Fluid-assisted electrosurgical devices, electrosurgical unit with pump and methods of use thereof

Information

  • Patent Grant
  • 7811282
  • Patent Number
    7,811,282
  • Date Filed
    Monday, November 14, 2005
    19 years ago
  • Date Issued
    Tuesday, October 12, 2010
    14 years ago
Abstract
The invention provides an electrosurgical unit comprising a radio-frequency power source and a pump, with the throughput of fluid expelled by the pump controlled by the RF power level setting and fluid flow rate setting. The invention also provides various electrosurgical devices which may be used with the electrosurgical unit. In one embodiment, the electrosurgical device comprises a first electrode tip spaced next to a second electrode tip with a portion of the first electrode tip facing the second electrode tip and a portion of the second electrode tip facing the first electrode tip, the first electrode tip and the second electrode tip both having a spherical distal end, and a fluid outlet arrangement to expel fluid onto the electrode tips solely at locations remote from the electrode tip portions facing each other.
Description

The entire disclosure of each of these patent applications is incorporated herein by reference to the extent it is consistent.


FIELD

This invention relates generally to the field of medical devices, systems and methods for use upon a body during surgery. More particularly, the invention relates to electrosurgical devices, systems and methods for use upon tissues of a human body during surgery, particularly open surgery and minimally invasive surgery such as laparoscopic surgery.


BACKGROUND

A dry tip electrosurgical device, such as a Bovie pencil, can cause the temperature of tissue being treated to rise significantly higher than 100° C., resulting in tissue desiccation, tissue sticking to the electrodes, tissue perforation, char formation and smoke generation.


More recently, fluid-assisted electrosurgical devices have been developed use saline to inhibit undesirable effects such as tissue desiccation, electrode sticking, smoke production and char formation. However, too much saline can provide too much electrical dispersion and cooling at the electrode/tissue interface. This reduces the temperature of the tissue being treated and, in turn, can result in longer treatment time needed to achieve the desired tissue temperature for treatment of the tissue. Long treatment times are undesirable for surgeons since it is in the best interest of the patient, physician and hospital to perform surgical procedures as quickly as possible.


SUMMARY OF THE INVENTION

This invention, in one embodiment, provides an electrosurgical apparatus to provide controlled delivery of radio-frequency power and a fluid to an electrosurgical hand device to treat tissue. The apparatus comprises a radio-frequency generator to deliver the radio-frequency power, with the radio frequency power from the radio-frequency generator selectable at a radio-frequency power level; a pump to deliver the fluid; a primer to prime the hand device with the fluid; a control system to control a flow of the fluid delivered by the pump with a functional relationship between the radio-frequency power level and the flow of the fluid, the functional relationship to increase the flow of the fluid in response to an increase in the radio-frequency power level and to decrease the flow of the fluid in response to a decrease in the radio-frequency power level; and a fluid flow selector which changes the functional relationship between the radio-frequency power level and the flow of the fluid.


In certain embodiments, the functional relationship is stored in the apparatus in the form of a mathematical equation having a proportionality constant and the fluid flow selector changes the proportionality constant. In other embodiments, the mathematical equation comprises a linear equation. In still other embodiments, the functional relationship is stored in the apparatus in the form of a look-up table.


In certain embodiments, the fluid flow selector provides a plurality of fluid flow settings. In other embodiments, the plurality of fluid flow settings can include a low fluid flow setting and a high fluid flow setting. In still other embodiments, the fluid flow selector comprises at least one switch, and this at least one switch could be a push switch, a membrane switch or a plurality of switches.


In certain embodiments, the control system of the apparatus is open loop with respect to the tissue.


In certain embodiments, the pump used is a peristaltic pump, which could be a rotary peristaltic pump.


In another embodiment, the invention provides a noncoaptive bipolar electrosurgical device to treat tissue by moving along a tissue surface in a presence of radio frequency energy and a fluid provided simultaneously from the device. The device comprises a first electrode tip spaced next to a second electrode tip with a surface portion of the first electrode tip facing alongside the second electrode tip and a surface portion of the second electrode tip facing alongside the first electrode tip, the first electrode tip and the second electrode tip both having a spherical distal end, and a fluid outlet arrangement to expel fluid onto the electrode tips solely at locations remote from the electrode tip surface portions alongside each other.


In certain embodiments, the fluid outlet arrangement has a first fluid outlet and a second fluid outlet with the first fluid outlet to expel fluid onto the first electrode tip at a first electrode tip location remote from the surface portion of the first electrode tip facing alongside the second electrode tip and the second fluid outlet to expel fluid onto the second electrode tip at a second electrode tip location remote from the surface portion of the second electrode tip facing alongside the first electrode tip.


In certain embodiments, the first fluid outlet to expel fluid onto the first electrode tip at a first electrode tip location remote from the surface portion of the first electrode tip facing alongside the second electrode tip expels the fluid onto a lateral surface portion of the first electrode tip and the second fluid outlet to expel fluid onto the second electrode tip at a second electrode tip location remote from the surface portion of the second electrode tip facing alongside the first electrode tip expels the fluid onto a lateral surface portion of the second electrode tip.


In certain embodiments, the lateral surface portion of the first electrode tip comprises a semi-cylindrical or arcuate surface portion of the first electrode tip and the lateral surface portion of the second electrode tip comprises a semi-cylindrical or arcuate surface portion of the second electrode tip. In other embodiments, the surface portion of the first electrode tip has a cylindrical arc or arcuate arc of about 180 degrees and the surface portion of the second electrode tip has a cylindrical arc or arcuate arc of about 180 degrees.


In certain embodiments, a plane, e.g., a flat plane, passes through a longitudinal axis of the first electrode tip and a longitudinal axis of the second electrode tip with the first fluid outlet provided within a localized area of the lateral surface portion of the first electrode tip, the localized area comprising a surface portion, such as a semi-cylindrical surface portion, having a cylindrical or arcuate arc of about 150 degrees provided equally on each side of the plane and the second fluid outlet is provided within a localized area of the lateral surface portion of the second electrode tip, the localized area comprising a surface portion having a cylindrical or arcuate arc of about 150 degrees provided equally on each side of the plane. In other embodiments, the arc for each electrode tip may comprise about 120 degrees, about 90 degrees, about 60 degrees and about 30 degrees. In still other embodiments, the first fluid outlet is provided on the plane and the second fluid outlet is provided on the plane.


In certain embodiments, the first electrode tip location remote from the surface portion of the first electrode tip facing alongside the second electrode tip is provided by a lateral surface portion of the first electrode tip and the second electrode tip location remote from the surface portion of the second electrode tip facing alongside the first electrode tip is provided by a lateral surface portion of the second electrode tip. In other embodiments, the lateral surface portion of the first electrode tip comprises a semi-cylindrical surface portion of the first electrode tip and the lateral surface portion of the second electrode tip comprises a semi-cylindrical surface portion of the second electrode tip. In still other embodiments, the semi-cylindrical surface portion of the first electrode tip has a cylindrical arc of about 180 degrees and the semi-cylindrical surface portion of the second electrode has a cylindrical arc of about 180 degrees.


In certain embodiments, the surface portion of the first electrode tip facing alongside the second electrode tip is provided by a medial surface portion of the first electrode tip and the surface portion of the second electrode tip facing alongside the first electrode tip is provided by a medial surface portion of the second electrode tip. In other embodiments, the medial surface portion of the first electrode tip comprises a semi-cylindrical surface portion of the first electrode tip and the medial surface portion of the second electrode tip comprises a semi-cylindrical surface portion of the second electrode tip. In still other embodiments, the semi-cylindrical surface portion of the first electrode tip has a cylindrical arc of about 180 degrees and the semi-cylindrical surface portion of the second electrode tip has a cylindrical arc of about 180 degrees.


In certain embodiments, the medial surface portion of the first electrode tip has an electrically insulative coating thereon and the medial surface portion of the second electrode tip has an electrically insulative coating thereon. In other embodiments, a flat plane passes through a longitudinal axis of the first electrode tip and a longitudinal axis the second electrode tip with the electrically insulative coating on the first electrode tip provided within a localized area of the medial surface portion of the first electrode tip, the localized area comprising a semi-cylindrical surface portion having a cylindrical arc of about 90 degrees provided equally on each side of the plane and the electrically insulative coating on the second electrode tip provided within a localized area of the medial surface portion of the second electrode tip, the localized area comprising a semi-cylindrical surface portion having a cylindrical arc of about 90 degrees provided equally on each side of the plane passing.


In certain embodiments, the surface portion of the first electrode tip facing alongside the second electrode tip and the surface portion of the second electrode tip facing alongside the first electrode tip are mirror images of each other.


In certain embodiments, the first electrode tip spherical distal end further comprises a hemi-spherical distal end and the second electrode tip spherical distal end further comprises a hemi-spherical distal end. In other embodiments, the first electrode tip spherical distal end has a spherical arc of about 180 degrees and the second electrode tip spherical distal end has a spherical arc of about 180 degrees.


In certain embodiments, the first electrode tip further comprises a first electrode tip cylindrical portion and the second electrode tip further comprises a second electrode tip cylindrical portion. In other embodiments, the first electrode tip cylindrical portion is located proximally adjacent to the first electrode tip spherical distal end and the second electrode tip cylindrical portion is located proximally adjacent to the second electrode tip spherical distal end.


In certain embodiments, the first fluid outlet is at least partially defined by the first electrode tip and the second fluid outlet is at least partially defined by the second electrode tip.


In certain embodiments, the first fluid outlet is located proximal to the first electrode tip spherical distal end and the second fluid outlet is located proximal to the second electrode tip spherical distal end. In other embodiments, the first fluid outlet expels fluid onto the first electrode tip at the first electrode tip cylindrical portion and the second fluid outlet expels fluid onto the second electrode tip at the second electrode tip cylindrical portion.


In certain embodiments, the first electrode tip further comprises a first electrode tip fluid flow channel in fluid communication with the first fluid outlet and the second electrode tip further comprises a second electrode tip fluid flow channel in fluid communication with the second fluid outlet.


In certain embodiments, the first electrode tip fluid flow channel to carries fluid expelled from the first fluid outlet distally along a length of the first electrode tip and remote from the surface portion of the first electrode tip facing alongside the second electrode tip and the second electrode tip fluid flow channel to carries fluid expelled from the second fluid outlet distally along a length of the second electrode tip and remote from the surface portion of the second electrode tip facing alongside the first electrode tip.


In certain embodiments, the first electrode tip fluid flow channel is provided by a first electrode tip elongated recess oriented longitudinally on the first electrode tip and the second electrode tip fluid flow channel is provided by a second electrode tip elongated recess oriented longitudinally on the second electrode tip. In other embodiments, the first fluid outlet is at least partially defined by the first electrode tip elongated recess and the second fluid outlet is at least partially defined by the second electrode tip elongated recess. In still other embodiments, the first electrode tip elongated recess terminates adjacent to the first electrode tip spherical distal end and the second electrode tip elongated recess terminates adjacent to the second electrode tip spherical distal end. In still other embodiments, the first electrode tip elongated recess terminates proximal to the first electrode tip spherical distal end and the second electrode tip elongated recess terminates proximal to the second electrode tip spherical distal end.


In certain embodiments, the first electrode tip is provided at a distal end of a first stationary arm and the second electrode tip is provided at a distal end of a second stationary arm. In other embodiments, a distal portion of the first arm is at an angle relative to an adjoining portion of the first arm and a distal portion of the second arm is at an angle relative to an adjoining portion of the second arm. In still other embodiments, the distal portion of the first arm and the distal portion of the second arm are parallel.


In certain embodiments, the first stationary arm comprises a first shaft having a first shaft distal end with the first electrode tip extending distally beyond the first shaft distal end and the second stationary arm comprises a second shaft having a second shaft distal end with the second electrode tip extending distally beyond the second shaft distal end. In other embodiments, the first fluid outlet is located at the first shaft distal end and the second fluid outlet is located at the second shaft distal end. In still other embodiments, the first shaft further comprises a first shaft distal end opening with the first fluid outlet at least partially defined by the first shaft distal end opening and the second shaft further comprises a second shaft distal end opening with the second fluid outlet at least partially defined by the second shaft distal end opening. In still other embodiments, the first fluid outlet is located between a portion of the first electrode tip and the first shaft distal end and the second fluid outlet is located between a portion of the second electrode tip and the second shaft distal end. In still other embodiments, the first shaft further comprises a first shaft fluid passage with the first shaft fluid passage in fluid communication with the first fluid outlet and the second shaft further comprises a second shaft fluid passage with the second shaft fluid passage in fluid communication with the second fluid outlet.


In certain embodiments, the device comprises a first fluid flow passage and a second fluid flow passage with the first fluid flow passage in fluid communication with the first fluid outlet and the second fluid flow passage in fluid communication with the second fluid outlet. In other embodiments, at least one of the first fluid flow passage and the second fluid flow passage having a circular cross-sectional shape. In still other embodiments, at least one of the first fluid flow passage and the second fluid flow passage is provided by a lumen of a hollow metal tubing.


In certain embodiments, the first electrode tip further comprises a surface having a contact angle with fluid expelled from the first fluid outlet onto the first electrode tip of less than about 90 degrees; and the second electrode tip further comprises a surface having a contact angle with fluid expelled from the second fluid outlet onto the second electrode tip of less than about 90 degrees.


In certain embodiments, the first electrode tip and the second electrode tip are parallel. In other embodiments, the first electrode tip and the second electrode tip are in a side-by-side arrangement. In still other embodiments the first electrode tip and the second electrode tip are a same shape or a same size.


In certain embodiments, the first electrode tip has a diameter in the range between and including about 1 mm to about 7 mm and the second electrode tip has a diameter in the range between and including about 1 mm to about 7 mm. In other embodiments, the first electrode tip has a diameter in the range between and including about 2 mm to about 5 mm and the second electrode tip has a diameter in the range between and including about 2 mm to about 5 mm.


In certain embodiments, the first electrode tip spherical distal end has a radius in the range between and including about 0.5 mm to about 3.5 mm and the second electrode tip spherical distal end has a radius in the range between and including about 0.5 mm to about 3.5 mm. In other embodiments, the first electrode tip spherical distal end has a radius in the range between and including about 1 mm to about 2.5 mm and the second electrode tip spherical distal end has a radius in the range between and including about 1 mm to about 2.5 mm.


In certain embodiments, the first electrode tip is spaced from the second electrode tip by a gap of at least about 2 mm. In other embodiments, the first electrode tip is spaced from the second electrode tip by a gap in the range between and including about 1.3 mm to about 4 mm. In other embodiments, the first electrode tip is spaced from the second electrode tip by a gap in the range between and including about 2 mm to about 3 mm.


It is understood that the specific features described in these embodiments can be rearranged among the various embodiments to provide devices, apparatus, and systems that fall within the scope of this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front view of one embodiment of a system of the present invention having an electrosurgical unit in combination with a fluid source and handheld electrosurgical device;



FIG. 2 is a front perspective view of the electrosurgical unit of FIG. 1;



FIG. 3 is a rear view of the electrosurgical unit of FIG. 1;



FIG. 4 is a graph of the RF power output versus impedance for the electrosurgical unit of FIG. 1;



FIG. 5 is graph showing a relationship of fluid flow rate Q in units of cubic centimeters per minute (cc/min) on the Y-axis, and the RF power setting PS in units of watts on the X-axis;



FIG. 6 is a block diagram showing one embodiment of how the electrosurgical unit processes the inputs of RF power setting PS and the fluid flow rate setting, either QL, QM or QH, to control the pump speed;



FIGS. 6A-6O are detailed drawings showing one specific embodiment of an electrosurgical unit;



FIG. 7 is an exploded perspective view of an assembly of an electrosurgical device according to the present invention;



FIG. 8 is a longitudinal cross-sectional view of one arm of the device of FIG. 7;



FIG. 9 is a close-up longitudinal cross-sectional view of the tip portion of the arm shown in FIG. 8 taken along line 9-9 of FIG. 10;



FIG. 10 is a distal end view of the arm shown in FIG. 8;



FIG. 11 is a close-up cross-sectional view of the tip portion of FIG. 7 assembled with a fluid coupling to a tissue surface of tissue;



FIG. 12 is a perspective view of an alternative electrosurgical device according to the present invention;



FIG. 13 is a close-up perspective view of an alternative tip portion;



FIG. 14 is a close-up cross-sectional view of the tip portion of FIG. 13 taken along line 14-14 of FIG. 13;



FIG. 15 is a close-up perspective view of an alternative tip portion;



FIG. 16 is a close-up cross-sectional view of the tip portion of FIG. 15 taken along line 16-16 of FIG. 15;



FIG. 17 is a close-up perspective view of an alternative tip portion;



FIG. 18 is a close-up cross-sectional view of the tip portion of FIG. 17 taken along line 18-18 of FIG. 17;



FIG. 19 is a close-up perspective view of the tip portion of FIG. 17 disposed in a tissue crevice;



FIG. 20 is a close-up cross-sectional view of the tip portion of FIG. 17 with a fluid coupling to a tissue surface of tissue;



FIG. 21 is a close-up cross-sectional view of the tip portion of FIG. 17 with an alternative fluid coupling to a tissue surface of tissue;



FIG. 22 is a close-up cross-sectional view of the tip portion of FIG. 17 with fluid droplets;



FIG. 23 is a close-up cross-sectional view of the tip portion of FIG. 17 with a fluid bridge between the electrodes;



FIG. 24 is an exploded perspective view of an assembly of another electrosurgical device according to the present invention;



FIG. 25 is a close-up cross-sectional view of the tip portion of the device of FIG. 24 taken along line 25-25 of FIG. 24;



FIG. 26 is a close-up cross-sectional view of the tip portion of the device of FIG. 24 taken along line 26-26 of FIG. 24;



FIG. 27 is a close-up cross-sectional view of another embodiment of the tip portion of the device of FIG. 24 taken along line 26-26 of FIG. 24; and



FIG. 28 is a close-up cross-sectional view of another embodiment of the tip portion of the device of FIG. 24 taken along line 25-25 of FIG. 24.





