This disclosure relates in general to equipment used in hydraulic fracturing operations of hydrocarbon wells, and in particular, to flowline equipment connecting a high pressure flowline to a wellhead.
Well hydraulic fracturing equipment includes a frac tree that mounts to a wellhead. In some types, an injection tee secures to an upper end of the frac tree. The injection tee has a vertical bore and inlet passages leading to the injection tee bore. Flowlines connect high pressure pumps to the inlet passages of the injection tee for pumping a slurry of frac fluid into the well.
To achieve desired flow rates, some prior art hydraulic fracturing systems require two or four 3 inch flowlines connected to each hydraulic fracturing tree. In such prior art systems, the flowlines are connected to the frac tree in pairs on opposite sides of the frac tree through the injection tee. In this way hydraulic fluid will be injected from both sides of the frac tree simultaneously in order to balance the forces on the hydraulic fracturing tree and to provide sufficient flow capacity. The flowlines are made up of short tubular members secured together. Each of these flowlines can have 10-20 connections between the tubular members, meaning for each hydraulic fracturing tree there can be up to 80 connections that must be made up.
Often, an inlet passage of the injection tee will intersect the vertical bore of the injection tee at 90 degrees. In some instances, multiple inlet passages in the injection tee extend downward and inward to the injection tee bore. In that instance, a separate flowline connects to each of the inlet passages of the injection tee.
The flowlines leading to the injection tee are typically made up of tubular members connected by swivel unions. The flowlines typically have numerous turns with at least three swivel joints to properly align the pipe in three dimensions. Each turn and swivel joint introduces risks such as, for example, the risk of the connection failing or the pipe being eroded.
Rigid connections between the flowline tubular members for frac operations are known. In that type of connector, the ends of the tubular members have hubs that are drawn toward each other by clamps. Each clamp has two halves that bolt together.
The sand contained in the frac fluids used during the hydraulic fracturing can further exacerbate the erosion issues in injection tees, causing cracks, and lodging within surface imperfections, making them even more pronounced. In order to reduce erosion risks, the pressure and flow rate of fluids flowing through these lines can be limited.
A hydraulic fracturing assembly includes a hydraulic fracturing tree having an axis and adapted to be mourned to a wellhead of a well with the axis vertical. The frac tree has an axial flow bore and valves that open and close the flow bore. An injection tee mounts to the frac tree, the injection tee having an axial injection tee bore that registers with the axial flow bore. A single inlet passage in the injection tee extends from a flowline mounting face on an exterior portion of the injection tee downward and inward into a junction with the axial flow bore. In one embodiment, a wear resistant inlet passage sleeve extends from the mounting face of the injection tee a selected distance into the inlet passage. The inlet passage sleeve is of a harder material than the injection tee. A flowline connects to the mounting lace to deliver fluid into the inlet passage. The flowline has an upward curved section and an inclined section that joins the curved section and extends downward and outward away from the injection tee.
In one embodiment, the inlet passage has an upward and outward facing shoulder. The inlet passage sleeve has a lower end that abuts the shoulder. The shoulder defines an outer portion of the inlet passage and an inner portion of the inlet passage. The outer portion has a greater inner diameter than an inner diameter of the inner portion. The inlet passage sleeve has an inner diameter that is the same as the inner diameter of the inner portion. The inlet passage sleeve may have a length less than a length of the inlet passage and more than one-half a length of the inlet passage.
The mounting face for the flowline is flat. The inlet passage sleeve has an outer portion that protrudes outward past the mounting face.
In one embodiment, a wear resistant injection tee bore sleeve is positioned at a junction of the injection tee bore with the flow bore. The injection tee bore sleeve has a greater hardness than the injection tee.
In one embodiment, a support supports the flowline. The support has a plurality of legs, some of which may be extensible. Each leg has a clamp on an upper end that secures to a portion of the flowline and a base on a lower end for placement on ground. An anchor stake may extend downward from the base for imbedding in ground.
In one embodiment, the flowline comprises a plurality of pipe joints having ends secured together. At least one of the pipe joints is extensible in length.
A brace may have an upper end connected to the injection tee and a lower end connected to a lower portion of the frac tree. The brace may be located on an opposite side of the injection tee from the mounting face.
The injection tee may have a flow back passage extending from the injection tee bore outward in a direction opposite from the mounting face.
While the invention will be described in connection with certain embodiments, it will be understood that it is not intended to limit the invention to those embodiments. On the contrary, it is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which certain embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout.
Injection tee 23 is a solid metal block having an axial injection tee bore 25 extending vertically through it coaxial with a vertical axis 28. Injection tee bore 25 coaxially aligns with a frac tree flow bore 27 extending through frac tree 15. Injection tee 23 has a single inlet passage 29 that extends from the exterior of injection tee 23 downward and inward for delivering well fluid to injection tee bore 25. Inlet passage 29 may incline at an angle in the range from 20 to 40 degrees relative to axis 28. Injection tee bore 25 and inlet passage 29 may be four inches in inner diameter.
A swab valve 31 may be mounted to the upper end of injection tee 23. A flowline 33 connects to inlet passage 29 for delivering frac fluid. Flowline 33 has an upward curved portion 35 with a downstream end that joins injection tee 23 at inlet passage 29. An inclined portion 37, which may be substantially straight, joins the upstream end of curved portion 35 and extends downward and away from frac tree 15. The upstream end of inclined portion 37 joins a horizontal portion 39 of flowline 33, which may be elevated a short distance above ground 40. The angle of inclination of inclined portion 37 may vary and is shown to be about 45 degrees relative to vertical. Flowline 33 may be formed of separate metal tubular members or pipes coupled together, as discussed subsequently. Alternately, flowline 33 could be a high pressure hose having articulating metal components and being of a type used in subsea applications.
