The present Applicant relates generally to retrieval devices for objects utilized in and around fluidic media.
Nearly everyone has dropped an object into water or some other fluidic medium and been unable to retrieve the object for any number of reasons. Sportsmen, for example, may spend significant time in or around water when boating or fishing. As is often the case, a fishing pole or some accessory may be inadvertently dropped in the water. The first response to dropping an object is to lunge forward to grab the object before it falls out of sight. Lunging may not be particularly desirable as the tendency to slip and injury oneself may be significant. Another response may be to enter the water to retrieve the object. However, a lone boater may be unwilling to enter the water for any number of safety related reasons.
Over time, many devices have been developed to address this problem. Manufacturing issues, reliability issues, and size issues have all contributed to prevent development of an effective device for retrieving submerged objects. As such, fluid activated retrieval devices are presented herein.
The following presents a simplified summary of some embodiments of the invention in order to provide a basic understanding of the invention. This summary is not an extensive overview of the invention. It is not intended to identify key/critical elements of the invention or to delineate the scope of the invention. Its sole purpose is to present some embodiments of the invention in a simplified form as a prelude to the more detailed description that is presented below.
As such, fluid activated retrieval devices for retrieving an object from a fluidic medium are presented including: a hollow base having a cavity formed therein, where the hollow base includes, a port disposed along an outer surface of the hollow base, the port configured to provide passage of the fluidic medium to the cavity, a diaphragm disposed along the cavity and proximate to the port, the diaphragm configured to selectively allow the fluidic medium to enter the cavity, and an anchor disposed along the cavity for securing a line; a deployable float housing removably attached with the hollow base, the deployable float housing having another cavity formed therein, where the deployable float housing includes, a buoyant chamber disposed along a distal end of the other cavity, a spool for receiving the line, the spool disposed within the second cavity and attached with the deployable float housing; and a reactant disposed in the cavities, the reactant responsive to the fluidic medium such that when the reactant comes into contact with the fluidic medium a reactant gas is generated.
In some embodiments, the hollow base further includes: a mating portion for mating the hollow base with the deployable float housing, the mating portion disposed along one end of the hollow base, where the mating portion includes, a mating surface, a seal disposed circumferentially along the mating surface, the seal configured to provide a fluid-tight seal between the hollow base and the deployable float housing, and a raised annular feature disposed circumferentially along the mating surface. In some embodiments, the deployable float housing further includes an annular channel disposed circumferentially along the other cavity, where the annular channel is a recessed feature having a profile suitable for receiving the raised annular feature. In some embodiments, the profile includes a sloped portion disposed along an outer edge of the annular channel.
In some embodiments, the hollow base further includes: a port passage disposed orthogonally to the at least one port, the port passage extending from the port to the outer surface. In some embodiments, the diaphragm further includes: a shore hardness in a range of approximately 40 to 80 shore; and a thickness in a range of approximately 0.01 to 0.1 inches, where the diaphragm is configured to selectively allow the fluidic medium to enter the first cavity at a pressure in a range of approximately 2 to 100 pounds per square inch (PSI). In some embodiments, the diaphragm is a material such as: a semi-flexible elastomeric compound, a flexible elastomeric compound, a silicone compound, a VITON elastomeric compound, a neoprene compound, a rubber compound, and a rubberized compound.
In some embodiments, the hollow base further includes: a strap guide disposed along the outer surface for receiving an attaching strap; and legs disposed along the outer surface for raising the fluid activated retrieval assist device from an object surface. In some embodiments, the reactant includes a mixture such as: a citric acid/sodium bicarbonate mixture, a tartaric acid/sodium bicarbonate mixture, and an acetic acid/sodium bicarbonate mixture. In some embodiments, the reactant further includes an anti-agglomeration agent compatible with the reactant. In some embodiments, the reactant further includes a desiccating agent. In some embodiments, the fluidic medium includes: an aqueous medium, a petroleum based medium, and an organic solvent medium.
