresholds. If the processor determines, for example, that the level has dropped below a minimum desirable level, or has exceeded a maximum allowable limit, the software instructions may cause the processor to create a warning message, which could take the form of an audible alert, a visual warning light, or a message to the host computer.
Driver circuit 308 can employ any of various techniques for sensing the capacitances formed by the electrode arrangement. Capacitance sensing techniques include observing a charge/discharge rate (e.g., in response to a fixed current or in response to a voltage pulse supplied via a known impedance), observing an oscillation frequency when the capacitance is incorporated into a resonant tank or active oscillator, and distributing charge to/from known capacitances.
Coupled between the other input of the amplifier 408 and the pulse generator 402 is a reference capacitor Cr. Each of these inputs is coupled by a feedback capacitor Cf to a respective output of the fully differential amplifier 408. The differential voltage between the outputs of the amplifier 408 is designated Vout, and as the pulse from the pulse generator charges Cr and variable capacitance 405, Vout is proportional to the difference ΔC between Cr and variable capacitance 405. The reference capacitance may be chosen to substantially equal the empty-container capacitance, or an offset may be applied to Vout, so that this difference matches the capacitance variation due to the presence of the flowable material.
As there are multiple sensing electrodes, the driver circuit may employ a multiplexer to couple selected sensing electrodes E0, E1 to the input of amplifier 408. Alternatively, a separate amplifier (with corresponding reference and feedback capacitors) may be provided for each sensing electrode, enabling the sensing capacitances to be measured simultaneously.
If the circuit of
The illustrated principle can be extended.
As shown in
In block 1004, the driver circuit detects a capacitance variation ΔC for each of multiple capacitances defined between the sensing electrodes and a drive electrode. In at least some contemplated embodiments, the driver circuit supplies a pulse to the drive electrode and senses a change via each sensing terminal coupled to a sensing electrode. The geometry of the sensing and drive electrodes in the arrangement is designed to provide each capacitance variation with a different dependence on the level. Due to the nature of the flowable material, each capacitance variation may be expected to have the same dependence on permittivity and temperature.
In block 1006, the driver circuit, or perhaps a programmable controller coupled to the driver circuit, calculates a ratio of the capacitance variations, deriving an indicator of the level of flowable material in the container while eliminating any dependence on permittivity and temperature. (If both capacitance variations are substantially zero, the level indicator may be set to zero without attempting the ratio calculation.) Where calibration coefficients are present, the driver or controller applies the calibration coefficients to the ratio to compensate for imperfections in the driver circuit.
In block 1008, a programmable controller compares the level indicator to a threshold. If for example the level is above a predetermined maximum threshold (or conversely, if it is below a predetermined minimum threshold), then in block 1010 the controller issues a warning. In various embodiments, the warning is a message displayed on a screen, an illuminated light, or an audible alert. If no threshold crossing is detected in block 1008, or after the warning has issued in block 1010, the method returns to block 1004 to make a subsequent measurement. In alternative embodiments, the programmable controller may control a gauge or indicator that continuously displays the indicated level.
To achieve the desired insensitivity to temperature and permittivity, the programmable controller calculates a ratio of measurements that exhibit the same dependence on permittivity, but different dependence on the level. The permittivity dependences cancel, and the level dependences combine, when the ratio is taken. So long as the level dependences are not simply scaled versions of each other, their combination provides a meaningful measure of the level. One way to provide a useful dependency difference is to create a different offset in the measurement's dependence on level. For example, a triangular electrode with corner on bottom has a zero offset, whereas a triangular electrode with an edge on bottom has a non-zero offset.
Another example of a meaningful difference is having measurements with different power law dependences on level (e.g., linear versus quadratic).
Where CT0 and CR0 are the capacitances for the triangular and rectangular electrodes when the container is empty. Taking their ratio yields:
If the electrodes are sized to have equal initial capacitances, this ratio varies from one to zero as the container goes from full to empty. As before, this ratio is insensitive to the permittivity of the flowable material and any temperature variation thereof.
Though the examples of electrode arrangements providing different level dependences discussed above rely on electrodes having widths that vary differently as a function of level, a similar effect can be controlled by varying the electrode separations as a function of level.
The normalized capacitance variation when a flowable material is present is:
Where CV0 is the initial capacitance for the electrode with variable separation. Taking CF0 as the initial capacitance for the electrode 1124 with fixed separation from the drive electrode 1126, the normalized capacitance variation is:
The ratio then becomes:
This ratio remains sensitive to level L while being insensitive to the permittivity of the flowable material and any temperature variation thereof.
With the drive electrode being on the same plane as the sensing electrodes, the perimeter of the sensing electrodes becomes another factor that can be used to provide capacitance variations with different dependences on level L.
where B is the base width of the triangular electrodes and
with θ being the angle at the bottom of electrode 1132.
The foregoing sensing systems can be used for monitoring fuel, oil, and other fluid levels in automobiles, toner levels in printers, and water in tanks. The disclosed systems can also be applied to any material that maintains a relatively flat top surface in the cavity (e.g., paper, lumber), and hence could be used for monitoring paper levels in a printer tray.
Numerous other alternative forms, equivalents, and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. For example, the disclosed measurements are expected to be relatively insensitive to the size, shape, position, and orientation of the back electrode, and accordingly the back electrode may take different forms, be located remotely from the cavity, and in some embodiments may even be omitted in favor of a “diffuse” ground reference. The electrodes are preferably conductive, but semiconductive materials may alternatively be employed. It is intended that the claims be interpreted to embrace all such alternative forms, equivalents, and modifications that are encompassed in the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4317128 | Dijkmans | Feb 1982 | A |
5969258 | Gerst | Oct 1999 | A |
6490920 | Netzer | Dec 2002 | B1 |
20020116999 | Heger | Aug 2002 | A1 |
20120001867 | Kawaguchi | Jan 2012 | A1 |
20120044201 | XiaoPing | Feb 2012 | A1 |
20140292396 | Bruwer et al. | Oct 2014 | A1 |
20170119970 | Bammer | May 2017 | A1 |
Number | Date | Country |
---|---|---|
H11352089 | Dec 1999 | JP |
2013171819 | Sep 2013 | JP |
2014191654 | Oct 2014 | JP |
2015163871 | Sep 2015 | JP |
Entry |
---|
Takayasu Otagaki et al., “Pattern Layout of Touch Sensor,” U.S. Appl. No. 15/600,415, filed May 19, 2017, 43 pages. |
Tetsuya Tokunaga et al., “Capacitance Liquid Level Sensor,” U.S. Appl. No. 15/628,232, filed Jun. 20, 2017, 58 pages. |
Takayasu Otagaki et al., “Capacitive Sensor for Liquid Sensing,” U.S. Appl. No. 15/688,641, filed Aug. 28, 2017, 31 pages. |