1. Field of the Invention
The present invention relates generally to medical cutting, irrigating, evacuating, cleaning, and drilling techniques and, more particularly to a system for introducing conditioned fluids into the cutting, irrigating, evacuating, cleaning, and drilling techniques.
2. Description of Related Art
A prior art dental/medical work station 11 is shown in
The dental/medical unit 16 may comprise a dental seat or an operating table, a sink, an overhead light, and other conventional equipment used in dental and medical procedures. The dental/medical unit 16 provides water, air, vacuum and/or power to the instruments 17. These instruments may include an electrocauterizer, an electromagnetic energy source, a mechanical drill, a mechanical saw, a canal finder, a syringe, and/or an evacuator.
The electromagnetic energy source is typically a laser coupled with a delivery system. The laser 18a and delivery system 19a, both shown in phantom, as well as any of the above-mentioned instruments, may be connected directly to the dental/medical unit 16. Alternatively, the laser 18b and delivery system 19b, both shown in phantom, may be connected directly to the water supply 14, the air supply 13, and the electric outlet 15. Other instruments 17 may be connected directly to any of the vacuum line 12, the air supply line 13, the water supply line 14, and/or the electrical outlet 15.
The laser 18 and delivery system 19 may typically comprise an electromagnetic cutter for dental use. A conventional prior art electromagnetic cutter is shown in
The laser energy exits from the fiber guide tube 42 and is applied to a target surface within the patient's mouth, according to a predetermined surgical plan. Water from the water line 31 and pressurized air from the air line 32 are forced into the mixing chamber 43. The air and water mixture is very turbulent in the mixing chamber 43, and exits this chamber through a mesh screen with small holes 44. The air and water mixture travels along the outside of the fiber guide tube 42, and then leaves the tube 42 and contacts the area of surgery. The air and water spray coming from the tip of the fiber guide tube 42 helps to cool the target surface being cut and to remove materials cut by the laser.
Water is generally used in a variety of laser cutting operations in order to cool the target surface. Additionally, water is used in mechanical drilling operations for cooling the target surface and removing cut or drilled materials therefrom. Many prior art cutting or drilling systems use a combination of air and water, commonly combined to form a light mist, for cooling a target surface and/or removing cut materials from the target surface.
The use of water in these prior art systems has been somewhat successful for the limited purposes of cooling a target surface or removing debris therefrom. These prior art uses of water in cutting and drilling operations, however, have not allowed for versatility, outside of the two functions of cooling and removing debris. In particular, during cutting or drilling operations, medication treatments, preventative measure applications, and aesthetically pleasing substances, such as flavors or aromas, have not been possible or used. A conventional drilling operation may benefit from the use of an anesthetic near the drilling operation, for example, but during this drilling operation only water and/or air has so far been used. In the case of a laser cutting operation, a disinfectant, such as iodine, could be applied to the target surface during drilling to guard against infection, but this additional disinfectant has not been applied during such laser cutting operations. In the case of an oral drilling or cutting operation, unpleasant tastes or odors may be generated, which may be unpleasing to the patient. The conventional use of only water during this oral procedure does not mask the undesirable taste or odor. A need has thus existed in the prior art for versatility of applications and of treatments during drilling and cutting procedures.
Compressed gases, pressurized air, and electrical motors are commonly used to provide the driving force for mechanical cutting instruments, such as drills, in dentistry and medicine. The compressed gases and pressurized water are subsequently ejected into the atmosphere in close proximity to or inside of the patient's mouth and/or nose. The same holds true for electrically driven turbines when a cooling spray (air and water) is typically ejected into the patient's mouth, as well. These ejected fluids commonly contain vaporous elements of burnt flesh or drilled tissue structure. This odor can be quite uncomfortable for the patient, and can increase trauma experienced by the patient during the drilling or cutting procedure. In a such a drilling or cutting procedure, a mechanism for masking the smell and the odor generated from the cutting or drilling may be advantageous.
Another problem exists in the prior art with bacteria growth on surfaces within a dental operating room. The interior surfaces of air, vacuum, and water lines of the dental unit, for example, are subject to bacteria growth. Additionally, the air and water used to cool the tissue being cut or drilled within the patient's mouth is often vaporized into the air to some degree. This vaporized air and water condensates on surfaces of the dental equipment within the dental operating room. These moist surfaces can also promote bacteria growth, which is undesirable. A system for reducing the bacteria growth within air, vacuum, and water lines, and for reducing the bacteria growth resulting from condensation on exterior surfaces, is needed to reduce sources of contamination within a dental operating room.