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
The present invention will now be described in detail with reference to a few embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.
In embodiments, the diaphragm operates to maintain equalization between the interior of fluid activated retrieval device embodiments and surrounding fluidic media thereby effectively functioning as a check valve. In embodiments, diaphragms may have a hardness in a range of approximately 40 to 80 shore. In some embodiments, diaphragms may include a thickness in a range of approximately 0.01 to 0.1 inches. In other embodiments, diaphragms may be configured to selectively allow fluidic media to enter the hollow base cavity at a pressure in a range of approximately 2 to 100 pounds per square inch (PSI). In operation, diaphragms may be configured to enable fluidic media to enter the hollow base cavity at approximately 2 to 10 PSI above the initial internal pressure of the hollow base cavity. In embodiments, the initial internal pressure of the hollow base cavity at sea level is approximately one atmosphere. In embodiments, diaphragms may be composed of materials such as: a semi-flexible elastomeric compound, a flexible elastomeric compound, a silicone compound, a VITON elastomeric compound, a neoprene compound, a rubber compound, and a rubberized compound without limitation.
Further illustrated is anchor 116 that may be housed in the hollow base cavity. Anchor 116 may be utilized to secure a line with hollow base 112. In the embodiment shown, a press-fit star washer is illustrated. However, in other embodiments, a tab, a flange, or a perforated disc may be similarly utilized without limitations. In embodiments, lines may be secured to anchors or directly with hollow base cavity in any manner known in the art such as, for example: tying, welding, gluing and otherwise bonding. Further, in embodiments, lines may be composed of any material known in the art without limitation such as, for example: a polymeric material, a braided polymeric fiber, a nylon material, a KEVLAR material, a natural fiber, and a metal fiber. A suitable line may be selected based on any of several factors including type of fluidic medium, weight of object attached with fluid activated retrieval devices, and line length requirements.
Still further as illustrated, deployable float housing 120 may be removably attached with hollow base 112 and may form a cavity into which components may be housed including, for example, spool 122. In embodiments, spool 122 may include winding stop 124 disposed along an end of spool 122 and sealing flange 126 disposed along spool 122. Winding stops may be shaped to secure lines (not shown) before deployment and to easily unwind lines during deployment. Furthermore, in embodiments, sealing flanges may be arranged to seal buoyant chamber 130 from deployable float housing cavity 134. In some embodiments, buoyant chambers are empty and rely solely on an enclosed cavity for buoyancy. In other embodiments, buoyant chambers include a buoyant material such as, for example, a closed-cell foam material, a polystyrene foam material, a STYROFOAM material, and a cork material. Still further, in some embodiments, deployable float housing 120 may include spool receiver 134 for receiving spool 122. It may be appreciated that in some embodiments, spool 122 is not configured to “spin” in order to unwind a spooled line.
Hollow base 200 may further include mating portion 204 for mating hollow base 200 with deployable float housings as provided herein. Mating portion 204 may include, in embodiments, a mating surface having a number of features. One feature illustrated is seal 208 disposed circumferentially along the mating surface in an annular channel. In embodiments, seal 208 is configured to provide a fluid-tight seal between hollow base 200 and deployable float housings. In embodiments, seals may be an O-ring configuration composed of a material suitably compatible with a selected fluidic medium. Thus, for example, in an aqueous solution, an O-ring resistant to aqueous solutions may be utilized without departing from embodiments disclosed herein. Likewise, in a petroleum solution an O-ring resistant to petroleum solutions may be utilized without departing from embodiments disclosed herein.
Another feature illustrated is raised annular feature 206 disposed circumferentially along the mating surface. Raised annular feature 206 may provide a “snap” connection with annular channel 220a and 220b disposed circumferentially along deployable float housing cavity—a portion of which is illustrated here. In embodiments, annular channel 220a and 220b include recessed features 212a and 212b respectively, each having a profile suitable for receiving the raised annular feature. As illustrated, recessed feature 212a has a matching profile for receiving raised annular feature 206. Further as illustrated, recessed feature 212b has a partially sloped profile for receiving raised annular feature 206. In this embodiment, the sloped portion of the feature may serve to “pull” raised annular feature 206 toward deployable float housing embodiments to provide an improved fitment.