DETAILED DESCRIPTION

Throughout the description, like reference numerals and letters indicate corresponding structure throughout the several views. Also, any particular feature(s) of a particular exemplary embodiment may be equally applied to any other exemplary embodiment(s) of this specification as suitable. In other words, features between the various exemplary embodiments described herein are interchangeable as suitable, and not exclusive. From the specification, it should be clear that any use of the terms “distal” and “proximal” are made in reference from the user of the device, and not the patient.


The invention provides devices, systems and methods for controlling tissue temperature at a tissue treatment site during an electrosurgical procedure. This is particularly useful for procedures where it is desirable to shrink, coagulate and seal tissue against blood loss, for example, by shrinking lumens of blood vessels (e.g., arteries, veins).


The invention will now be discussed with reference to the figures, with FIG. 1 showing a front view of one embodiment of a system of the present invention having an electrosurgical unit 14 in combination with a fluid source 22 and a handheld electrosurgical device 30. FIG. 1 shows a movable cart 2 having a chassis 4 which is provided with four wheels 6 for easy transportation. The chassis 4 carries a support member 8 comprising a hollow cylindrical post to which a storage basket 10 may be fastened and used to store the electrosurgical unit's user manual, as well as additional unused devices. Furthermore, the support member 8 carries a platform 12 comprising a pedestal table to provide a flat, stable surface for location of the electrosurgical unit 14.


As shown cart 2 further comprises a fluid source carrying pole 16 having a height which may be adjusted by sliding the carrying pole 16 up and down within the support member 8 and thereafter secured in position with a set screw. On the top of the fluid source carrying pole 16 is a cross support 18 provided with loops 20 at the ends thereof to provide a hook for carrying fluid source 22.


As shown in FIG. 1, fluid source 22 comprises a bag of fluid from which the fluid 24 flows through a drip chamber 26 after the bag is penetrated with a spike located at the end of the drip chamber 26. Thereafter, fluid 24 flows through flexible delivery tubing 28 to handheld electrosurgical device 30. Preferably the fluid delivery tubing 28 is made from a polymer material.


As shown in FIG. 1, the fluid delivery tubing 28 passes through pump 32. As shown pump 32 comprises a peristaltic pump and, more specifically, a rotary peristaltic pump. With a rotary peristaltic pump, a portion of the delivery tubing 28 is loaded into the pump head by raising and lower the pump head in a known manner. As best shown in FIG. 6, fluid 24 is conveyed within the delivery tubing 28 by waves of contraction placed externally on the tubing 28 which are produced mechanically, typically by rotating pinch rollers 57 which rotate on a drive shaft 55 and intermittently compress the tubing 28 against an anvil support 58. Alternatively, pump 32 may comprise a linear peristaltic pump. With a linear peristaltic pump, fluid 24 is conveyed within the delivery tubing 28 by waves of contraction placed externally on the tubing 28 which are produced mechanically, typically by a series of compression fingers or pads which sequentially squeeze the tubing 28 against a support. Peristaltic pumps are generally preferred, as the electromechanical force mechanism, here rollers driven by electric motor, does not make contact the fluid 24, thus reducing the likelihood of inadvertent contamination.


In a preferred embodiment the fluid 24 comprises saline, and even more preferably, normal (physiologic) saline. Although the description herein may make reference to saline as the fluid 24, other electrically conductive fluids can be used in accordance with the invention.


While a conductive fluid is preferred, as will become more apparent with further reading of this specification, fluid 24 may also comprise an electrically non-conductive fluid. The use of a non-conductive fluid is less preferred than a conductive fluid, however, the use of a non-conductive fluid still provides certain advantages over the use of a dry electrode including, for example, reduced occurrence of tissue sticking to the electrode of device 5 and cooling of the electrode and/or tissue. Therefore, it is also within the scope of the invention to include the use of a non-conducting fluid, such as, for example, deionized water.


As shown in FIG. 1, electrosurgical device 30 is connected to electrosurgical unit 14 via a cable 34 which comprises a plurality of electrically insulated wire conductors and at least one plug 36 at the end thereof. The electrosurgical unit 14 provides radio-frequency (RF) energy via cable 34 to electrosurgical device 30. As shown in FIG. 2, plug receptacle 38 of electrosurgical unit 14 receives the plug 36 of device 30 therein to electrically connect device 30 to the electrosurgical unit 14. Preferably the fluid delivery tubing 28 is provided as part of cable 34 and produced with the electrically insulated wires via plastic co-extrusion.



FIG. 2 shows the front panel of the electrosurgical unit 14. A power switch 42 is used to turn the electrosurgical unit 14 on and off. After turning the electrosurgical unit 14 on, the RF power setting display 44 is used to display the RF power setting numerically in watts. Preferably the power setting display comprises a liquid crystal display (LCD). Additionally, this display 44 is used to display errors, in which case the display 44 will show “Err” and blink alternately with a special error code number(s).


The RF power selector comprises RF power setting switches 46a, 46b which are used to select the RF power setting. Pushing the switch 46a increases the RF power setting, while pushing the switch 46b decreases the RF power setting. RF power output may be set in 5 watt increments in the range of 20 to 100 watts, and 10 watt increments in the range of 100 to 200 watts. Additionally, electrosurgical unit 14 includes an RF power activation display comprising an indicator light which illuminates when RF power is activated. Switches 46a, 46b may comprise membrane switches.


In addition to having a RF power setting display, electrosurgical unit 14 further includes a fluid flow rate setting display. Flow rate setting display comprises three indicator lights 50a, 50b and 50c with a first light 50a corresponding to a fluid flow rate setting of low, a second light 50b corresponding to a fluid flow rate setting of medium (intermediate) and a third light 50c corresponding to a flow rate setting of high. One of these three indicator lights will illuminate when a fluid flow rate setting is selected.


A fluid flow selector comprising flow rate setting switches 52a, 52b and 52c are used to select or switch the flow rate setting. Three push switches are provided with the first switch 52a corresponding to a fluid flow rate setting of low, the second switch 52b corresponding to a fluid flow rate setting of medium (intermediate) and the third switch 52c corresponding to a flow rate setting of high. Pushing one of these three switches selects the corresponding flow rate setting of either low, medium (intermediate) or high. The medium, or intermediate, flow rate setting is automatically selected as the default setting if no setting is manually selected. Switches 52a, 52b and 52c may comprise membrane switches.


Before starting a surgical procedure, it is desirable to prime device 30 with fluid 24. Priming is desirable to inhibit RF power activation without the presence of fluid 24. A priming switch 54 is used to initiate priming of device 30 with fluid 24. Pushing switch 54 once initiates operation of pump 32 for a predetermined time period to prime device 30. After the time period is complete, the pump 32 shuts off automatically. When priming of device 30 is initiated, a priming display 56 comprising an indicator light illuminates during the priming cycle.


On the front panel the bipolar activation indicator 74 illuminates when RF power is activated from the electrosurgical unit 14, either via a handswitch 168 on device 30 or a footswitch. A pullout drawer 76 is located under the electrosurgical unit 14 where the user of electrosurgical unit 14 may find a short form of the user's manual.



FIG. 3 shows the rear panel of electrosurgical unit 14. The rear panel of the electrosurgical unit 14 includes a speaker 60 and a volume control knob 62 to adjust the volume of the tone that will sound when the RF power is activated (RF power activation tone). The volume of the RF power activation tone is increased by turning the knob clockwise, and decreased by turning the knob counterclockwise. However, the electrosurgical unit 14 prevents this tone from being completely silenced.


Rear panel of electrosurgical unit 14 also includes a power cord receptacle 64 used to connect the main power cord to the electrosurgical unit 14 and an equipotential grounding lug connector 66 used to connect the electrosurgical unit 14 to earth ground using a suitable cable. The rear panel also includes a removable cap 68 for the installation of a bipolar footswitch socket connectable to an internal footswitch circuit of electrosurgical unit 14 so that the RF power may be activated by a footswitch in addition to a handswitch of device 30. Additionally, the rear panel also includes a fuse drawer 70 which includes which contains two extra fuses, consistent with the line voltage. Finally, the rear panel includes a name plate 72 which may provide information such as the model number, serial number, nominal line voltages, frequency, current and fuse rating information of the electrosurgical unit 14.


The RF power output curve of electrosurgical unit 14 is shown in FIG. 4. Impedance Z, shown in units of ohms on the X-axis and output power PO is shown in units of watts on the Y-axis. In the illustrated embodiment, the bipolar electrosurgical power (RF) is set to 200 watts. As shown in the figure, for an RF power setting PS of 200 watts, the output power PO will remain constant with the set RF power PS as long as the impedance Z stays between the low impedance cut-off of 30 ohms and the high impedance cut-off of 250 ohms. Below an impedance Z of 30 ohms, the output power PO will decrease as shown by the low impedance ramp. Above an impedance Z of 250 ohms, the output power PO will also decrease as shown by the high impedance ramp.


Electrosurgical unit 14 has also been configured such that the pump speed, and therefore the throughput of fluid expelled by the pump, is predetermined based on two input variables, the RF power setting and the fluid flow rate setting. In FIG. 5 there is shown a relationship of fluid flow rate Q in units of cubic centimeters per minute (cc/min) on the Y-axis, and the RF power setting PS in units of watts on the X-axis. The relationship has been engineered to inhibit undesirable effects such as tissue desiccation, electrode sticking, smoke production and char formation, while at the same time not providing a fluid flow rate Q at a corresponding RF power setting PS which is so great as to provide too much electrical dispersion and cooling at the electrode/tissue interface. While not being bound to a particular theory, a more detailed discussion on how the fluid flow rate interacts with the radio frequency power, modes of heat transfer away from the tissue, fractional boiling of the fluid and various control strategies may be found in U.S. Publication Nos. 2001/0032002, published Oct. 18, 2001, and assigned to the assignee of the present invention and hereby incorporated by reference in its entirety to the extent it is consistent.


As shown, electrosurgical unit 14 has been configured to increase the fluid flow rate Q linearly with an increasing RF power setting PS for each of three fluid flow rate settings of low, medium and high corresponding to QL, QM and QH, respectively. Conversely, electrosurgical unit 14 has been configured to decrease the fluid flow rate Q linearly with an decrease RF power setting PS for each of three fluid flow rate settings of low, medium and high corresponding to QL, QM and QH, respectively. As shown, QL, QM and QH can be expressed as a function of the RF power setting PS by changing exemplary proportionality constants as follows:

QL=0.1×PS
QM=0.1286×PS
QH=0.1571×PS



FIG. 6 shows an exemplary block diagram of how electrosurgical unit 14 processes the inputs of RF power setting PS and the fluid flow rate setting, either QL, QM or QH, to control the pump speed, and therefore the throughput of fluid expelled by the pump 32. As shown, user selected input values for the RF power setting PS and the fluid flow rate setting of either low, medium and high (corresponding to QL, QM and QH), as well as activating the priming function, are entered into electrosurgical unit 14 by pushing corresponding switches for these parameters positioned on the front panel of the electrosurgical unit 14.


As shown in FIG. 6, the RF power setting switches 46a, 46b, the flow rate setting switches 52a, 52b, 52c and the priming switch 54 are all preferably part of a display panel module 40, preferably comprising a printed circuit board, which receives the inputs into electrosurgical unit 14.


The user selected input values for RF power, fluid flow rate and priming are then conveyed via corresponding input signals 41 to a main module 43 which preferably comprises a printed circuit board including a computer chip 45, a radio-frequency generator 47 and a pump controller 48. As shown, display panel module 40 and main module 43, as well as other components receive power from a power supply module 49, which also comprises a printed circuit board.


Computer chip 45 preferably comprises a micro-processor unit, a memory, and an input/output control unit. In this manner, the functional relationships between the radio-frequency power level and the flow of the fluid may be stored in the memory of the computer chip 45. While the functional relationships are preferably stored in the form of the foregoing equations, they may also be stored as numerical data points as part of a database look-up table.


As shown, the input signals 41 are received and processed by computer chip 45. More specifically, for example, from the input signal received corresponding to the fluid flow rate setting of either QL, QM or QH, the computer chip 45 may first determine which of the above equations to apply. After determining which equation to apply, computer chip 45 may then apply the relationship to determine the output for flow of the fluid from the pump 32 based on the selected radio-frequency power level. Having determined this output, the computer chip 45 then sends output signals 51 and 53 corresponding to the selected radio-frequency power level and calculated output for flow of the fluid from the pump 32 to the radio-frequency generator 47 and pump controller 48, respectively. Thereafter, the pump controller 48 controls the speed of the pump drive shaft 55 by controlling the input voltage 59 to the pump motor 61 which rotates the drive shaft 55. More detailed drawings of exemplary electrosurgical unit 14 may be found in FIGS. 6A-6O.


Electrosurgical unit 14 can include a delay mechanism, such as a timer, to automatically keep the fluid flow on for several seconds after the RF power is deactivated to provide a post-treatment cooling. Electrosurgical unit 14 can also include a delay mechanism, such as a timer, to automatically turn on the fluid flow up to several seconds before the RF power is activated to inhibit the possibility of undesirable effects as tissue desiccation, electrode sticking, char formation and smoke production.


Electrosurgical unit 14 is particularly configured for use with bipolar devices. With a bipolar device, an alternating current electrical circuit is created between the first and second electrical poles of the device. An exemplary bipolar electrosurgical device of the present invention which may be used in conjunction with electrosurgical unit 14 of the present invention is shown at reference character 30a in FIG. 7. While various electrosurgical devices of the present invention are described herein with reference to use with electrosurgical unit, it should be understood that the description of the combination is for purposes of illustrating the system of the invention. Consequently, it should be understood that while the electrosurgical devices disclosed herein may be preferred for use with electrosurgical unit, it may be plausible to use other electrosurgical devices with electrosurgical unit such as monopolar devices, or it may be plausible to use the electrosurgical devices disclosed herein with another electrosurgical unit.


As shown, exemplary bipolar electrosurgical device 30a comprises two, preferably parallel, stationary arms 100a, 100b, which comprise rigid, self-supporting, hollow shafts 102a, 102b. Shafts 102a, 102b preferably comprise thick walled hypodermic stainless steel tubing. In this manner, the shafts 102a, 102b have sufficient rigidity to maintain their form during use of device 30a without kinking or significant bending.


Device 30a further comprises a proximal handle comprising mating handle portions 104a, 104b and arm tip portions as shown by circles 106a, 106b. Handle 104a, 104b is preferably made of a sterilizable, rigid, non-conductive material, such as a polymer (e.g., polycarbonate). Also, handle is preferably configured slender, along with the rest of the device, to facilitate a user of the device to hold and manipulate the device like a pen-type device. As indicated above, device 30a also comprises a flexible fluid delivery tubing 28 which is connectable to fluid source 22, preferably via a spike located at the end of drip chamber 26, and a cable 34 which is connectable to electrosurgical unit 14, which respectively provide fluid and RF power to arm tip portions 106a, 106b.