The fluid conditioning system of the present invention is adaptable to most existing medical and dental cutting, irrigating, evacuating, cleaning, and drilling apparatuses. Flavored fluid is used in place of regular tap water during drilling operations. In the case of a laser surgical operation, electromagnetic energy is focused in a direction of the tissue to be cut, and a fluid router routes flavored fluid in the same direction. The flavored fluid may appeal to the taste buds of the patient undergoing the surgical procedure, and may include any of a variety of flavors, such as a fruit flavor or a mint flavor. In the case of a mist or air spray, scented air may be used to mask the smell of burnt or drilled tissue. The scent may function as an air freshener, even for operations outside of dental applications.
The fluids used for cooling a surgical site and/or removing tissue may further include an ionized solution, such as a biocompatible saline solution, and may further include fluids having predetermined densities, specific gravities, pH levels, viscosities, or temperatures, relative to conventional tap water. Additionally, the fluids may include a medication, such as an antibiotic, a steroid, an anesthetic, an anti-inflammatory, an antiseptic or disinfectant, adrenaline, epinephrine, or an astringent. The fluid may also include vitamins, herbs, or minerals. Still further, the fluid may include a tooth-whitening agent that is adapted to whiten a tooth of a patient. The tooth-whitening agent may comprise, for example, a peroxide, such as hydrogen peroxide, urea peroxide, or carbamide peroxide. The tooth-whitening agent may have a viscosity on an order of 0.1 poise or less.
Introduction of any of the above-mentioned conditioning agents to the conventional water of a cutting or drilling operation may be controlled by a user input. Thus, for example, a user may adjust a knob or apply pressure to a foot pedal in order to introduce iodine into the water after a cutting operation has been performed. The amount of conditioning applied to the air, water, or mist may be a function of the position of the foot pedal, for example.
According to one broad aspect of the present invention, a mist of atomized particles is placed into a volume of air above the tissue to be cut, and a source of electromagnetic energy, such as a laser, is focused into the volume of air. The electromagnetic energy has a wavelength, which is substantially absorbed by the atomized particles in the volume air. This absorption of the electromagnetic energy by the atomized particles causes the atomized particles to explode and impart mechanical cutting forces onto the tissue. According to this feature, the electromagnetic energy source does not directly cut the tissue but, rather, the exploded fluid particles are used to cut the tissue. These fluid particles may be conditioned with flavors, scents, ionization, medications, disinfectants, and other agents, as previously mentioned.
Since the electromagnetic energy is focused directly on the atomized, conditioned fluid particles, the cutting forces are changed, depending upon the conditioning of the atomized fluid particles. The mechanical cutting efficiency is proportional (related) to the absorption of the electromagnetic energy by the fluid spray. The absorption characteristic can be modified by changing the fluid composition. For example, introduction of a salt into the water before atomization, resulting in an ionized solution, will exhibit slower cutting properties than does regular water. This slower cutting may be desirable, or the laser power may be increased to compensate for the ionized, atomized fluid particles. Additionally, the atomized fluid particles may be pigmented to either enhance or retard absorption of the electromagnetic energy, to thereby additionally control the cutting power of the system. Two sources of fluid may be used, with one of the sources having a pigment and the other not having a pigment.
Another feature of the present invention places a disinfectant in the air, mist, or water used for dental applications. This disinfectant can be periodically routed through the air, mist, or water lines to disinfect the interior surfaces of these lines. This routing of disinfectant can be performed between patients, daily, or at any other predetermined intervals. A mouthwash may be used, for example, at the end of each procedure to both clean the patient's mouth and clean the air and water tubes.
According to another feature of the present invention, when disinfectant is routed through the lines during a medical procedure, the disinfectant stays with the water or mist, as the water or mist becomes airborne and settles on surrounding surfaces within the dental operating room. Bacteria growth within the lines, and from the condensation, is significantly attenuated, since the disinfectant retards bacteria growth on the moist surfaces.
While the apparatus and method have or will be described for the sake of grammatical fluidity with functional explanations, it is to be expressly understood that the claims, unless expressly formulated under 35 USC § 112, are not to be construed as necessarily limited in any way by the construction of “means” or “steps” limitations, but are to be accorded the full scope of the meaning and equivalents of the definition provided by the claims under the judicial doctrine of equivalents, and in the case where the claims are expressly formulated under 35 USC § 112 are to be accorded full statutory equivalents under 35 USC § 112.