Still another feature illustrated is sloped portion 210. In embodiments, sloped portion 210 may provide a guiding feature during assembly such that hollow base embodiments may be readily mated with deployable float housings embodiments. Further as illustrated, hollow base 200 is circular in cross-section. However, any number of base cross-sections may be utilized without departing from embodiments herein such as, a semicircular cross-section, an ovate cross-section, a semi-ovate cross-section, a rectangular cross section, and a semi-rectangular cross-section. In like manner, deployable float housing embodiments may include any number of housing cross-sections such as, a circular cross-section, a semicircular cross-section, an ovate cross-section, a semi-ovate cross-section, a rectangular cross section, and a semi-rectangular cross-section each selected to match base cross-sections.
In addition to mating portion 204, hollow base 200 further includes a number of legs 230. In embodiments, legs may be useful for raising fluid activated retrieval devices from an object surface to improve deployment. In some embodiments, legs may provide longitudinal alignment when, for example, fluid activated retrieval devices are mounted on a curved surface such as a fishing pole or canister. Thus, leg embodiments may include a shape suitable for mounting with any number of objects or surfaces without departing from embodiments herein. In some embodiments, legs may further include pads, coatings, tabs, holes, or any number of structures suitable for improving object mounting. Further illustrated is strap guide 232 disposed along the outer surface of the hollow base for receiving an attaching strap or tie. Other attaching configurations will be discussed in further detail below for
At a next step 410, fluidic media 412 is represented as entering the fluid activated retrieval device 404 through port passages and ports. Fluidic media, as disclosed herein may include any number of mediums such as, an aqueous medium, a petroleum based medium, and an organic solvent medium without departing from embodiments disclosed herein. As noted above, diaphragm embodiments, when installed properly, may serve to selectively allow fluidic media to enter the hollow base cavity whereupon the fluidic media interacts with a reactant in the hollow base cavity to produce a reactant gas. At a step 420, reactant gas 424 is illustrated as having produced a pressure sufficient to deploy (422) the fluid activated retrieval device. In embodiments, the reactant gas produces a deploying pressure of at least 2-40 PSI in excess of surrounding environment pressure. Once the fluid activated retrieval device is deployed, deployable float housing 432 rises to surface 434. During the rise to the surface, line 436 is deployed. Deployable float housing 432 may then be retrieved whereupon object 402 may be retrieved.
While this invention has been described in terms of several embodiments, there are alterations, permutations, and equivalents, which fall Within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. Furthermore, unless explicitly stated, any method embodiments described herein are not constrained to a particular order or sequence. Further, the Abstract is provided herein for convenience and should not be employed to construe or limit the overall invention, which is expressed in the claims. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
A claim for priority is hereby made under the provisions of 35 U.S.C. §119 for the present application based upon U.S. Provisional Patent Applications Ser. No. 61/464,667 filed on Mar. 7, 2011 titled “UNDERWATER ACTIVATED SUBMERGED OBJECT RETRIEVAL DEVICE,” and U.S. Provisional Application Ser. No. 61/519,455 filed on May 23, 2011 titled “UNDERWATER ACTIVATED SUBMERGED OBJECT RETRIEVAL DEVICE,” and U.S. Provisional Application Ser. No. 61/626,396 filed on Sep. 26, 2011 titled “UNDERWATER ACTIVATED SUBMERGED OBJECT RETRIEVAL DEVICE,” all three of which are incorporated herein by reference in their entirety for all that is taught and disclosed therein.
Number | Date | Country | |
---|---|---|---|
61464667 | Mar 2011 | US | |
61519455 | May 2011 | US | |
61626396 | Sep 2011 | US |