In this embodiment, cable 34 of device 30a comprises two insulated wires 34a, 34b connectable to electrosurgical unit 14 via two banana (male) plug connectors 37a, 37b. The banana plug connectors 37a, 37b are each assembled with wires 34a, 34b within the housings of plugs 36a, 36b. Wire conductors 35a, 35b of insulated wires 34a, 34b are connected distally to semi-circular terminals 39a, 39b which snap connect to a proximal portion of shafts 102a, 102b.


Arm tip portions 106a, 106b are retained in position relative to each other by a mechanical coupling device comprising a collar 108 and inhibited from separating relative to each other. As shown collar 108 comprises a polymer (e.g., acrylonitrile-butadiene-styrene or polycarbonate) and is located on the distal portion of arms 100a, 100b proximal the distal ends of the shafts 102a, 102b. Preferably the collar 108 comprises two apertures 112a, 112b, shown as opposing C-shapes, configured to receive a portion of the shafts 102a, 102b which are preferably snap-fit therein. Once the collar 108 is connected to the shafts 102a, 102b, preferably by a snap-fit connection, the collar 108 may be configured to slide along the length of the shafts 102a, 102b as to adjust or vary the location of the collar 108 on the shafts 102a, 102b. Alternatively, the location of the collar 108 may be fixed relative to the shafts 102a, 102b by welding, for example.


As shown in FIG. 7, arms 100a, 100b of device 30a are identical. At the end of arms 100a, 100b, device 30a comprises two side-by-side, spatially separated (by empty space) contact elements preferably comprising electrodes 114a, 114b which, as shown, comprise solid metal balls having a smooth, uninterrupted surface, the detail of which may be seen in FIG. 11.



FIGS. 8-10 show various views of an arm 100a of device 30a. Give the arms 100a, 100b are identical, the following description from arm 100a applies equally to arm 100b.


As best shown in FIGS. 8 and 9, tip portion 106a of arm 100a comprises a sleeve 116a having a uniform diameter along its longitudinal length, a spring 118a and a distal portion of shaft 102a. As shown in FIG. 8 the longitudinal axis 120a of the tip portion 106a may be configured at an angle α relative to the longitudinal axis of the proximal remainder of shaft 102a. Preferably, angle α is about 5 degrees to 90 degrees, and more preferably, angle α is about 8 degrees to 45 degrees.


As shown in FIGS. 8 and 9, electrode 114a comprises has a spherical shape with a corresponding spherical surface, a portion 122a of which is exposed to tissue at the distal end of device 30a. When electrode 114a is in the form of a sphere, the sphere may have any suitable diameter. Typically, the sphere has a diameter in the range between and including about 1 mm to about 7 mm, although it has been found that when a sphere is larger than about 4 mm or less than about 2 mm tissue treatment can be adversely effected (particularly tissue treatment time) due to an electrode surface that is respectively either to large or to small. Thus, preferably the sphere has a diameter in the range between and including about 2.5 mm to about 3.5 mm and, more preferably, about 3 mm.


It is understood that shapes other than a sphere can be used for the contact element. Examples of such shapes include oblong or elongated shapes. However, as shown in FIG. 8, preferably a distal end surface of the arm 100a provides a blunt, rounded surface which is non-pointed and non-sharp as shown by electrode 114a.


As shown in FIGS. 8 and 9, electrode 114a, is preferably located in a cavity 124a of cylindrical sleeve 116a providing a receptacle for electrode 114a. Among other things, sleeve 116a guides movement of electrode 114a, and also functions as a housing for retaining electrode 114a.


Also as shown in FIG. 9, a portion 126a of electrode 114a is retained within cavity 124a while another portion 128a extends distally through the fluid outlet opening provided by circular fluid exit hole 130a. Also as shown, sleeve 116a is connected, preferably via welding with silver solder, to the distal end 110a of shaft 102a. For device 30a, electrode 114a, sleeve 116a and shaft 102a preferably comprise an electrically conductive metal, which is also preferably non-corrosive. A preferred material is stainless steel. Other suitable metals include titanium, gold, silver and platinum. Shaft 102a preferably is stainless steel hypo-tubing.


Returning to cavity 124a, the internal diameter of cavity 124a surrounding electrode 114a is preferably slightly larger than the diameter of the sphere, typically by about 0.25 mm. This permits the sphere to freely rotate within cavity 124a. Consequently, cavity 124a of sleeve 116a also preferably has a diameter in the range of about 1 mm to about 7 mm.


As best shown in FIGS. 9 and 10, in order to retain electrode 114a, within the cavity 124a of sleeve 116a, preferably the fluid exit hole 130a, which ultimately provides a fluid outlet opening, of cavity 124a at its distal end 132a comprises a distal pinched region 134a which is reduced to a size smaller than the diameter of electrode 114a, to inhibit escape of electrode 114a from sleeve 116a. More preferably, the fluid exit hole 130a has a diameter smaller than the diameter of electrode 114a.


As best shown in FIG. 10, fluid exit hole 130a preferably has a diameter smaller than the diameter of electrode 114a, which can be accomplished by at least one crimp 136a located at the distal end 132a of sleeve 116a which is directed towards the interior of sleeve 116a and distal to the portion 126a of electrode 114a confined in cavity 124a. Where one crimp 136a is employed, crimp 136a may comprise a single continuous circular rim pattern. In this manner, the contact element portion extending distally through the fluid outlet opening (i.e., electrode portion 128a) provided by fluid exit hole 130a has a complementary shape to the fluid outlet opening provided by fluid exit hole 130a, here both circular.


As shown in FIG. 10, crimp 136a may have a discontinuous circular rim pattern where crimp 136a is interrupted by at least one rectangular hole slot 138a formed at the distal end 132a of sleeve 116a. Thus, the fluid outlet opening located at the distal end of the device 30a may comprise a first portion (e.g., the circular fluid exit hole portion 130a) and a second portion (e.g., the slot fluid exit hole portion 138a). As shown in FIG. 10, crimp 136a comprises at least four crimp sections forming a circular rim pattern separated by four discrete slots 138a radially located there between at 90 degrees relative to one another and equally positioned around the fluid outlet opening first portion. Slots 138a are preferably used to provide a fluid outlet opening or exit adjacent electrode 114a, when electrode 114a is fully seated (as discussed below) and/or when electrode 114a is not in use (i.e., not electrically charged) to keep surface portion 122a of the electrode surface of electrode 114a wet. Preferably, slots 138a have a width in the range between and including about 0.1 mm to 1 mm, and more preferably about 0.2 mm to 0.3 mm. As for length, slots 138a preferably have a length in the range between and including about 0.1 mm to 1 mm, and more preferably bout 0.4 mm to 0.6 mm.


Turning to the proximal end of the tip (comprising electrode 114a, sleeve 116a and spring 118a) of the device 30a, as shown in FIG. 9, preferably the portion of sleeve 116a proximal to electrode 114a, also has a proximal pinched region 140a which retains electrode 114a in the cavity 124a of sleeve 116a and inhibits escape of electrode 114a from the cavity 124a of sleeve 116a, such as a diameter smaller than the diameter of electrode 114a.


While distal pinched region 134a and proximal pinched region 140a may be used solely to support electrode 114a, in its position of use, the electrode may be further supported by a compression spring 118a as shown in FIG. 7. The use of spring 118a is preferred to provide a variable length support within the working length of the spring 118a for overcoming manufacturing tolerances (e.g., length) between the fixed supports (i.e., pinched regions 134a and 140a) of sleeve 116a. As for maintaining proper location of the spring 118a, sleeve 116a also comprises a lumen 142a as shown in FIG. 9, which, in addition to providing a direct passage for fluid, provides a guide tube for spring 118a.


In addition to the above, spring 118a provides a multitude of functions and advantages. For example, the configuration of the distal pinched region 134a, proximal pinched region 140a and spring 118a offers the ability to move electrode 114a distally and proximally within sleeve 116a. As shown in FIG. 9, spring 118a is located proximal to electrode 114a between a first load bearing surface comprising the electrode surface 144a and a second load bearing surface comprising the distal end 110a of shaft 102a. In this manner, spring 118a can be configured to provide a decompression force to seat electrode 114a against the distal pinched region 134a, in this case the perimeter edge 146a of crimp 136a, prior to use of electrosurgical device 30a.


Conversely, upon application of electrode 114a against a surface of tissue with sufficient force to overcome the compression force of the spring 118a, spring 118a compresses and electrode 114a retracts proximally away from distal pinched region 134a, in this case perimeter edge 146a of crimp 136a, changing the position thereof. In the above manner, the contact element comprising electrode 114a is retractable into the cavity 124a of the housing provided by sleeve 116a upon the application of a proximally directed force against surface 122a of the portion 128a of electrode 114a extending distally beyond the distal opening 130a located at the distal end 132a of the housing and spring 118a functions as a retraction biasing member.


By making electrode 114a positionable in the above manner via spring 118a, electrosurgical device 30a can be provided with a declogging mechanism. Such a mechanism can retract to provide access for unclogging fluid exit holes (e.g., 130a and 138a), which may become flow restricted as a result of loose debris (e.g., tissue, blood, coagula) becoming lodged therein. For example, when a biasing force, such as from a handheld cleaning device (e.g., brush) or from pushing the distal tip against a hard surface such as a retractor, is applied to surface 122a of electrode 114a which overcomes the compression force of the spring 118a causing the spring 118a to compress and electrode 114a to retract, the tip of the handheld cleaning device may by extended into the fluid exit hole 130a for cleaning the fluid exit hole 130a, perimeter edge 146a and slot 138a. Stated another way, electrode 118a, which can be positioned as outlined, provides a methodology for declogging a fluid exit hole by increasing the cross-sectional area of the fluid exit hole to provide access thereto.


Additionally, in various embodiments of device 30a, spring 118a comprises an electrical conductor, particularly when electrode 114a, is retracted to a non-contact position (i.e., not in contact) with sleeve 116a.


In other embodiments, proximal pinched region 140a may comprise one or more crimps similar to distal pinched region 134a, such that electrode 114a is retained in sleeve 116a both distally and proximally by the crimps. Also, in other embodiments, sleeve 116a may be disposed within shaft 102a rather than being connected to the distal end 110a of shaft 102a. Also, in still other embodiments, sleeve 116a may be formed unitarily (i.e., as a single piece or unit) with shaft 102a as a unitary piece.


In locations where shaft 102a and sleeve 116a are electrically conductive (for device 30a, preferably shaft 102a and sleeve 116a are completely electrically conductive and do not comprise non-conductive portions), an electrical insulator 148a (i.e., comprising non-conductive or insulating material) preferably surrounds shaft 102a and sleeve 116a along substantially its entire exposed length (e.g., the portion outside the confines of the handle 104a, 104b), terminating a short distance (e.g., at the proximal onset of crimp 136a or less than about 3 mm) from distal end 132a of sleeve 116a. Insulator 148a preferably comprises a shrink wrap polymer tubing.


In some embodiments, shaft 102a may be made of an electrical non-conducting material except for a portion at its distal end 110a that comes in contact with sleeve 116a. This portion of shaft 102a that contacts sleeve 116a should be electrically conducting. In this embodiment, the wire conductor 35a of insulated wire 34a extends to this electrically conducting portion of shaft 102a. In still other embodiments, shaft 102a may completely comprise a non-conducting material as where the wire conductor 35a from insulated wire 34a extends directly to sleeve 116a.


As shown in FIG. 11, when device 30a is in use electrodes 114a, 114b are laterally spaced adjacent tissue surface 202 of tissue 200. Electrodes 114a, 114b are connected to electrosurgical unit 14 to provide RF power and form an alternating current electrical field in tissue 200 located between electrodes 114a and 114b. In the presence of alternating current, the electrodes 114a, 114b alternate polarity between positive and negative charges with current flow from the positive to negative charge. Without being bound to a particular theory, heating of the tissue is performed by electrical resistance heating. That is, the temperature of the tissue increases as a result of electric current flow through the tissue, with the electrical energy being absorbed from the voltage and transformed into thermal energy (i.e., heat) via accelerated movement of ions as a function of the tissue's electrical resistance.


During use of device 30a, fluid 24 from the fluid source 22 is first communicated through lumen 29 of delivery tubing 28. Delivery tubing 28 preferably feeds into an inlet lumen of a Y-splitter 150 (as shown in FIG. 7) which is in fluid communication with two outlet lumens therein to provide fluid communication to the lumens 154a, 154b of delivery tubing 152a, 152b to feed each arm 100a, 100b. Thereafter, the lumens 154a, 154b are preferably interference fit over the outside diameter of shafts 102a, 102b to provide a press fit seal there between. An adhesive may be used there between to strengthen the seal. Fluid 24 is then communicated down lumens 103a, 103b of shafts 102a, 102b through lumens 142a, 142b and cavities 124a, 124b of sleeves 116a, 116b where it is expelled from around and on the exposed surfaces 122a, 122b of electrodes 114a, 114b. This provides wet electrodes for performing electrosurgery.


The relationship between the material for electrodes 114a, 114b and their surfaces, and fluid 24 throughout the various embodiments should be such that the fluid 24 wets the surface of the electrodes 114a, 114b. Contact angle, θ, is a quantitative measure of the wetting of a solid by a liquid. It is defined geometrically as the angle formed by a liquid at the three phase boundary where a liquid, gas and solid intersect. In terms of the thermodynamics of the materials involved, contact angle θ involves the interfacial free energies between the three phases given by the equation

γLV cos θ=γSV−γSL

where γLV, γSV and γSL refer to the interfacial energies of the liquid/vapor, solid/vapor and solid/liquid interfaces, respectively. If the contact angle θ is less than 90 degrees the liquid is said to wet the solid. If the contact angle is greater than 90 degrees the liquid is non-wetting. A zero contact angle θ represents complete wetting. Thus, preferably the contact angle is less than 90 degrees.


As shown in FIG. 11, during use of electrosurgical device 30a fluid couplings 204a, 204b preferably comprise discrete, localized webs and, as shown, typically form a triangular shaped webs or bead portions providing a film of fluid 24 between surface 202 of tissue 200 and electrodes 114a, 114b. When the user of electrosurgical device 30a places electrodes 114a, 114b at a tissue treatment site and moves electrodes 114a, 114b across the surface 202 of the tissue 200, fluid 24 is expelled around and on surfaces 122a, 122b of electrodes 114a, 114b at the distal ends 132a, 132b of sleeves 116a, 116b and onto the surface 202 of the tissue 200 via couplings 204a, 204b. At the same time, RF electrical energy, shown by electrical field lines 206, is provided to tissue 200 at tissue surface 202 and below tissue surface 202 into tissue 200 through fluid couplings 204a, 204b.


The fluid 24, in addition to providing an electrical coupling between electrosurgical device 30a and tissue 200, lubricates surface 202 of tissue 200 and facilitates the movement of electrodes 114a, 114b across surface 202 of tissue 200. During movement of electrodes 114a, 114b, electrodes 114a, 114b typically slide across surface 202 of tissue 200, but also may rotate as electrode 114a, 114b move across surface 202 of tissue 200. Typically the user of the electrosurgical device 30a slides electrodes 114a, 114b across surface 202 of tissue 200 back and forth with a painting motion while using fluid 24 as, among other things, a lubricating coating. In certain embodiments, the thickness of the fluid 24 between the distal end surface of electrodes 114a, 114b and surface 202 of tissue 200 at the outer edge of the couplings 204a, 204b is in the range between and including about 0.05 mm to 1.5 mm. Also, in certain embodiments, the distal end tips of electrodes 114a, 114b may contact surface 202 of tissue 200 without any fluid 24 in between.


To better inhibit fluid from the treatment site from inadvertently flowing into the handle 104a, 104b of device 30a, each arm 100a, 100b of device 30a may include a hollow cylindrical tubular seal 156a, 156b which forms a seal between the outer surface of insulators 148a, 148b and handle 104a, 104b. Furthermore, the proximal end portions of the tubular seals 156a, 156b, insulators 148a, 148b and shafts 102a, 102b may be received into cylindrical apertures 166a, 166b of a rubber bushing 164 to provide an additional seal.