Any feature or combination of features described herein are included within the scope of the present invention provided that the features included in any such combination are not mutually inconsistent as will be apparent from the context, this specification, and the knowledge of one skilled in the art. In addition, any feature or combination of features may be specifically excluded from any embodiment of the present invention. For purposes of summarizing the present invention, certain aspects, advantages and novel features of the present invention are described. Of course, it is to be understood that not necessarily all such aspects, advantages or features will be embodied in any particular implementation of the present invention. Additional advantages and aspects of the present invention are apparent in the following detailed description and claims that follow.
a illustrates one embodiment of the electromagnetic cutter of
b illustrates another embodiment of the electromagnetic cutter of
a illustrates a mechanical drilling apparatus according to the present invention;
b illustrates a syringe according to the present invention;
Reference will now be made in detail to the presently preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same or similar reference numbers are used in the drawings and the description to refer to the same or like parts. It should be noted that the drawings are in simplified form and are not to precise scale. In reference to the disclosure herein, for purposes of convenience and clarity only, directional terms, such as, top, bottom, left, right, up, down, over, above, below, beneath, rear, and front, are used with respect to the accompanying drawings. Such directional terms should not be construed to limit the scope of the invention in any manner.
Although the disclosure herein refers to certain illustrated embodiments, it is to be understood that these embodiments are presented by way of example and not by way of limitation. The intent of this disclosure, while discussing exemplary embodiments, is that the following detailed description be construed to cover all modifications, alternatives, and equivalents of the embodiments as may fall within the spirit and scope of the invention as defined by the appended claims. The present invention may be practiced in conjunction with various techniques that are conventionally used in the art, and only so much of the commonly practiced steps are included herein as are necessary to provide an understanding of the present invention.
The dental/medical work station 111 of the present invention is shown in
A controller 125 allows for user inputs, to control whether air from the air line 113, water from the water line 114, or both, are conditioned by the fluid conditioning unit 121. A variety of agents may be applied to the air or water by the fluid conditioning unit 121, according to a configuration of the controller 125, for example, to thereby condition the air or water, before the air or water is output to the dental/medical unit 116. Flavoring agents and related substances, for example, may be used, such as disclosed in 21 C.F.R. Sections 172.510 and 172.515, the details of which are incorporated herein by reference. Colors, for example, may also be used for conditioning, such as disclosed in 21 C.F.R. Section 73.1 to Section 73.3126.
Similarly to the instruments 17 shown in
The block diagram shown in
According to the exemplary embodiment shown in
In the case of a conventional laser, a stream or mist of conditioned fluid is supplied by the fluid router 60. The controller 53 may control various operating parameters of the laser 51, the conditioning of the fluid from the fluid router 60, and the specific characteristics of the fluid from the fluid router 60.
Although the present invention may be used with conventional drills and lasers, for example, one preferred embodiment is the above-mentioned electromagnetically induced mechanical cutter. Other preferred embodiments include an electrocauterizer, a syringe, an evacuator, or any air or electrical driver, drilling, filling, or cleaning mechanical instrument.
According to the present invention, either the air from the air tube 63 or the fluid from the fluid tube 65, or both, are selectively conditioned by the fluid conditioning unit 121, as controlled by the controller 125. The laser energy from the fiberoptic guide 61 focuses onto a combination of air and fluid, from the air tube 63 and the fluid tube 65, at the interaction zone 59. Atomized fluid particles in the air and fluid mixture absorb energy from the laser energy of the fiberoptic tube 61, and explode. The explosive forces from these atomized fluid particles impart mechanical cutting forces onto the target 57.
Turning back to
b illustrates a preferred embodiment of the electromagnetically induced mechanical cutter. The atomizer for generating atomized fluid particles comprises a nozzle 71, which may be interchanged with other nozzles (not shown) for obtaining various spatial distributions of the atomized fluid particles, according to the type of cut desired. A second nozzle 72, shown in phantom lines, may also be used. In a simple embodiment, a user controls the air and water pressure entering into the nozzle 71. The nozzle 71 is thus capable of generating many different user-specified combinations of atomized fluid particles and aerosolized sprays.