In this embodiment, a stand 41 supports inclined portion 37 and curved portion 35 of flowline 33. Stand 41 may have various configurations, and is shown with multiple legs 43. One of the legs 43 supports curved portion 35, another supports inclined portion 37, and another supports horizontal portions 39. At least some of the legs 43 may be extensible, having telescoping portions 43a, 43b that lock at a desired length for the leg. Each leg 43 has a clamp 45 on its upper end that secures around flowline 33 to provide support. Each leg 43 has a base 47 that rests on ground 40. One or more stakes or anchors 49 can be driven through each base 47 into ground 40 to provide stability to flowline 33. One or mote eyelets 51 on flowline 33 facilitate a crane lilting flowline 33 into position. Stand 41 may also have one or more cross members 53 connecting certain ones of the legs 43 to each other to provide lateral stability.
The high pressure fluid from flowline 33 will exert a bending force on frac tree 15 about axis 28. Optionally, a brace 55 may be employed to resist bending movement of frac tree 15. Brace 55 is a metal beam or rod that is parallel with axis 28 and located on an opposite side of injection tee 23 and use tree 15 from flowline 33. An upper connector 57 joins an upper end of brace 55, extends perpendicular to axis 28, and secures to injection tee 23. A lower connector 59 joins and extends perpendicular to brace 55, connecting to a lower portion of frac tree 15.
Injection tee 23 may have a return flow passage 61 for returning fluid from well 13. Return flow passage 61 joins injection tee bore 25 and extends to an exterior portion of injection tee 23 opposite flowline 33. Return flow passage 61 may be perpendicular to axis 28 and of smaller diameter than inlet passage 29.
Referring to
Inlet passage 29 has an outer portion 67 that extends inward and downward from supply line mounting lace 63. Inlet passage has an inner portion 69 of smaller inner diameter than outer portion 67 and which extends to a junction with injection tee bore 25. The intersection of outer portion 67 and inner portion 69 forms an upward and outward facing shoulder 71. The length of outer portion 67 in this example is greater than the length of inner portion 69, measured along an axis of inlet passage 29. Alternately, the lengths of outer and inner portions 67, 69 could be the same, or the length of inner portion 69 could be greater than outer portion 67. In this embodiment, the length of outer portion 67 is about 55-60% the overall length of inlet passage 29 measured along its axis.
A wear resistant inlet passage sleeve 73 fits in outer portion 67. The outer diameter of inlet passage sleeve 73 is substantially the same as the inner diameter of outer portion 67. The inner diameter of inlet passage sleeve 73 is the same as the inner diameter of inner passage inner portion 69. The wall thickness of inlet passage sleeve 73 is approximately the same as the cross-sectional dimension of shoulder 71. The outer end Of inlet passage sleeve 73 protrudes a short distance outward past supply line mounting face 63 and is received in a counterbore 74 in flowline connector 65. In this embodiment, inlet passage sleeve 73 is not press fit into or otherwise bonded in outer portion 67. Rather, it is simply dropped into outer portion 67 during assembly and retained against movement along the axis of inner passage 29 by a base of connector counterbore 74 contacting the outer end of inlet passage sleeve 73.
A wear resistant axial bore sleeve 75 is located in injection tee bore 25. A lower portion of axial bore sleeve 75 fits within a counterbore 77 formed in a portion of frac tree flow bore 27 at the upper end of adapter 21. An upper portion of axial bore sleeve 75 fits within a counterbore 79 formed in the lower end of injection tee bore 25. The inner diameter of axial bore sleeve 75 is the same as frac tree flow bore 27 and injection tee bore 25. The outer diameter of axial bore sleeve 75 is approximately the same as the inner diameters of counterbores 77, 79. In this example, axial bore sleeve 75 is not press-fit in either counterbore 77, 79, rather it simply drops in place during assembly and is retained against axial movement by engagement with the upper end of counterbore 79 and the lower end of counterbore 77.
The upper end of axial bore sleeve 75 is spaced a short distance below the junction of inlet passage 29 with injection tee bore 25. In this embodiment, there is no wear resistant coating or sleeve in the portion of tee bore 25 from axial bore sleeve 75 to the junction with inlet passage 29. In this embodiment, there is no wear resistant coating or sleeve in inlet passage inner portion 69, Inner passage sleeve 73 and axial bore sleeve 75 are formed of materials that are harder and more wear resistant than the material of injection tee 23. The materials may vary and could be hardened steel or tungsten carbide.
Inner tube 87 has an external flange 93 on its external end that may be integral with inner tube 87, as shown, or secured otherwise. Outer tube 89 has an external flange 95 on its external end. In this example, outer tube flange 95 secures to outer tube 89 by threads 97. A number of threaded rods 99, which are secured to inner tube flange 93, extend through apertures 101 in outer tube flange 95. A nut 103 threads onto each rod 99 and bears against a side of outer tube flange 95 to fix a desired length for extensible member 85. The abutment of nuts 103 with outer tube flange 95 fixes the amount of extension of extensible member 85. In this example, there are no devices, such as nuts 103, to prevent contracting movement from the fully extended position of
In one embodiment, the connections of the tubular members of flowline 33 are rigid. Once connected, the tubular members cannot swivel or rotate relative to one another. For example,
In use, technicians will assemble injection assembly 11 as illustrated in
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation. Accordingly, the improvements herein described are therefore to be limited only by the scope of the appended claims.
This application claims priority to provisional application 62/105/355, tiled Jan. 20, 2015.
Number | Date | Country | |
---|---|---|---|
62105355 | Jan 2015 | US |