FIG. 12 provides a perspective view of an alternative electrosurgical device according to the present invention. As shown in FIG. 12, device 30b includes a handswitch 168. Switch 168 preferably comprises a push button 169 and a dome switch 167 having two electrical contacts. The contacts preferably comprise upper and lower contacts disposed on a platform 171 in overlying relationship. Preferably the upper contact comprises a dome shaped configuration overlying and spaced from the lower contact which is flat. Preferably the contacts are spaced from one another by virtue of the domed configuration of the upper contact when the switch 168 is in an undepressed position, thus creating an open control circuit relative to switch 168. However, when the upper contact is pressed into a depressed position, the upper contact comes into contact with the lower contact thus closing the hand switch control circuit. The presence of the closed control circuit is then sensed by which then provides power to the electrodes 114a, 114b.


When a depression force is removed from the upper contact, the contact returns to its undepressed domed position as a result of its resiliency or elastic memory, thus returning switch 168 to its undepressed position and reopening the hand control circuit. The presence of the open control circuit is then sensed by electrosurgical unit 14 which then stops providing power to electrodes 114a, 114b.


In other embodiments, the tip portion 106 of the bipolar device comprises other configurations. Tip portion 106 of an exemplary bipolar electrosurgical device 30c of the present invention, which may be used in conjunction with the electrosurgical unit 14 of the present invention, is shown in FIG. 13.


As shown in FIGS. 13 and 14, similar to electrosurgical device 30a, device 30c comprises two, preferably parallel, stationary arms 100a, 100b, which comprise rigid, self-supporting, hollow shafts 102a, 102b. As with device 30a, shafts 102a, 102b preferably comprise thick walled hypodermic tubing to provide sufficient rigidity to maintain their form during use of device 30c without kinking or significant bending. Furthermore, arm tip portions 106a, 106b are retained in position relative to each other by a mechanical coupling device comprising a collar 108 and inhibited from separating relative to each other.


At the end of arms 100a, 100b, device 30c comprises two side-by-side, spatially separated (by empty space) contact elements preferably comprising electrodes 114a, 114b at the distal end of first arm tip portion 106a and second arm tip portion 106b, respectively.


As shown in FIG. 14, electrodes 114a, 114b are preferably located in cavities 124a, 124b of cylindrical sleeves 116a, 116b providing receptacles for electrodes 114a, 114b. Also as shown, sleeves 116a, 116b are connected, preferably via welding, to the distal ends 110a, 110b of shafts 102a, 102b. For device 30c, electrodes 114a, 114b, sleeves 116a, 116b, and shafts 102a, 102b are preferably made of an electrically conductive metal, which is also preferably non-corrosive. A preferred material is stainless steel. Other suitable metals may include titanium, gold, silver and platinum. Shafts 102a, 102b preferably comprise stainless steel hypo-tubing.


Electrodes 114a, 114b are preferably assembled within the cavities 124a, 124b of sleeves 116a, 116b via a mechanical press (interference) fit. In other embodiments, the electrodes 114a, 114b may be assembled to sleeves 116a, 116b by threaded engagement, adhesives and welding. In certain embodiments, electrodes 114a, 114b may be detachably assembled to sleeves 116a, 116b such that they may be removed from the sleeves 116a, 116b, preferably manually by human hand, so that device 30c may be used with multiple different contact elements/electrodes, or device 30c may be reuseable and used with disposable contact elements/electrodes.


Also as shown, electrodes 114a, 114b each preferably comprise a connector portion, preferably comprising a shank 170a, 170b which connects electrodes 114a, 114b to sleeves 116a, 116b, respectively. Among other things, the connector portion of electrodes 114a, 114b is preferably configured to form a connection with a mating connector portion of sleeves 116a, 116b. As shown, preferably the shank portions 170a, 170b are configured to extend into cavities 124a, 124b of sleeves 116a, 116b which comprise cylindrical receptacles and provide the mating connector portions for shanks 170a, 170b, respectively. More preferably, surfaces 172a, 172b of shank portions 170a, 170b are configured to mate against and form an interference fit with corresponding surfaces of cavities 124a, 124b to provide the connection, respectively. As shown, shank portions 170a, 170b are preferably cylindrical and located proximal and adjacent to cylindrical portions 174a, 174b of electrodes 114a, 114b. Shank portions 170a, 170b preferably have a diameter of about 1.6 mm.


Shank portions 170a, 170b preferably have a length in the range between and including about 2 mm to about 6 mm, and more preferably have a length in the range between and including about 2.5 mm to about 5 mm. Even more preferably, shanks 170a, 170b have a length of about 3 mm.


As shown in FIG. 14, electrodes 114a, 114b each preferably comprise a head portion with a surface devoid of edges (to provide a uniform current density) to treat tissue without cutting. As shown, electrodes 114a, 114b comprise a spherical portion 128a, 128b and a corresponding spherical surface portion 122a, 122b located at the distal end of device 30c which provide a smooth, blunt contour outer surface. More specifically, as shown, the spherical portions 128a, 128b and spherical surface portions 122a, 122b further provide a domed, hemisphere (i.e., less than a full sphere) and hemispherical surface portion comprising preferably about 180 degrees.


Also as shown, the head portion of electrodes 114a, 114b each preferably comprise a rectilinear cylindrical portion 174a, 174b and a corresponding cylindrical surface portion 176a, 176b located proximal and adjacent to the spherical portion 128a, 128b and spherical surface portion 122a, 122b, respectively.


In this embodiment, preferably cylindrical portions 174a, 174b have a diameter in the range between and including about 2.5 mm to about 5.0 mm, and more preferably have a diameter in the range between and including about 3.0 mm to about 4.0 mm, and even more preferably, about 3.5 mm.


With respect to length, preferably cylindrical portions 174a, 174b of device 30c have a length in the range between and including about 2 mm to about 6 mm, and more preferably have a length in the range between and including about 3 mm to about 5 mm. Even more preferably, cylindrical portions 174a, 174b have a length of about 4 mm.


As shown, electrodes 114a, 114b comprise at least one recess 178a, 178b which provides an elongated fluid flow channel for the distribution of fluid 24 onto and around electrodes 114a, 114b. As shown, electrodes 114a, 114b comprise a plurality of longitudinally directed recesses 178a, 178b and, more specifically, four recesses 178a, 178b equally spaced 90 degrees around the shanks 170a, 170b and a proximal portion of cylindrical portions 174a, 174b. Preferably, recesses 178a, 178b have a width in the range between and including about 0.1 mm to about 0.6 mm, and more preferably have a width of about 0.4 mm. Fluid outlet openings 184a, 184b are provided between the structure of electrodes 114a, 114b (i.e., recesses 178a, 178b) at the distal ends 110a, 110b of the shafts 102a, 102b. Consequently, fluid outlet openings 184a, 184b are partially defined by recesses 178a, 178b of electrodes 114a, 114b and partially by the distal ends 110a, 110b of the shafts 102a, 102b. The use of recesses 178a, 178b and fluid outlet openings 184a, 184b for the distribution of fluid 24 are generally preferred to the fluid outlets of devices 30a and 30b as they are proximal to the distal end of device 30c and, consequently, less apt to clog or otherwise become occluded during use of device 30c. When tissue overlies and occludes a recess for a portion of its longitudinal length, thus inhibiting fluid 24 from exiting therefrom, fluid 24 from the recess may still be expelled from device 30c after flowing longitudinally in the recess to a remote location where the recess is unoccluded and uninhibited to fluid flow exiting therefrom, or after the device is moved away from the occluding tissue.


For this embodiment, the longitudinal axes 120a, 120b of tip portions 106a, 106b and electrodes 114a, 114b are separated center-to-center CC about 6.5 mm. As a result, when cylindrical portions 174a 174b have a preferred diameter of 3.5 mm, the actual spatial gap separation GS between electrodes 114a, 114b is about 3 mm.


A tip portion of another exemplary bipolar electrosurgical device 30d of the present invention, which may be used in conjunction with the electrosurgical unit 14 of the present invention, is shown at reference character 106 in FIG. 15.


As best shown in FIG. 16, in comparison with device 30c, the electrodes 114a, 114b of device 30d are of the same diameter and spacing. However, the length of electrodes 114a, 114b for device 30d are longer than the electrodes 114a, 114b of device 30c. With respect to length, preferably cylindrical portions 174a, 174b of device 30d have a length in the range between and including about 5 mm to about 10 mm, and more preferably have a length in the range between and including about 6 mm to about 8 mm. Even more preferably, cylindrical portions 174a, 174b have a length of about 7 mm.


A tip portion of another exemplary bipolar electrosurgical device 30e of the present invention, which may be used in conjunction with the electrosurgical unit 14 of the present invention, is shown at reference character 106 in FIG. 17.


As best shown in FIG. 18, the sleeves 116a, 116b used with embodiments 30a-30d have been eliminated from tip portions 106a, 106b of device 30e. Consequently, electrodes 114a, 114b are now assembled directly with shafts 102a, 102b, respectively. Electrodes 114a, 114b are preferably assembled adjacent the distal ends 110a, 110b of shafts 102a, 102b via a mechanical press (interference) fit. In other embodiments, the electrodes 114a, 114b may be assembled to shafts 102a, 102b by threaded engagement, adhesives and welding. In certain embodiments, electrodes 114a, 114b may be detachably assembled to shafts 102a, 102b such that they may be removed from the shafts 102a, 102b, preferably manually by human hand, so that device 30e may be used with multiple different contact elements/electrodes, or device 30e may be reuseable and used with disposable contact elements/electrodes.


Also as shown, electrodes 114a, 114b each preferably comprise a connector portion, preferably comprising a shank 170a, 170b which connects the electrodes 114a, 114b to shafts 102a, 102b, respectively. Among other things, the connector portion of electrodes 114a, 114b is preferably configured to form a connection with a mating connector portion of shafts 102a, 102b. As shown, preferably the shank portions 170a, 170b are configured to extend into cavities 180a, 180b of shafts 102a, 102b which comprise cylindrical receptacles and provide the mating connector portions for shanks 170a, 170b, respectively. More preferably, surfaces 172a, 172b of shank portions 170a, 170b are configured to mate against and form an interference fit with surfaces 182a, 182b of cavities 180a, 180b to provide the connection, respectively.


Electrodes 114a, 114b of device 30e comprise a spherical portion 128a, 128b and a corresponding spherical surface portion 122a, 122b located at the distal end of the device 30e which provide a smooth, blunt contour outer surface. More specifically, as shown, the spherical portions 128a, 128b and spherical surface portions 122a, 122b further provide a domed, hemisphere (i.e., less than a full sphere) and hemispherical surface portion comprising preferably about 180 degrees.


Electrodes 114a, 114b of device 30e each also comprise a rectilinear cylindrical portion 174a, 174b and a corresponding cylindrical surface portion 176a, 176b located proximal and adjacent to the spherical portion 128a, 128b and spherical surface portion 122a, 122b, respectively.


In this embodiment preferably cylindrical portions 174a, 174b have a diameter in the range between and including about 1.0 mm to about 3.5 mm, and more preferably have a diameter in the range between and including about 2.0 mm to about 2.5 mm, and even more preferably, about 2.3 mm.


With respect to length, preferably cylindrical portions 174a, 174b of device 30e have a length in the range between and including about 6 mm to about 14 mm, and more preferably have a length in the range between and including about 8 mm to about 12 mm. Even more preferably, cylindrical portions 174a, 174b have a length of about 10 mm.


As shown, electrodes 114a, 114b comprise at least one recess 178a, 178b which provides an elongated fluid flow channel for the distribution of fluid 24 onto and around electrodes 114a, 114b. As shown, electrodes 114a, 114b comprise a plurality of longitudinally directed recesses 178a, 178b and, more specifically, four recesses 178a, 178b equally spaced 90 degrees around the shanks 170a, 170b and a proximal portion of cylindrical portions 174a, 174b. Preferably, recesses 178a, 178b have a width in the range between and including about 0.1 mm to about 0.6 mm, and more preferably has a width of about 0.4 mm. Fluid outlet openings 184a, 184b are provided between the structure of electrodes 114a, 114b (i.e., recesses 178a, 178b) at the distal ends 110a, 110b of the shafts 102a, 102b.


For this embodiment, the longitudinal axes 120a, 120b of tip portions 106a, 106b and electrodes 114a, 114b are separated center-to-center CC about 4.4 mm. As a result, when cylindrical portions 174a, 174b have a preferred diameter of 2.3 mm, the actual spatial gap separation GS between electrodes 114a, 114b is about 2.1 mm.


As compared to devices 30c and 30d, the electrodes 114a, 114b of device 30e are longer and have a smaller diameter. Due to the longer length and narrower width of electrodes 114a, 114b, device 30e may be used in more narrow confines as compared to devices 30c and 30d. Furthermore, the corresponding longer recesses 178a, 178b and the more proximal position of fluid outlet openings 184a, 184b makes them even less apt to clog. This can be particularly advantageous where device 30e is used in narrow confines such as a tissue crevice 208 shown in FIG. 19.


Conversely, due to the larger spherical surface, devices 30c and 30d may be used to treat greater tissue surface areas than device 30e to paint over the raw, oozing surface 202 of tissue 200 to seal the tissue 200 against bleeding.


As shown in FIG. 20, one way in which device 30e (and similarly for devices 30c and 30d) may be used is with the longitudinal axis of electrodes 114a, 114b vertically orientated, and the spherical surfaces 122a, 122b of electrodes 114a, 114b laterally spaced adjacent tissue surface 202 of tissue 200. During use fluid 24 is communicated within the lumens 103a, 103b of the shafts 102a, 102b to recesses 178a, 178b of electrodes 114a, 114b and expelled from fluid outlet openings 184a, 184b.


As the user of device 30e places electrodes 114a, 114b at a tissue treatment site and moves electrodes 114a, 114b across surface 202 of tissue 200, fluid 24 is expelled from fluid outlet openings 184a, 184b and electrodes 114a, 114b onto surface 202 of tissue 200. At the same time, RF electrical energy, shown by electrical field lines 206, is provided to tissue 200 at tissue surface 202 and below tissue surface 202 into tissue 200 through fluid couplings 204a, 204b.


Fluid 24, in addition to providing an electrical coupling between the device 30e and tissue 200, lubricates surface 202 of tissue 200 and facilitates the movement of electrodes 114a, 114b across surface 202 of tissue 200. During movement of electrodes 114a, 114b, electrodes 114a, 114b typically slide across the surface 202 of tissue 200. Typically the user of device 30e slides electrodes 114a, 114b across surface 202 of tissue 200 back and forth with a painting motion while using fluid 24 as, among other things, a lubricating coating. Preferably the thickness of the fluid 24 between the distal end surface of electrodes 114a, 114b and surface 202 of tissue 200 at the outer edge of couplings 204a, 204b is in the range between and including about 0.05 mm to 1.5 mm. Also, in certain embodiments, the distal end tip of electrodes 114a, 114b may contact surface 202 of tissue 200 without any fluid 24 in between.


As shown in FIG. 20, fluid couplings 204a, 204b comprise discrete, localized webs and more specifically comprise triangular shaped webs or bead portions providing a film of fluid 24 between surface 202 of tissue 200 and electrodes 114a, 114b.


As shown in FIG. 21, the fluid coupling for device 30e may also comprise a conductive fluid bridge 210 between electrodes 114a, 114b which rests on surface 202 of tissue 200 and forms a shunt between electrodes 114a, 114b. Given this scenario, a certain amount of RF energy may be diverted from going into tissue 200 and actually pass between electrodes 114a, 114b via the conductive fluid bridge 210. This loss of RF energy may slow down the process of coagulating and sealing the tissue and producing the desired hemostasis of the tissue.


In order to counteract the loss of energy through bridge 210, once enough energy has entered bridge 210 to boil fluid 24 of bridge 210, the loss of RF energy correspondingly decreases with the loss of bridge 210. Preferably energy is provided into fluid 24 of bridge 210 by means of heat dissipating from tissue 200.


Thus, where a high percentage of boiling of conductive fluid 24 of bridge 210 is created, the loss of RF energy through bridge 210 may either be reduced or eliminated because all the fluid 24 of bridge 210 boils off or a large fraction of boiling creates enough disruption in the continuity of bridge 210 to disrupt the electrical circuit through bridge 210.


Depending on the fluid flow rate, for example, fluid 24 expelled from fluid outlet openings 184a, 184b may form into droplets 212a, 212b which flow distally on electrodes 114a, 114b. As shown in FIG. 22, droplets 212a, 212b may form at varying times from fluid 24 expelled from any one of the fluid outlet openings 184a, 184b. Also, fluid 24 may be expelled in varying quantity from each of the fluid outlet openings 184a, 184b, depending on, for example, device orientation and varying fluid outlet sizes. With use of device 30e, the size of droplets 212a, 212b may also vary due to changes in the surface finish of the electrodes 114a, 114b, for example, as a result of being contaminated by blood and tissue.