Intense energy is emitted from the fiberoptic guide 23. This intense energy is preferably generated from a coherent source, such as a laser. In the presently preferred embodiment, the laser comprises an erbium, chromium, yttrium, scandium, gallium garnet (Er, Cr:YSGG) solid state laser. When fluids besides mere water are used, the absorption of the light energy changes and cutting efficiency is thus affected. Alternatively, when using certain fluids containing pigments or dyes, laser systems of different wavelengths such as Neodymium yttrium aluminum garnet-Nd:YAG wavelengths may be selected to allow for high absorption by the fluid.
The delivery system 55 for delivering the electromagnetic energy includes a fiberoptic energy guide or equivalent which attaches to the laser system and travels to the desired work site. Fiberoptics or waveguides are typically long, thin and lightweight, and are easily manipulated. Fiberoptics can be made of calcium fluoride (CaF), calcium oxide (CaO2), zirconium oxide (ZrO2), zirconium fluoride (ZrF), sapphire, hollow waveguide, liquid core, TeX glass, quartz silica, germanium sulfide, arsenic sulfide, germanium oxide (GeO2), and other materials. Other delivery systems include devices comprising mirrors, lenses and other optical components where the energy travels through a cavity, is directed by various mirrors, and is focused onto the targeted cutting site with specific lenses.
The preferred embodiment of light delivery for medical applications of the present invention is through a fiberoptic conductor, because of its light weight, lower cost, and ability to be packaged inside of a handpiece of familiar size and weight to the surgeon, dentist, or clinician. Non-fiberoptic systems may be used in both industrial applications and medical applications, as well. The nozzle 71 is employed to create an engineered combination of small particles of the chosen fluid. The nozzle 71 may comprise several different designs including liquid only, air blast, air assist, swirl, solid cone, etc. When fluid exits the nozzle 71 at a given pressure and rate, it is transformed into particles of user-controllable sizes, velocities, and spatial distributions. A mechanical drill 60 is shown in
When the motor 68 is driven by air, for example, the fluid enters the mechanical drill 60 through the first supply line 70. Fluid entering through the first supply line 70 passes through the motor 68, which may comprise a turbine, for example, to thereby provide rotational forces to the drill bit 64. A portion of the fluid, which may not appeal to a patient's taste and/or smell, may exit around the drill bit 64, coming into contact with the patient's mouth and/or nose. The majority of the fluid exits back through the first supply line 70.
In the case of an electric motor, for example, the first supply line 70 provides electric power. The second supply line 74 supplies fluid to the fluid output 66. The water and/or air supplied to the mechanical drill 60 may be selectively conditioned by the fluid conditioning unit 121, according to the configuration of the controller 125.
The syringe 76 shown in
Turning to
Conditioned fluid is output from the fluid conditioning subunit 87 into the combination unit 93. The fluid may be conditioned by conventional means, such as the addition of a tablet, liquid syrup, or a flavor cartridge. Also input into the combination unit 93 is regular water from the bypass line 91. A user input 95 into the controller 125, for example, determines whether fluid output from the combination unit 93 into the fluid tube 65 comprises only conditioned fluid from the fluid-out line 85, only regular water from the bypass line 91, or a combination thereof. The user input 95 comprises a rotatable knob, a pedal, or a foot switch, operable by a user, for determining the proportions of conditioned fluid and regular water. These proportions may be determined according to the pedal or knob position. In the pedal embodiment, for example, a full-down pedal position corresponds to only conditioned fluid from the fluid outline 85 being output into the fluid tube 65, and a full pedal up position corresponds to only water from the bypass line 91 being output into the fluid tube 65. The bypass line 91, the combination unit 93, and the user input 95 provide versatility, but may be omitted, according to preference. A simple embodiment for conditioning fluid would comprise only the fluid conditioning subunit 87.
An alternative embodiment of the fluid conditioning subunit 87 is shown in
The fluid 191 within the reservoir 183 may be conditioned to achieve a desired flavor, such as a fruit flavor or a mint flavor, or may be conditioned to achieve a desired scent, such as an air freshening smell. In one embodiment wherein the reservoir is conditioned to achieve a desired flavor, the flavoring agent for achieving the desired flavor does not consist solely of a combination of saline and water and does not consist solely of a combination of detergent and water. A conditioned fluid having a scent, a scented mist, or a scented source of air, may be particularly advantageous for implementation in connection with an air conditioning unit, as shown in
The air conditioning subunit shown in
Many of the above-discussed conditioning agents may change the absorption of the electromagnetic energy into the atomized fluid particles in the electromagnetically induced mechanical cutting environment of the presently preferred embodiment. Accordingly, the type of conditioning may effect the cutting power of an electromagnetic or an electromagnetically induced mechanical cutter. Thus, in addition to the direct benefits achievable through these various conditioning agents discussed above, such as flavor or medication, these various conditioning agents further provide versatility and programmability to the type of cut resulting from the electromagnetic or electromagnetically induced mechanical cutter. For example, introduction of a saline solution will reduce the speed of cutting. Such a biocompatible saline solution may be used for delicate cutting operations or, alternatively, may be used with a higher laser-power setting to approximate the cutting power achievable with regular water.