When an unused device 30e is held in a normal (front end) use position with the longitudinal axes 120a, 120b of tip portions 106a, 106b pointed straight down (i.e. perpendicular to the earth) and with an adequate fluid flow rates of normal saline, the fluid 24 flowing down the electrodes 114a, 114b and dripping therefrom generally will remain separated as shown in FIG. 22. The same may also be said for devices 30c and 30d.


On occasion, for example when the orientation of the device is changed and the fluid flow rate increased, fluid 24 from certain of the fluid outlet openings 184a, 184b may merge into a bridge 210 between electrodes 114a, 114b. As shown in FIG. 21, this bridge 210 may drip from the device as droplet 212.


As indicated above, the formation of a bridge 210 between electrodes 114a, 114b forms a shunt between electrodes 114a, 114b, and a certain amount of RF energy may be diverted from going into tissue 200 and actually pass between electrodes 114a, 114b via the bridge 210. This loss of RF energy may slow down the process of coagulating and sealing the tissue and producing the desired hemostasis of the tissue. Also as indicated above, in order to decrease energy losses through the shunt it may be advantageous, as to increase the percentage of boiling of the conductive fluid to reduce the presence of a conductive fluid shunt. This may be achieved, for example, by decreasing the fluid flow rate or increasing the power level.


Another means to decrease energy losses through the shunt is to configure the tip portions 114a, 114b to reduce the merging of fluid 24 into bridge 210. For example, arranging the tip portions 106a, 106b with the electrodes 114a, 114b having a gap separation GS between electrodes 114a, 114b of at least about 2.0 mm has been found to reduce the merging of fluid 24 into bridge 210 as compared to a gap separation of 1.3 mm. Thus, the reduction in the merging of fluid 24 into bridge 210 may also be accomplished by the spacing of tip portions 106a, 106b.


Yet another means to reduce the merging of fluid into bridge 210 may be accomplished by the specific location of fluid outlet openings 184a, 184b. An exemplary bipolar electrosurgical device of the present invention which may be used in conjunction with electrosurgical unit 14 of the present invention is shown at reference character 30f in FIGS. 24-26.


As best shown in FIGS. 25 and 26, the fluid outlet arrangement of device 30f expels fluid onto the electrodes 114a, 114b solely at locations remote from electrode surface portions alongside and facing each other. More particularly, fluid outlet opening 184a expels fluid onto electrode 114a at an electrode location remote from the surface portion of electrode 114a facing electrode 114b, and fluid outlet 184b expels fluid onto the electrode 114b at an electrode location remote from the surface portion of electrode 114b facing electrode 114a.


Even more particularly, fluid outlet opening 184a expels fluid onto a lateral surface portion 186a of electrode 114a, and fluid outlet opening 184b expels fluid onto a lateral surface portion 186b of electrode 114b. As shown in FIG. 26, the lateral surface portion 186a of electrode 114a comprises a semi-cylindrical surface portion of electrode 114a having a cylindrical arc of about 180 degrees, and the lateral surface portion 186b of electrode 114b is also provided by a semi-cylindrical surface portion of electrode 114b having a cylindrical arc of about 180 degrees.


Also as shown in FIG. 26, the surface portion of electrode 114a facing electrode 114b is provided by a medial surface portion 188a of electrode 114a, and the surface portion of electrode 114b facing electrode 114a is provided by a medial surface portion 188b of electrode 114b. As shown, the medial surface portion 188a of electrode 114a is provided by a semi-cylindrical surface portion of electrode 114a having a cylindrical arc of about 180 degrees, and the medial surface portion 188b of electrode 114b is also provided by a semi-cylindrical surface portion of electrode 114b having a cylindrical arc of about 180 degrees.


As shown in FIG. 27, a flat plane 192 passes through the longitudinal axis 120a of electrode 114a and the longitudinal axis 120b of electrode 114b. Fluid outlet opening 184a may be provided within a localized area 190a of the lateral surface portion 186a of electrode 114a which, as shown, comprises a cylindrical arc of about 150 degrees provided equally on each side of plane 192. Similarly, fluid outlet opening 184b may be provided within a localized area 190b of the lateral surface portion 186b of electrode 114b which, as shown, comprises a cylindrical arc of about 150 degrees provided equally on each side of plane 192. In other embodiments, the localized areas 190a, 190b of the lateral surface portions 186a, 186b may comprise narrower cylindrical arcs such as about 135, 120, 105, 90, 75, 60, 4530 and 15 degrees provided equally on each side of plane 192. In still other embodiments, the localized areas 190a, 190b of the lateral surface portions 186a, 186b may comprise wider cylindrical arcs such as about 155, 160, 165, 170 and 175 degrees provided equally on each side of plane 192. As best shown in FIGS. 25 and 26, both fluid outlet opening 184a and fluid outlet opening 184b are provided on the plane 192, which desirably places the fluid outlet openings 184a, 184b at the most extreme lateral area of electrodes 114a, 114b, respectively.


In certain embodiments, the electrodes 144a, 114b of device 30f may also have an electrically insulative coating thereon. As shown in FIG. 27, the medial surface portion 188a of electrode 114a has an electrically insulative coating 194a thereon, and the medial surface portion 188b of electrode 114b has an electrically insulative coating 194b thereon, both of which preferably terminate adjacent to the spherical distal end of their respective electrodes. As shown, coating 194a may be provided within a localized area 196a of the medial surface portion 188a of electrode 114a which, as shown, comprises a cylindrical arc of about 90 degrees provided equally on each side of plane 192. Similarly, coating 194b may be provided within a localized area 196b of the medial surface portion 188b of electrode 114b which, as shown, comprises a cylindrical arc of about 90 degrees provided equally on each side of plane 192. In still other embodiments, the localized areas 196a, 196b of the medial surface portions 188a, 188b may comprise wider or narrower cylindrical arcs the same as those listed above.


As best shown in FIG. 25, recesses 178a, 178b of electrodes 114a, 114b each provide a fluid flow channel which carries fluid expelled from the fluid outlet openings 184a, 184b distally along a length of electrodes 114a, 114b and remote from the surface portion the electrodes facing each other. Also as shown in FIG. 25, recesses 178a, 178b each terminate proximal to the spherical distal end of their respective electrodes. However, as shown in FIG. 28, in other embodiments recesses 178a, 178b each may terminate adjacent to the spherical distal end of their respective electrodes.


For device 30f, the longitudinal axes 120a, 120b of tip portions 106a, 106b and electrodes 114a, 114b are separated center-to-center CC about 6 mm. As a result, when cylindrical portions 174a 174b have a preferred diameter of 3.5 mm, the actual spatial gap separation GS between electrodes 114a, 114b is about 2.5 mm.


The bipolar devices disclosed herein are particularly useful as non-coaptive tissue sealers in providing hemostasis during surgery. In other words, grasping of the tissue is not necessary to shrink, coagulate and seal tissue against blood loss, for example, by shrinking collagen and associated lumens of blood vessels (e.g., arteries, veins) to provided the desired hemostasis of the tissue. Furthermore, the control system of the electrosurgical unit 12 is not necessarily dependent on tissue feedback such as temperature or impedance to operate. Thus, the control system of electrosurgical unit 12 may be open loop with respect to the tissue which simplifies use.


The bipolar devices disclosed herein are particularly useful to surgeons to achieve hemostasis after dissecting through soft tissue, as part of hip or knee arthroplasty. The tissue treating portions can be painted over the raw, oozing surface 202 of tissue 200 to seal the tissue 200 against bleeding, or focused on individual larger bleeding vessels to stop vessel bleeding. As part of the same or different procedure, bipolar devices 30a-30e are also useful to stop bleeding from the surface of cut bone tissue as part of any orthopaedic procedure that requires bone to be cut.


As is well known, bone, or osseous tissue, is a particular form of dense connective tissue consisting of bone cells (osteocytes) embedded in a matrix of calcified intercellular substance. Bone matrix mainly contains collagen fibers and the minerals calcium carbonate, calcium phosphate and hydroxyapatite. Among the many types of bone within the human body are compact bone and cancellous bone. Compact bone is hard, dense bone that forms the surface layers of bones and also the shafts of long bones. It is primarily made of haversian systems which are covered by the periosteum. Compact bone contains discrete nutrient canals through which blood vessels gain access to the haversian systems and the marrow cavity of long bones. For example, Volkmann's canals which are small canals found in compact bone through which blood vessels pass from the periosteum and connect with the blood vessels of haversian canals or the marrow cavity. Devices 30a-30e disclosed herein may be particularly useful to treat compact bone and to provide hemostasis and seal bleeding vessels (e.g. by shrinking to complete close) and other structures associated with Volkmann's canals and Haversian systems.


In contrast to compact bone, cancellous bone is spongy bone and forms the bulk of the short, flat, and irregular bones and the ends of long bones. The network of osseous tissue that makes up the cancellous bone structure comprises many small trabeculae, partially enclosing many intercommunicating spaces filled with bone marrow. Consequently, due to their trabecular structure, cancellous bones are more amorphous than compact bones, and have many more channels with various blood cell precursors mixed with capillaries, venules and arterioles. Devices 30a-30e disclosed herein may be particularly useful to treat cancellous bone and to provide hemostasis and seal bleeding structures such as the above micro-vessels (i.e. capillaries, venules and arterioles) in addition to veins and arteries. Devices 30a-30e may be particularly useful for use during orthopedic knee, hip, shoulder and spine procedures (e.g. arthroplasty).


During a knee replacement procedure, the condyle at the distal epiphysis of the femur and the tibial plateau at the proximal epiphysis of the tibia are often cut and made more planer with saw devices to ultimately provide a more suitable support structure for the femoral condylar prosthesis and tibial prosthesis attached thereto, respectively. The cutting of these long bones results in bleeding from the cancellous bone at each location. In order to seal and arrest the bleeding from the cancellous bone which has been exposed with the cutting of epiphysis of each long bone, bipolar device 30a-30e may be utilized, and more particularly devices 30c and 30d due to their electrode configuration. Thereafter, the respective prostheses may be attached.


Turning to a hip replacement procedure, the head and neck of the femur at the proximal epiphysis of the femur is removed, typically by cutting with a saw device, and the intertrochantic region of the femur is made more planer to provide a more suitable support structure for the femoral stem prosthesis subsequently attached thereto. With respect to the hip, a ball reamer is often used to ream and enlarge the acetabulum of the innominate (hip) bone to accommodate the insertion of an acetabular cup prosthesis therein, which will provide the socket into which the head of the femoral stem prosthesis fits. The cutting of the femur and reaming of the hip bone results in bleeding from the cancellous bone at each location. In order to seal and arrest the bleeding from the cancellous bone which has been cut and exposed, bipolar devices 30a-30e may be utilized, and more particularly devices 30c and 30d due to their electrode configuration. Thereafter, as with the knee replacement, the respective prostheses may be attached.


Bipolar devices 30a-30e may be utilized for treatment of connective tissues, such as for shrinking intervertebral discs during spine surgery. Intervertebral discs are flexible pads of fibrocartilaginous tissue tightly fixed between the vertebrae of the spine. The discs comprise a flat, circular capsule roughly an inch in diameter and about 0.25 inch thick, made of a tough, fibrous outer membrane called the annulus fibrosus, surrounding an elastic core called the nucleus pulposus.


Under stress, it is possible for the nucleus pulposus to swell and herniate, pushing through a weak spot in the annulus fibrosus membrane of the disc and into the spinal canal. Consequently, all or part of the nucleus pulposus material may protrude through the weak spot, causing pressure against surrounding nerves which results in pain and immobility.


Bipolar devices 30a-30e, and more particularly device 30e due to its size, may be utilized to shrink protruding and herniated intervertebral discs which, upon shrinking towards normal size, reduces the pressure on the surrounding nerves and relieves the pain and immobility. Devices 30a-30e may be applied via posterior spinal access under surgeon control for focal shrinking of the annulus fibrosus membrane.


Where an intervertebral disc cannot be repaired and must be removed as part of a discectomy, devices 30a-30e may be particularly useful to seal and arrest bleeding from the cancellous bone of opposing upper and lower vertebra surfaces (e.g. the cephalad surface of the vertebral body of a superior vertebra and the caudad surface of an inferior vertebra). Where the disc is removed from the front of the patient, for example, as part of an anterior, thoracic spine procedure, devices 30a-30e may also be particularly useful to seal and arrest bleeding from segmental vessels over the vertebral body.


Bipolar devices 30a-30e may be utilized to seal and arrest bleeding of epidural veins which bleed as a result of the removal of tissue around the dural membrane during, for example a laminectomy or other neurosurgical surgery. The epidural veins may start bleeding when the dura is retracted off of them as part of a decompression. Also during a laminectomy, devices 30a-30e may be used to seal and arrest bleeding from the vertebral arch and, in particular the lamina of the vertebral arch.


As established above, bipolar devices 30a-30e of the present invention inhibit such undesirable effects of tissue desiccation, electrode sticking, char formation and smoke generation, and thus do not suffer from the same drawbacks as prior art dry tip electrosurgical devices. The use of the disclosed devices can result in significantly lower blood loss during surgical procedures. Such a reduction in blood loss can reduce or eliminate the need for blood transfusions, and thus the cost and negative clinical consequences associated with blood transfusions, such as prolonged hospitalization.


While a preferred embodiment of the present invention has been described, it should be understood that various changes, adaptations and modifications can be made therein without departing from the spirit of the invention and the scope of the appended claims. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents. Furthermore, it should be understood that the appended claims do not necessarily comprise the broadest scope of the invention which the Applicant is entitled to claim, or the only manner(s) in which the invention may be claimed, or that all recited features are necessary.


All publications and patent documents cited in this application are incorporated by reference in their entirety for all purposes to the extent they are consistent.