Pigmented fluids may also be used with the electromagnetic or the electromagnetically induced mechanical cutter, according to the present invention. The electromagnetic energy source may be set for maximum absorption of atomized fluid particles having a certain pigmentation, for example. These pigmented atomized fluid particles may then be used to achieve the mechanical cutting. A second water or mist source may be used in the cutting operation, but since this second water or mist is not pigmented, the interaction with the electromagnetic energy source is minimized. As just one example of many, this secondary mist or water source could be flavored.
According to another configuration, the atomized fluid particles may be unpigmented, and the electromagnetic or the electromagnetically induced energy source may be set to provide maximum energy absorption for these unpigmented atomized fluid particles. A secondary pigmented fluid or mist may then be introduced into the surgical area, and this secondary mist or water would not interact significantly with the electromagnetic energy source. As another example, a single source of atomized fluid particles may be switchable between pigmentation and non-pigmentation, and the electromagnetic energy source may be set to be absorbed by one of the two pigment states to thereby provide a dimension of controllability as to exactly when cutting is achieved.
When the fluids (e.g., pigmented fluids) are atomized and placed into the interaction zone, a portion of them absorb the electromagnetic energy and expand to impart disruptive mechanical forces onto the target surface. The expansions of the fluid particles can generate “explosive ejection” effects and “explosive propulsion” effects, as described in U.S. Pat. No. 5,741,247, the contents of which are expressly incorporated herein by reference.
In another embodiment, the source of atomized fluid particles may comprise a tooth whitening agent that is adapted to whiten a tooth of a patient. The tooth-whitening agent may comprise, for example, a peroxide, such as hydrogen peroxide, urea peroxide, or carbamide peroxide. The tooth-whitening agent may have a viscosity on an order of 0.1 poise or less. The source of atomized fluid particles is switchable by a switching device between a first configuration wherein the atomized fluid particles comprise the tooth-whitening agent and a second configuration wherein the atomized fluid particles do not comprise the tooth-whitening agent. In this configuration, the electromagnetic or electromagnetically induced energy source may comprise, for example, a laser that is operable between an on condition and an off condition, independently of the configuration of the switching device. Thus, regardless of whether the switching device is in the first configuration or the second configuration, the laser can be operated in either the on or off condition.
Disinfectant may be added to an air or water source in order to combat bacteria growth within the air and water lines, and on surfaces within a dental operating room. The air and water lines of the dental unit 116, for example, may be periodically flushed with a disinfectant selected by the controller 125 and supplied by the fluid conditioning unit 121. An accessory tube disinfecting unit 123 may accommodate disinfecting cartridges and perform standardized or preprogrammed periodic flushing operations.
Even in a dental or medical procedure, an appropriate disinfectant may be used. The disinfectant may be applied at the end of a dental procedure as a mouthwash, for example, or may be applied during a medical or dental procedure. The air and water used to cool the tissue being cut or drilled within the patient's mouth, for example, is often vaporized into the air to some degree. According to the present invention, a conditioned disinfectant solution will also be vaporized with air or water, and condensate onto surfaces of the dental equipment within the dental operating room. Any bacteria growth on these moist surfaces is significantly attenuated, as a result of the disinfectant on the surfaces.
The above-described embodiments have been provided by way of example, and the present invention is not limited to these examples. Multiple variations and modification to the disclosed embodiments will occur, to the extent not mutually exclusive, to those skilled in the art upon consideration of the foregoing description. Additionally, other combinations, omissions, substitutions and modifications will be apparent to the skilled artisan in view of the disclosure herein. Accordingly, the present invention is not intended to be limited by the disclosed embodiments, but is to be defined by reference to the appended claims.
This application is a continuation of U.S. application Ser. No. 10/435,325, filed May 9, 2003, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 10435325 | May 2003 | US |
Child | 12018192 | US |