Claims
  • 1. An electrosurgical apparatus to provide controlled delivery of radio-frequency power and a fluid to an electrosurgical hand device to treat tissue, the apparatus comprising: a radio-frequency generator to deliver the radio-frequency power, the radio frequency power from the radio-frequency generator selectable at a radio-frequency power level;a pump to deliver the fluid;a primer to prime the hand device with the fluid;a control system to control a flow of the fluid delivered by the pump with a functional relationship between the radio-frequency power level and the flow of the fluid, the functional relationship to increase the flow of the fluid in response to an increase in the radio-frequency power level and to decrease the flow of the fluid in response to a decrease in the radio-frequency power level;a fluid flow selector which changes the functional relationship between the radiofrequency power level and the flow of the fluid; andwherein the functional relationship is stored in a memory of the apparatus for use by a microprocessor, the functional relationship in the form of a mathematical equation having a proportionality constant and the fluid flow selector changes the proportionality constant.
  • 2. The apparatus of claim 1 wherein: the mathematical equation comprises a linear equation.
  • 3. The apparatus of claim 1 wherein: the fluid flow selector provides a plurality of fluid flow settings.
  • 4. The apparatus of claim 3 wherein: the plurality of fluid flow settings comprises a low fluid flow setting and a high fluid flow setting.
  • 5. The apparatus of claim 1 wherein: the fluid flow selector comprises at least one switch.
  • 6. The apparatus of claim 5 wherein: the at least one switch comprises a push switch.
  • 7. The apparatus of claim 5 wherein: the at least one switch comprises a membrane switch.
  • 8. The apparatus of claim 5 wherein: the at least one switch comprises a plurality of switches.
  • 9. The apparatus of claim 1 wherein: the control system is open loop with respect to the tissue.
  • 10. The apparatus of claim 1 wherein: the pump comprises a peristaltic pump.
  • 11. The apparatus of claim 10 wherein: the peristaltic pump comprises a rotary peristaltic pump.
  • 12. A bipolar electrosurgical device to treat tissue by moving along a tissue surface in a presence of radio frequency energy and a fluid provided simultaneously from the device, the device comprising: a first electrode tip spaced next to a second electrode tip, a surface portion of the first electrode tip facing the second electrode tip and a surface portion of the second electrode tip facing the first electrode tip;the first electrode tip having an electrically conductive spherical distal end;the second electrode tip having an electrically conductive spherical distal end; anda fluid outlet arrangement, the fluid outlet arrangement to expel fluid onto the electrode tips solely at locations remote from the electrode tip surface portions facing each other.
  • 13. The device of claim 12 wherein: the fluid outlet arrangement having a first fluid outlet and a second fluid outlet;the first fluid outlet to expel fluid onto the first electrode tip at a first electrode tip location remote from the surface portion of the first electrode tip facing the second electrode tip; andthe second fluid outlet to expel fluid onto the second electrode tip at a second electrode tip location remote from the surface portion of the second electrode tip facing the first electrode tip.
  • 14. The device of claim 13 wherein: the first fluid outlet to expel fluid onto the first electrode tip at a first electrode tip location remote from the surface portion of the first electrode tip facing the second electrode tip expels the fluid onto a lateral surface portion of the first electrode tip; andthe second fluid outlet to expel fluid onto the second electrode tip at a second electrode tip location remote from the surface portion of the second electrode tip facing the first electrode tip expels the fluid onto a lateral surface portion of the second electrode tip.
  • 15. The device of claim 14 wherein: the lateral surface portion of the first electrode tip comprises a semi-cylindrical surface portion having an arc of about 180 degrees; andthe lateral surface portion of the second electrode tip comprises a semi-cylindrical surface portion having an arc of about 180 degrees.
  • 16. The device of claim 14 wherein: a flat plane passes through a longitudinal axis of the first electrode tip and a longitudinal axis of the second electrode tip;the first fluid outlet is provided within a localized area of the lateral surface portion of the first electrode tip, the localized area comprising a semi-cylindrical surface portion having an arc of about 180 degrees provided equally on each side of the plane; andthe second fluid outlet is provided within a localized area of the lateral surface portion of the second electrode tip, the localized area comprising a semi-cylindrical surface portion having an arc of about 180 degrees provided equally on each side of the plane.
  • 17. The device of claim 14 wherein: a flat plane passes through a longitudinal axis of the first electrode tip and a longitudinal axis of the second electrode tip;the first fluid outlet is provided within a localized area of the lateral surface portion of the first electrode tip, the localized area comprising a semi-cylindrical surface portion having an arc of about 90 degrees provided equally on each side of the plane; andthe second fluid outlet is provided within a localized area of the lateral surface portion of the second electrode tip, the localized area comprising a semi-cylindrical surface portion having an arc of about 90 degrees provided equally on each side of the plane.
  • 18. The device of claim 14 wherein: a flat plane passes through a longitudinal axis of the first electrode tip and a longitudinal axis of the second electrode tip;the first fluid outlet is provided on the plane; andthe second fluid outlet is provided on the plane.
  • 19. The device of claim 13 wherein: the first electrode tip location remote from the surface portion of the first electrode tip facing the second electrode tip is provided by a lateral surface portion of the first electrode tip; andthe second electrode tip location remote from the surface portion of the second electrode tip facing the first electrode tip is provided by a lateral surface portion of the second electrode tip.
  • 20. The device of claim 19 wherein: the lateral surface portion of the first electrode tip comprises a semi-cylindrical surface portion having an arc of about 180 degrees; andthe lateral surface portion of the second electrode tip comprises a semi-cylindrical surface portion having an arc of about 180 degrees.
  • 21. The device of claim 13 wherein: the first fluid outlet is at least partially defined by the first electrode tip; andthe second fluid outlet is at least partially defined by the second electrode tip.
  • 22. The device of claim 13 wherein: the first fluid outlet is located proximal to the first electrode tip spherical distal end; andthe second fluid outlet is located proximal to the second electrode tip spherical distal end.
  • 23. The device of claim 13 wherein: the first electrode tip further comprises a first electrode tip fluid flow channel in fluid communication with the first fluid outlet; andthe second electrode tip further comprises a second electrode tip fluid flow channel in fluid communication with the second fluid outlet.
  • 24. The device of claim 23 wherein: the first electrode tip fluid flow channel to carry fluid expelled from the first fluid outlet distally along a length of the first electrode tip and remote from the surface portion of the first electrode tip facing the second electrode tip; andthe second electrode tip fluid flow channel to carry fluid expelled from the second fluid outlet distally along a length of the second electrode tip and remote from the surface portion of the second electrode tip facing the first electrode tip.
  • 25. The device of claim 23 wherein: the first electrode tip fluid flow channel is provided by a first electrode tip elongated recess oriented longitudinally on the first electrode tip; andthe second electrode tip fluid flow channel is provided by a second electrode tip elongated recess oriented longitudinally on the second electrode tip.
  • 26. The device of claim 25 wherein: the first fluid outlet is at least partially defined by the first electrode tip elongated recess; andthe second fluid outlet is at least partially defined by the second electrode tip elongated recess.
  • 27. The device of claim 25 wherein: the first electrode tip elongated recess terminates adjacent to the first electrode tip spherical distal end; andthe second electrode tip elongated recess terminates adjacent to the second electrode tip spherical distal end.
  • 28. The device of claim 25 wherein: the first electrode tip elongated recess terminates proximal to the first electrode tip spherical distal end; andthe second electrode tip elongated recess terminates proximal to the second electrode tip spherical distal end.
  • 29. The device of claim 13 wherein: the first electrode tip further comprises a surface having a contact angle with fluid expelled from the first fluid outlet onto the first electrode tip of less than 90 degrees; andthe second electrode tip further comprises a surface having a contact angle with fluid expelled from the second fluid outlet onto the second electrode tip of less than 90 degrees.
  • 30. The device of claim 12 wherein: the surface portion of the first electrode tip facing the second electrode tip is provided by a medial surface portion of the first electrode tip; andthe surface portion of the second electrode tip facing the first electrode tip is provided by a medial surface portion of the second electrode tip.
  • 31. The device of claim 30 wherein: the medial surface portion of the first electrode tip comprises a semi-cylindrical surface portion having an arc of about 180 degrees; andthe medial surface portion of the second electrode tip comprises a semi-cylindrical surface portion having an arc of about 180 degrees.
  • 32. The device of claim 12 wherein: the surface portion of the first electrode tip facing the second electrode tip and the surface portion of the second electrode tip facing the first electrode tip are mirror images of each other.
  • 33. The device of claim 12 wherein: the first electrode tip spherical distal end has a arc of about 180 degrees; andthe second electrode tip spherical distal end has a arc of about 180 degrees.
  • 34. The device of claim 12 wherein: the first electrode tip further comprises a first electrode tip cylindrical portion; andthe second electrode tip further comprises a second electrode tip cylindrical portion.
  • 35. The device of claim 34 wherein: the first electrode tip cylindrical portion is located proximally adjacent to the first electrode tip spherical distal end; andthe second electrode tip cylindrical portion is located proximally adjacent to the second electrode tip spherical distal end.
  • 36. The device of claim 12 wherein: the first electrode tip is provided at a distal end of a first stationary arm; andthe second electrode tip is provided at a distal end of a second stationary arm.
  • 37. The device of claim 36 wherein: the first stationary arm comprises a first shaft having a first shaft distal end, the first electrode tip extending distally beyond the first shaft distal end; andthe second stationary arm comprises a second shaft having a second shaft distal end, the second electrode tip extending distally beyond the second shaft distal end.
  • 38. The device of claim 37 wherein: the fluid outlet arrangement having a first fluid outlet and a second fluid outlet;the first shaft further comprises a first shaft distal end opening;the second shaft further comprises a second shaft distal end opening;the first fluid outlet at least partially defined by the first shaft distal end opening; andthe second fluid outlet at least partially defined by the second shaft distal end opening.
  • 39. The device of claim 37 wherein: the fluid outlet arrangement having a first fluid outlet and a second fluid outlet;the first shaft further comprises a first shaft fluid passage;the second shaft further comprises a second shaft fluid passage;the first shaft fluid passage in fluid communication with the first fluid outlet; andthe second shaft fluid passage in fluid communication with the second fluid outlet.
  • 40. A bipolar electrosurgical device to treat tissue by moving along a tissue surface in a presence of radio frequency energy and a fluid provided simultaneously from the device, the device comprising: a first electrode tip spaced next to a second electrode tip, a surface portion of the first electrode tip alongside the second electrode tip and a surface portion of the second electrode tip alongside the first electrode tip;the first electrode tip having an electrically conductive spherical distal end;the second electrode tip having an electrical conductive spherical distal end; anda fluid outlet arrangement having a first fluid outlet and a second fluid outlet; the first fluid outlet to expel fluid onto the first electrode tip at a first electrode tip location remote from the surface portion of the first electrode tip alongside the second electrode tip; andthe second fluid outlet to expel fluid onto the second electrode tip at a second electrode tip location remote from the surface portion of the second electrode tip alongside the first electrode tip.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation-in-part of U.S. patent application Ser. No. 10/488,801, filed Dec. 16, 2004, now pending, which is a U.S. national stage continuation of PCT patent application serial no. PCT/US02/28488, filed Sep. 5, 2002, which claims priority to and is a continuation-in-part of U.S. provisional application Ser. No. 60/356,390, filed Feb. 12, 2002 and No. 60/368,177, filed Mar. 27, 2002; and is a continuation-in-part of U.S. patent application Ser. No. 09/947,658, filed Sep. 5, 2001, now U.S. Pat. No. 7,115,139, which is a continuation-in-part of U.S. patent application Ser. No. 09/797,049, filed Mar. 1, 2001, now U.S. Pat. No. 6,702,810, which claims priority to U.S. provisional application Ser. No. 60/187,114, filed Mar. 6, 2000. This patent application also claims priority to and is a continuation-in-part of U.S. provisional application Ser. No. 60/630,582, filed Nov. 23, 2004.

US Referenced Citations (972)
Number Name Date Kind
623022 Johnson Apr 1899 A
1735271 Groff Nov 1929 A
1814791 Ende Jul 1931 A
2002594 Wappler et al. May 1935 A
2031682 Wappler et al. Feb 1936 A
2102270 Hyams Dec 1937 A
2275167 Bierman Mar 1942 A
2888928 Seiger Jun 1959 A
3163166 Brent et al. Dec 1964 A
3682130 Jeffers Aug 1972 A
3750650 Ruttgers Aug 1973 A
3901241 Allen, Jr. Aug 1975 A
4037590 Dohring et al. Jul 1977 A
4060088 Morrison, Jr. et al. Nov 1977 A
4116198 Roos Sep 1978 A
4244371 Farin Jan 1981 A
4276874 Wolvek et al. Jul 1981 A
4301802 Poler Nov 1981 A
4307720 Weber, Jr. Dec 1981 A
4321931 Hon Mar 1982 A
4326529 Doss et al. Apr 1982 A
4342218 Fox Aug 1982 A
4355642 Alferness Oct 1982 A
4381007 Doss Apr 1983 A
4532924 Auth et al. Aug 1985 A
4548207 Reimels Oct 1985 A
4567890 Ohta et al. Feb 1986 A
4602628 Allen, Jr. Jul 1986 A
4671274 Sorochenko Jun 1987 A
4674499 Pao Jun 1987 A
4919129 Weber, Jr. Apr 1990 A
4920982 Goldstein May 1990 A
4931047 Broadwin et al. Jun 1990 A
4932952 Wojciechowicz, Jr. Jun 1990 A
4943290 Rexroth et al. Jul 1990 A
4950232 Ruzicka et al. Aug 1990 A
4976711 Parins et al. Dec 1990 A
4985030 Melzer et al. Jan 1991 A
4998933 Eggers et al. Mar 1991 A
5009656 Reimels Apr 1991 A
5013312 Parins et al. May 1991 A
5035696 Rydell Jul 1991 A
5071419 Rydell et al. Dec 1991 A
5080660 Buelna Jan 1992 A
5122138 Manwaring Jun 1992 A
5125928 Parins et al. Jun 1992 A
5147357 Rose et al. Sep 1992 A
5151102 Kamiyama et al. Sep 1992 A
5156613 Sawyer Oct 1992 A
5167659 Ohtomo et al. Dec 1992 A
5171311 Rydell et al. Dec 1992 A
5190541 Abele et al. Mar 1993 A
5195959 Smith Mar 1993 A
5197963 Parins Mar 1993 A
5197964 Parins Mar 1993 A
5217460 Knoepfler Jun 1993 A
5234428 Kaufman Aug 1993 A
5242441 Avitall Sep 1993 A
5242442 Hirschfeld Sep 1993 A
5254117 Rigby Oct 1993 A
5269780 Roos Dec 1993 A
5269781 Hewell, III Dec 1993 A
5277696 Hagen Jan 1994 A
5281215 Milder Jan 1994 A
5281216 Klicek Jan 1994 A
5282799 Rydell Feb 1994 A
5290286 Parins Mar 1994 A
5300087 Knoepfler Apr 1994 A
5313943 Houser et al. May 1994 A
5318589 Lichtman Jun 1994 A
5322503 Desai Jun 1994 A
5330521 Cohen Jul 1994 A
5334193 Nardella Aug 1994 A
5336220 Ryan Aug 1994 A
5342357 Nardella Aug 1994 A
5342359 Rydell Aug 1994 A
5348554 Imran et al. Sep 1994 A
5364394 Mehl Nov 1994 A
5383874 Jackson et al. Jan 1995 A
5383876 Nardella Jan 1995 A
5395312 Desai Mar 1995 A
5395363 Billings et al. Mar 1995 A
5401272 Perkins Mar 1995 A
5403311 Abele et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5405376 Mulier et al. Apr 1995 A
5417672 Nita et al. May 1995 A
5417709 Slater May 1995 A
5431168 Webster, Jr. Jul 1995 A
5431649 Mulier et al. Jul 1995 A
5433708 Nichols et al. Jul 1995 A
5437662 Nardella Aug 1995 A
5437664 Cohen et al. Aug 1995 A
5441498 Perkins Aug 1995 A
5441503 Considine et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5456682 Edwards et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458596 Lax et al. Oct 1995 A
5458597 Edwards et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5462521 Brucker et al. Oct 1995 A
5472441 Edwards et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5487385 Avitall Jan 1996 A
5490819 Nicholas et al. Feb 1996 A
5500012 Brucker et al. Mar 1996 A
5514130 Baker May 1996 A
5522815 Durgin, Jr. et al. Jun 1996 A
5536267 Edwards et al. Jul 1996 A
5540562 Giter Jul 1996 A
5542928 Evans et al. Aug 1996 A
5542945 Fritzsch Aug 1996 A
5556397 Long Sep 1996 A
5558671 Yates Sep 1996 A
5562503 Ellman et al. Oct 1996 A
5562702 Huitema et al. Oct 1996 A
5562703 Desai Oct 1996 A
5564440 Swartz et al. Oct 1996 A
5569242 Lax et al. Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5573424 Poppe Nov 1996 A
5573533 Strul Nov 1996 A
5575810 Swanson et al. Nov 1996 A
5584872 LaFontaine et al. Dec 1996 A
5599346 Edwards et al. Feb 1997 A
5599350 Schulze et al. Feb 1997 A
5605539 Buelna et al. Feb 1997 A
5609151 Mulier et al. Mar 1997 A
5633578 Eggers et al. May 1997 A
5637110 Pennybacker et al. Jun 1997 A
5640955 Ockuly et al. Jun 1997 A
5643197 Brucher et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5653692 Masterson et al. Aug 1997 A
5660836 Knowlton Aug 1997 A
5676662 Fleischhacker et al. Oct 1997 A
5676693 LaFontaine Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5681294 Osborne et al. Oct 1997 A
5683366 Eggers et al. Nov 1997 A
5683384 Gough et al. Nov 1997 A
5687723 Avitall Nov 1997 A
5688270 Yates et al. Nov 1997 A
5693045 Eggers Dec 1997 A
5697281 Eggers et al. Dec 1997 A
5697536 Eggers et al. Dec 1997 A
5697882 Eggers et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5697927 Imran et al. Dec 1997 A
5709680 Yates et al. Jan 1998 A
5713896 Nardella Feb 1998 A
5718241 Ben-Haim et al. Feb 1998 A
5718701 Shai et al. Feb 1998 A
5718703 Chin Feb 1998 A
5722400 Ockuly et al. Mar 1998 A
5725524 Mulier et al. Mar 1998 A
5730127 Avitall Mar 1998 A
5735846 Panescu et al. Apr 1998 A
5743903 Stern et al. Apr 1998 A
5746739 Sutter May 1998 A
5749869 Lindenmeier et al. May 1998 A
5755717 Yates et al. May 1998 A
5755753 Knowlton May 1998 A
5766153 Eggers et al. Jun 1998 A
5766167 Eggers et al. Jun 1998 A
5785705 Baker Jul 1998 A
5785706 Bednarek Jul 1998 A
5792140 Tu et al. Aug 1998 A
5797905 Fleischman et al. Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5800413 Swartz et al. Sep 1998 A
5800482 Pomeranz et al. Sep 1998 A
5807393 Williamson et al. Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810805 Sutcu et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5817093 Williamson et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827281 Levin Oct 1998 A
5833703 Manushakian Nov 1998 A
5843019 Eggers et al. Dec 1998 A
5843021 Edwards et al. Dec 1998 A
5843078 Sharkey Dec 1998 A
5843152 Tu et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860951 Eggers et al. Jan 1999 A
5860974 Abele Jan 1999 A
5861002 Desai Jan 1999 A
5861021 Thome et al. Jan 1999 A
5868739 Lindenmeier et al. Feb 1999 A
5871469 Eggers Feb 1999 A
5871524 Knowlton Feb 1999 A
5873855 Eggers Feb 1999 A
5876398 Mulier et al. Mar 1999 A
5879348 Owens et al. Mar 1999 A
5888198 Eggers et al. Mar 1999 A
5891095 Eggers et al. Apr 1999 A
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893848 Negus et al. Apr 1999 A
5895355 Schaer Apr 1999 A
5895417 Pomeranz et al. Apr 1999 A
5897553 Mulier et al. Apr 1999 A
5902272 Eggers et al. May 1999 A
5902328 LaFontaine et al. May 1999 A
5904711 Flom et al. May 1999 A
5906613 Mulier et al. May 1999 A
5913854 Maguire et al. Jun 1999 A
5913856 Chia et al. Jun 1999 A
5919191 Lennox et al. Jul 1999 A
5919219 Knowlton Jul 1999 A
5921982 Lesh et al. Jul 1999 A
5921983 Shannon, Jr. Jul 1999 A
5925045 Reimels et al. Jul 1999 A
5935123 Edwards et al. Aug 1999 A
5944715 Goble Aug 1999 A
5948011 Knowlton Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954716 Sharkey et al. Sep 1999 A
5957919 Laufer Sep 1999 A
5964755 Edwards Oct 1999 A
5971983 Lesh Oct 1999 A
5976128 Schilling et al. Nov 1999 A
5980504 Sharkey et al. Nov 1999 A
5980516 Mulier Nov 1999 A
5989248 Tu et al. Nov 1999 A
5992418 De La Rama et al. Nov 1999 A
5993412 Deily et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6004316 Laufer Dec 1999 A
6004319 Goble et al. Dec 1999 A
6007570 Sharkey et al. Dec 1999 A
6010500 Sherman et al. Jan 2000 A
6015391 Rishton et al. Jan 2000 A
6015407 Rieb et al. Jan 2000 A
6016809 Mulier et al. Jan 2000 A
6017338 Brucker et al. Jan 2000 A
6018676 Davis et al. Jan 2000 A
6019757 Scheldrup Feb 2000 A
6024733 Eggers et al. Feb 2000 A
6027501 Goble et al. Feb 2000 A
6030379 Panescu et al. Feb 2000 A
6030381 Jones Feb 2000 A
6032077 Pomeranz Feb 2000 A
6032674 Eggers et al. Mar 2000 A
6033398 Farley et al. Mar 2000 A
6035238 Ingle et al. Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6045532 Eggers et al. Apr 2000 A
6047700 Eggers et al. Apr 2000 A
6048333 Lennox et al. Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6053912 Panescu et al. Apr 2000 A
6056744 Edwards May 2000 A
6056745 Panescu et al. May 2000 A
6056746 Goble May 2000 A
6056747 Saadat et al. May 2000 A
6059781 Yamanashi et al. May 2000 A
6063079 Hovda et al. May 2000 A
6063081 Mulier et al. May 2000 A
6066134 Eggers et al. May 2000 A
6066139 Ryan et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6068653 LaFontaine May 2000 A
6071280 Edwards et al. Jun 2000 A
6073051 Sharkey et al. Jun 2000 A
6074389 Levine et al. Jun 2000 A
6080151 Swartz et al. Jun 2000 A
6081749 Ingle et al. Jun 2000 A
6083237 Huitema et al. Jul 2000 A
6086585 Hovda et al. Jul 2000 A
6086586 Hooven Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6093186 Goble Jul 2000 A
6095149 Sharkey et al. Aug 2000 A
6096037 Mulier et al. Aug 2000 A
6099514 Sharkey et al. Aug 2000 A
6102046 Weinstein et al. Aug 2000 A
6105581 Eggers et al. Aug 2000 A
6109268 Thapliyal et al. Aug 2000 A
6113596 Hooven Sep 2000 A
6113597 Eggers et al. Sep 2000 A
6117109 Eggers et al. Sep 2000 A
6122549 Sharkey et al. Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126682 Sharkey et al. Oct 2000 A
6135999 Fanton et al. Oct 2000 A
6141576 Littmann et al. Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6159194 Eggers et al. Dec 2000 A
6159208 Hovda et al. Dec 2000 A
6165169 Panescu et al. Dec 2000 A
6165175 Wampler et al. Dec 2000 A
6168594 LaFontaine et al. Jan 2001 B1
6171275 Webster, Jr. Jan 2001 B1
6174308 Goble et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6179824 Eggers et al. Jan 2001 B1
6179836 Eggers et al. Jan 2001 B1
6183469 Thapliyal et al. Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6190384 Ouchi Feb 2001 B1
6193715 Wrublewski et al. Feb 2001 B1
6193716 Shannon, Jr. Feb 2001 B1
6203542 Ellsberry et al. Mar 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210406 Webster Apr 2001 B1
6210410 Farin et al. Apr 2001 B1
6210411 Hofmann et al. Apr 2001 B1
6212426 Swanson Apr 2001 B1
6216704 Ingle et al. Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6221039 Durgin et al. Apr 2001 B1
6221069 Daikuzono Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6224593 Ryan et al. May 2001 B1
6226554 Tu et al. May 2001 B1
6228078 Eggers et al. May 2001 B1
6228082 Baker et al. May 2001 B1
6231591 Desai May 2001 B1
6235020 Cheng et al. May 2001 B1
6236891 Ingle et al. May 2001 B1
6238387 Miller, III May 2001 B1
6238391 Olsen et al. May 2001 B1
6238393 Mulier et al. May 2001 B1
6241753 Knowlton Jun 2001 B1
6241754 Swanson et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6254600 Willink et al. Jul 2001 B1
6258086 Ashley et al. Jul 2001 B1
6258087 Edwards et al. Jul 2001 B1
6261311 Sharkey et al. Jul 2001 B1
6264650 Hovda et al. Jul 2001 B1
6264651 Underwood et al. Jul 2001 B1
6264652 Eggers et al. Jul 2001 B1
6264654 Swartz et al. Jul 2001 B1
6266551 Osadchy et al. Jul 2001 B1
6277112 Underwood et al. Aug 2001 B1
6280440 Gocho Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
6283988 Laufer et al. Sep 2001 B1
6283989 Laufer et al. Sep 2001 B1
6290715 Sharkey et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6293945 Parins et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6296638 Davison et al. Oct 2001 B1
6296640 Wampler et al. Oct 2001 B1
6299633 Laufer Oct 2001 B1
6302903 Mulier et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6309387 Eggers et al. Oct 2001 B1
6311090 Knowlton Oct 2001 B1
6312408 Eggers et al. Nov 2001 B1
6312430 Wilson et al. Nov 2001 B1
6315777 Comben Nov 2001 B1
6322549 Eggers et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6327505 Medhkour et al. Dec 2001 B1
6328735 Curley et al. Dec 2001 B1
6328736 Mulier et al. Dec 2001 B1
6336926 Goble Jan 2002 B1
6350262 Ashley Feb 2002 B1
6350276 Knowlton Feb 2002 B1
6352533 Ellman et al. Mar 2002 B1
6355032 Hovda et al. Mar 2002 B1
6358245 Edwards et al. Mar 2002 B1
6358248 Mulier et al. Mar 2002 B1
6363937 Hovda et al. Apr 2002 B1
6371956 Wilson et al. Apr 2002 B1
6379350 Sharkey et al. Apr 2002 B1
6379351 Thapliyal et al. Apr 2002 B1
6391025 Weinstein et al. May 2002 B1
6391028 Fanton et al. May 2002 B1
6402742 Blewett et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
6409723 Edwards Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6416507 Eggers et al. Jul 2002 B1
6416508 Eggers et al. Jul 2002 B1
6419509 Goble et al. Jul 2002 B2
6425877 Edwards Jul 2002 B1
6432103 Ellsberry et al. Aug 2002 B1
6440130 Mulier et al. Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6451017 Moutafis et al. Sep 2002 B1
6458123 Brucker et al. Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6461350 Underwood et al. Oct 2002 B1
6461354 Olsen et al. Oct 2002 B1
6461357 Sharkey et al. Oct 2002 B1
6464695 Hovda et al. Oct 2002 B2
6468270 Hovda et al. Oct 2002 B1
6468274 Alleyne et al. Oct 2002 B1
6468275 Wampler et al. Oct 2002 B1
6471698 Edwards et al. Oct 2002 B1
6475216 Mulier et al. Nov 2002 B2
6478793 Cosman et al. Nov 2002 B1
6482202 Goble et al. Nov 2002 B1
6485490 Wampler et al. Nov 2002 B2
6488680 Francischelli et al. Dec 2002 B1
6493589 Medhkour et al. Dec 2002 B1
6494902 Hoey et al. Dec 2002 B2
6497704 Ein-Gal Dec 2002 B2
6497705 Comben Dec 2002 B2
6506189 Rittman, III et al. Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6517536 Hooven et al. Feb 2003 B2
6526320 Mitchell Feb 2003 B2
6537248 Mulier et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6539265 Medhkour et al. Mar 2003 B2
6558379 Batchelor et al. May 2003 B1
6558385 McClurken et al. May 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6577902 Laufer et al. Jun 2003 B1
6579288 Swanson et al. Jun 2003 B1
6585732 Mulier et al. Jul 2003 B2
6602248 Sharps et al. Aug 2003 B1
6603988 Dowlatshahi Aug 2003 B2
6610060 Mulier et al. Aug 2003 B2
6613048 Mulier et al. Sep 2003 B2
6623515 Mulier et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6635034 Cosmescu Oct 2003 B1
6645202 Pless et al. Nov 2003 B1
6666862 Jain et al. Dec 2003 B2
6669692 Nelson et al. Dec 2003 B1
6676660 Wampler Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6682501 Nelson et al. Jan 2004 B1
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685700 Behl et al. Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685704 Greep Feb 2004 B2
6689129 Baker Feb 2004 B2
6689131 McClurken Feb 2004 B2
6692489 Heim et al. Feb 2004 B1
6694984 Habib Feb 2004 B2
6695837 Howell Feb 2004 B2
6695840 Schulze Feb 2004 B2
6699240 Francischelli Mar 2004 B2
6699242 Heggeness Mar 2004 B2
6699244 Carranza et al. Mar 2004 B2
6699268 Kordis et al. Mar 2004 B2
6702810 McClurken et al. Mar 2004 B2
6702812 Cosmescu Mar 2004 B2
6706039 Mulier et al. Mar 2004 B2
6712074 Edwards et al. Mar 2004 B2
6712811 Underwood et al. Mar 2004 B2
6712813 Ellman et al. Mar 2004 B2
6712816 Hung et al. Mar 2004 B2
6716211 Mulier et al. Apr 2004 B2
6719754 Underwood et al. Apr 2004 B2
6723094 Desinger Apr 2004 B1
6726683 Shaw Apr 2004 B1
6726684 Woloszko et al. Apr 2004 B1
6726686 Buysse et al. Apr 2004 B2
6730081 Desai May 2004 B1
6733496 Sharkey et al. May 2004 B2
6733498 Paton et al. May 2004 B2
6733501 Levine May 2004 B2
6736810 Hoey et al. May 2004 B2
6740058 Lal et al. May 2004 B2
6740079 Eggers et al. May 2004 B1
6740082 Shadduck May 2004 B2
6740084 Ryan May 2004 B2
6740102 Hess et al. May 2004 B2
6743197 Edwards Jun 2004 B1
6743229 Buysse et al. Jun 2004 B2
6743230 Lutze et al. Jun 2004 B2
6746447 Davison et al. Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6755827 Mulier et al. Jun 2004 B2
6757565 Sharkey et al. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6761718 Madsen Jul 2004 B2
6764487 Mulier et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6766817 da Silva Jul 2004 B2
6770070 Balbierz Aug 2004 B1
6770071 Woloszko et al. Aug 2004 B2
6770072 Truckai et al. Aug 2004 B1
6772012 Ricart et al. Aug 2004 B2
6772013 Ingle et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6780177 Shafirstein et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6786906 Cobb Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
6800077 Mucko et al. Oct 2004 B1
6802842 Ellman et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
6813520 Truckai et al. Nov 2004 B2
6814714 Novak et al. Nov 2004 B1
6814731 Swanson Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6827713 Bek et al. Dec 2004 B2
6827725 Batchelor et al. Dec 2004 B2
6832996 Woloszko Dec 2004 B2
6832997 Uchida et al. Dec 2004 B2
6835195 Schulze et al. Dec 2004 B2
6836688 Ingle et al. Dec 2004 B2
6843789 Goble Jan 2005 B2
6845264 Skladnev et al. Jan 2005 B1
6849073 Hoey et al. Feb 2005 B2
6855145 Ciarrocca Feb 2005 B2
6858028 Mulier et al. Feb 2005 B2
6860882 Battles et al. Mar 2005 B2
6863669 Spitzer Mar 2005 B2
6864686 Novak et al. Mar 2005 B2
6881214 Cosman et al. Apr 2005 B2
6882885 Levy, Jr. et al. Apr 2005 B2
6887237 McGaffigan May 2005 B2
6887240 Lands et al. May 2005 B1
6893435 Goble May 2005 B2
6893440 Durgin et al. May 2005 B2
6896672 Eggers et al. May 2005 B1
6896674 Woloszko et al. May 2005 B1
6899712 Moutafis et al. May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6905499 Mucko et al. Jun 2005 B1
6911019 Mulier et al. Jun 2005 B2
6915806 Pacek et al. Jul 2005 B2
6918404 Dias da Silva Jul 2005 B2
6921398 Carmel et al. Jul 2005 B2
6921399 Carmel et al. Jul 2005 B2
6923803 Goble Aug 2005 B2
6923805 LaFontaine et al. Aug 2005 B1
6926706 Sealfon Aug 2005 B1
6926716 Baker et al. Aug 2005 B2
6926717 Garito et al. Aug 2005 B1
6929640 Underwood et al. Aug 2005 B1
6929641 Goble et al. Aug 2005 B2
6929642 Xiao et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6929645 Battles et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932815 Sutter Aug 2005 B2
6942661 Swanson Sep 2005 B2
6949096 Davison et al. Sep 2005 B2
6949098 Mulier et al. Sep 2005 B2
6951559 Greep Oct 2005 B1
6953461 McClurken et al. Oct 2005 B2
6960204 Eggers et al. Nov 2005 B2
6960207 Vanney et al. Nov 2005 B2
6960210 Lands et al. Nov 2005 B2
6962589 Mulier et al. Nov 2005 B2
6964274 Ryan et al. Nov 2005 B1
6964661 Rioux et al. Nov 2005 B2
6966907 Goble Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6971394 Sliwa, Jr. et al. Dec 2005 B2
6974452 Gille et al. Dec 2005 B1
6974453 Woloszko et al. Dec 2005 B2
6979332 Adams Dec 2005 B2
6984231 Goble et al. Jan 2006 B2
6986769 Nelson et al. Jan 2006 B2
6991631 Woloszko et al. Jan 2006 B2
7001380 Goble Feb 2006 B2
7001382 Gallo, Sr. Feb 2006 B2
7004941 Tvinnereim et al. Feb 2006 B2
7004942 Laird et al. Feb 2006 B2
7008419 Shadduck Mar 2006 B2
7008421 Daniel et al. Mar 2006 B2
7033348 Alfano et al. Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7041096 Malis et al. May 2006 B2
7041101 Eggers May 2006 B2
7041102 Truckai et al. May 2006 B2
7052494 Goble et al. May 2006 B2
7060064 Allen et al. Jun 2006 B2
7063670 Sampson et al. Jun 2006 B2
7066586 da Silva Jun 2006 B2
7066932 Morgan et al. Jun 2006 B1
7066936 Ryan Jun 2006 B2
7070596 Woloszko et al. Jul 2006 B1
7070604 Garito et al. Jul 2006 B1
7074217 Strul et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7083601 Cosmescu Aug 2006 B1
7087051 Bourne et al. Aug 2006 B2
7087053 Vanney Aug 2006 B2
7094215 Davison et al. Aug 2006 B2
7101387 Garabedian et al. Sep 2006 B2
7104986 Hovda et al. Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
7115139 McClurken et al. Oct 2006 B2
7125406 Given Oct 2006 B2
7147634 Nesbitt Dec 2006 B2
7147635 Ciarrocca Dec 2006 B2
7147637 Goble Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150746 DeCesare et al. Dec 2006 B2
7150747 McDonald et al. Dec 2006 B1
7150748 Ebbutt et al. Dec 2006 B2
7153300 Goble Dec 2006 B2
7156845 Mulier et al. Jan 2007 B2
7166105 Mulier et al. Jan 2007 B2
7166106 Bartel et al. Jan 2007 B2
7169143 Eggers et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7247155 Hoey et al. Jul 2007 B2
7261711 Mulier et al. Aug 2007 B2
7309325 Mulier et al. Dec 2007 B2
7311708 McClurken Dec 2007 B2
7322974 Swoyer et al. Jan 2008 B2
7361175 Suslov Apr 2008 B2
7364579 Mulier et al. Apr 2008 B2
20010014819 Ingle et al. Aug 2001 A1
20010020167 Woloszko et al. Sep 2001 A1
20010023365 Medhkour et al. Sep 2001 A1
20010025178 Mulier et al. Sep 2001 A1
20010032002 McClurken et al. Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20010041921 Mulier et al. Nov 2001 A1
20010051802 Woloszko et al. Dec 2001 A1
20010051804 Mulier et al. Dec 2001 A1
20020002393 Mitchell Jan 2002 A1
20020010463 Mulier et al. Jan 2002 A1
20020013582 Mulier et al. Jan 2002 A1
20020016589 Swartz et al. Feb 2002 A1
20020019628 Comben Feb 2002 A1
20020022870 Truckai et al. Feb 2002 A1
20020026186 Woloszko et al. Feb 2002 A1
20020026187 Swanson Feb 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020035361 Houser et al. Mar 2002 A1
20020035387 Mulier et al. Mar 2002 A1
20020049438 Sharkey et al. Apr 2002 A1
20020049439 Mulier et al. Apr 2002 A1
20020049483 Knowlton Apr 2002 A1
20020058933 Christopherson et al. May 2002 A1
20020058935 Hoey et al. May 2002 A1
20020062123 McClurken et al. May 2002 A1
20020095150 Goble Jul 2002 A1
20020095151 Dahla et al. Jul 2002 A1
20020095152 Ciarrocca et al. Jul 2002 A1
20020099366 Dahla et al. Jul 2002 A1
20020115991 Edwards Aug 2002 A1
20020115992 Utley et al. Aug 2002 A1
20020120259 Lettice et al. Aug 2002 A1
20020120260 Morris et al. Aug 2002 A1
20020120261 Morris et al. Aug 2002 A1
20020128650 McClurken Sep 2002 A1
20020133148 Daniel et al. Sep 2002 A1
20020151884 Hoey et al. Oct 2002 A1
20020156511 Habib Oct 2002 A1
20020161364 Mulier et al. Oct 2002 A1
20020169446 Mulier et al. Nov 2002 A1
20020177846 Mulier et al. Nov 2002 A1
20020183733 Mulier et al. Dec 2002 A1
20020188284 To et al. Dec 2002 A1
20020193851 Silverman et al. Dec 2002 A1
20020198524 Mulier et al. Dec 2002 A1
20030004510 Wham et al. Jan 2003 A1
20030014050 Sharkey et al. Jan 2003 A1
20030032954 Carranza et al. Feb 2003 A1
20030032955 Mulier et al. Feb 2003 A1
20030073989 Hoey et al. Apr 2003 A1
20030073993 Ciarrocca Apr 2003 A1
20030114850 McClurken et al. Jun 2003 A1
20030181902 Mulier et al. Sep 2003 A1
20030204185 Sherman et al. Oct 2003 A1
20030216733 McClurken et al. Nov 2003 A1
20040015162 McGaffigan Jan 2004 A1
20040015163 Buysse et al. Jan 2004 A1
20040015215 Fredricks et al. Jan 2004 A1
20040015216 DeSisto Jan 2004 A1
20040015218 Finch et al. Jan 2004 A1
20040019350 O'Brien et al. Jan 2004 A1
20040024395 Ellman et al. Feb 2004 A1
20040024396 Eggers Feb 2004 A1
20040024398 Hovda et al. Feb 2004 A1
20040024399 Sharps et al. Feb 2004 A1
20040030327 Golan Feb 2004 A1
20040030328 Eggers et al. Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040030333 Goble Feb 2004 A1
20040034340 Biscup Feb 2004 A1
20040034346 Stern et al. Feb 2004 A1
20040034349 Kirwan, Jr. et al. Feb 2004 A1
20040034400 Ingle et al. Feb 2004 A1
20040039429 Daniel et al. Feb 2004 A1
20040044341 Truckai et al. Mar 2004 A1
20040054363 Vaska et al. Mar 2004 A1
20040054365 Goble Mar 2004 A1
20040054366 Davison et al. Mar 2004 A1
20040054369 Nelson et al. Mar 2004 A1
20040054370 Given Mar 2004 A1
20040059328 Daniel et al. Mar 2004 A1
20040059363 Alvarez et al. Mar 2004 A1
20040064023 Ryan et al. Apr 2004 A1
20040064137 Pellegrino et al. Apr 2004 A1
20040068306 Shadduck Apr 2004 A1
20040068307 Goble Apr 2004 A1
20040073205 Treat et al. Apr 2004 A1
20040073208 Sutter Apr 2004 A1
20040078034 Acker et al. Apr 2004 A1
20040078037 Batchelor et al. Apr 2004 A1
20040078038 Desinger et al. Apr 2004 A1
20040082946 Malis et al. Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040087937 Eggers et al. May 2004 A1
20040087939 Eggers et al. May 2004 A1
20040087940 Jahns et al. May 2004 A1
20040087943 Dycus et al. May 2004 A1
20040088029 Yamamoto May 2004 A1
20040092925 Rizoiu et al. May 2004 A1
20040092926 Hoey et al. May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040102770 Goble May 2004 A1
20040102824 Sharkey et al. May 2004 A1
20040111136 Sharkey et al. Jun 2004 A1
20040111137 Sharkey et al. Jun 2004 A1
20040116923 Desinger Jun 2004 A1
20040122420 Amoah Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040122494 Eggers et al. Jun 2004 A1
20040138654 Goble Jul 2004 A1
20040138655 McClurken et al. Jul 2004 A1
20040138657 Bourne et al. Jul 2004 A1
20040143257 Fuimaono Jul 2004 A1
20040143258 Fuimaono Jul 2004 A1
20040143259 Mulier et al. Jul 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040147902 McGuckin, Jr. et al. Jul 2004 A1
20040147916 Baker Jul 2004 A1
20040147922 Keppel Jul 2004 A1
20040147925 Buysse et al. Jul 2004 A1
20040162552 McClurken Aug 2004 A1
20040162554 Lee et al. Aug 2004 A1
20040162557 Tetzlaff et al. Aug 2004 A1
20040162572 Sauer Aug 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040172111 Hijii et al. Sep 2004 A1
20040176760 Qiu Sep 2004 A1
20040176761 Desinger Sep 2004 A1
20040176762 Lawes et al. Sep 2004 A1
20040181219 Goble et al. Sep 2004 A1
20040181250 Adams et al. Sep 2004 A1
20040186469 Woloszko et al. Sep 2004 A1
20040186470 Goble et al. Sep 2004 A1
20040186535 Knowlton Sep 2004 A1
20040193148 Wham et al. Sep 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040193152 Sutton et al. Sep 2004 A1
20040193211 Voegele et al. Sep 2004 A1
20040199156 Rioux et al. Oct 2004 A1
20040199160 Slater Oct 2004 A1
20040206365 Knowlton Oct 2004 A1
20040210213 Fuimaono et al. Oct 2004 A1
20040210214 Knowlton Oct 2004 A1
20040215181 Christopherson et al. Oct 2004 A1
20040215182 Lee Oct 2004 A1
20040215183 Hoey et al. Oct 2004 A1
20040215184 Eggers et al. Oct 2004 A1
20040215185 Truckai et al. Oct 2004 A1
20040215188 Mulier et al. Oct 2004 A1
20040215235 Jackson et al. Oct 2004 A1
20040215296 Ganz et al. Oct 2004 A1
20040220561 Kirwan, Jr. et al. Nov 2004 A1
20040220562 Garabedian et al. Nov 2004 A1
20040225288 Buysse et al. Nov 2004 A1
20040230190 Dahla et al. Nov 2004 A1
20040236322 Mulier et al. Nov 2004 A1
20040236324 Muller et al. Nov 2004 A1
20040243125 Dycus et al. Dec 2004 A1
20040243163 Casiano et al. Dec 2004 A1
20040249371 Dycus et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040249425 Roy et al. Dec 2004 A1
20040260279 Goble et al. Dec 2004 A1
20040260280 Sartor Dec 2004 A1
20040260368 Ingle et al. Dec 2004 A1
20050010205 Hovda et al. Jan 2005 A1
20050010212 McClurken et al. Jan 2005 A1
20050015085 McClurken et al. Jan 2005 A1
20050015086 Platt Jan 2005 A1
20050015130 Gill Jan 2005 A1
20050021025 Buysse et al. Jan 2005 A1
20050021026 Baily Jan 2005 A1
20050021027 Shields et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050033292 Teitelbaum et al. Feb 2005 A1
20050038471 Chan et al. Feb 2005 A1
20050043728 Ciarrocca Feb 2005 A1
20050049583 Swanson Mar 2005 A1
20050049586 Daniel et al. Mar 2005 A1
20050055019 Skarda Mar 2005 A1
20050055020 Skarda Mar 2005 A1
20050059966 McClurken et al. Mar 2005 A1
20050070888 Dimatteo et al. Mar 2005 A1
20050070891 DeSisto Mar 2005 A1
20050070894 McClurken Mar 2005 A1
20050070896 Daniel et al. Mar 2005 A1
20050080410 Rioux et al. Apr 2005 A1
20050080413 Canady Apr 2005 A1
20050085804 McGaffigan Apr 2005 A1
20050085809 Mucko et al. Apr 2005 A1
20050085880 Truckai et al. Apr 2005 A1
20050090816 McClurken et al. Apr 2005 A1
20050090819 Goble Apr 2005 A1
20050096649 Adams May 2005 A1
20050096651 Truckai et al. May 2005 A1
20050101951 Wham et al. May 2005 A1
20050101952 Lands et al. May 2005 A1
20050101965 Ryan May 2005 A1
20050107778 Rioux et al. May 2005 A1
20050107779 Ellman et al. May 2005 A1
20050107784 Moses et al. May 2005 A1
20050107786 Canady May 2005 A1
20050113820 Goble et al. May 2005 A1
20050113825 Cosmescu May 2005 A1
20050124987 Goble Jun 2005 A1
20050130929 Boyd Jun 2005 A1
20050131402 Ciarrocca et al. Jun 2005 A1
20050137590 Lawes et al. Jun 2005 A1
20050137662 Morris et al. Jun 2005 A1
20050143729 Francischelli et al. Jun 2005 A1
20050154385 Heim et al. Jul 2005 A1
20050154433 Levy, Jr. et al. Jul 2005 A1
20050159739 Paul et al. Jul 2005 A1
20050159740 Paul et al. Jul 2005 A1
20050159778 Heinrich et al. Jul 2005 A1
20050159797 Chandran et al. Jul 2005 A1
20050165444 Hart et al. Jul 2005 A1
20050171524 Stern et al. Aug 2005 A1
20050171526 Rioux et al. Aug 2005 A1
20050171532 Ciarrocca Aug 2005 A1
20050171533 Latterell et al. Aug 2005 A1
20050171534 Habib Aug 2005 A1
20050171583 Mosher et al. Aug 2005 A1
20050177150 Amoah et al. Aug 2005 A1
20050177209 Leung et al. Aug 2005 A1
20050187543 Underwood et al. Aug 2005 A1
20050187599 Sharkey et al. Aug 2005 A1
20050203503 Edwards et al. Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20050209591 Sutter Sep 2005 A1
20050209621 Gordon et al. Sep 2005 A1
20050222602 Sutter et al. Oct 2005 A1
20050222611 WeitKamp Oct 2005 A1
20050228372 Truckai et al. Oct 2005 A1
20050245918 Sliwa, Jr. et al. Nov 2005 A1
20050245921 Strul et al. Nov 2005 A1
20050245922 Goble Nov 2005 A1
20050245923 Christopherson et al. Nov 2005 A1
20050250477 Eastwood et al. Nov 2005 A1
20050251128 Amoah Nov 2005 A1
20050251134 Woloszko et al. Nov 2005 A1
20050256519 Goble et al. Nov 2005 A1
20050261676 Hall et al. Nov 2005 A1
20050261677 Hall et al. Nov 2005 A1
20050267465 Hillier et al. Dec 2005 A1
20050267467 Paul et al. Dec 2005 A1
20050267468 Truckai et al. Dec 2005 A1
20050267469 Blocher Dec 2005 A1
20050273092 G. et al. Dec 2005 A1
20050273097 Ryan Dec 2005 A1
20050277915 DeCesare et al. Dec 2005 A1
20050277916 DeCesare et al. Dec 2005 A1
20050277917 Garito et al. Dec 2005 A1
20050283147 Yachi Dec 2005 A1
20050283148 Janssen et al. Dec 2005 A1
20050283149 Thorne et al. Dec 2005 A1
20050283150 Moutafis et al. Dec 2005 A1
20050283151 Ebbutt et al. Dec 2005 A1
20050288661 Sauvageau et al. Dec 2005 A1
20050288665 Woloszko Dec 2005 A1
20060004356 Bilski et al. Jan 2006 A1
20060009760 Mulier et al. Jan 2006 A1
20060009762 Whayne Jan 2006 A1
20060015097 Mulier et al. Jan 2006 A1
20060020265 Ryan Jan 2006 A1
20060025765 Landman et al. Feb 2006 A1
20060025766 Heinrich et al. Feb 2006 A1
20060030912 Eggers et al. Feb 2006 A1
20060036235 Swoyer et al. Feb 2006 A1
20060036237 Davison et al. Feb 2006 A1
20060036239 Canady Feb 2006 A1
20060041254 Francischelli et al. Feb 2006 A1
20060041255 Eggers et al. Feb 2006 A1
20060047275 Goble Mar 2006 A1
20060047280 Goble et al. Mar 2006 A1
20060047331 Lax et al. Mar 2006 A1
20060052770 Mulier et al. Mar 2006 A1
20060064085 Schechter et al. Mar 2006 A1
20060064101 Arramon Mar 2006 A1
20060074411 Carmel et al. Apr 2006 A1
20060074414 Mulier et al. Apr 2006 A1
20060079872 Eggleston Apr 2006 A1
20060079888 Mulier et al. Apr 2006 A1
20060084968 Truckai et al. Apr 2006 A1
20060095026 Ricart et al. May 2006 A1
20060095031 Ormsby May 2006 A1
20060095034 Garito et al. May 2006 A1
20060095075 Burkinshaw et al. May 2006 A1
20060095103 Eggers et al. May 2006 A1
20060100619 McClurken et al. May 2006 A1
20060106376 Godara et al. May 2006 A1
20060106379 O'Brien et al. May 2006 A1
20060111705 Janzen et al. May 2006 A1
20060111709 Goble et al. May 2006 A1
20060111710 Goble et al. May 2006 A1
20060111711 Goble May 2006 A1
20060111741 Nardella May 2006 A1
20060116675 McClurken et al. Jun 2006 A1
20060122593 Jun et al. Jun 2006 A1
20060129145 Woloszko et al. Jun 2006 A1
20060129185 Paternuosto Jun 2006 A1
20060142757 Daniel et al. Jun 2006 A1
20060149225 McClurken Jul 2006 A1
20060167446 Pozzato Jul 2006 A1
20060167449 Mulier et al. Jul 2006 A1
20060167451 Cropper Jul 2006 A1
20060178667 Sartor et al. Aug 2006 A1
20060178668 Albritton, IV Aug 2006 A1
20060178670 Woloszko et al. Aug 2006 A1
20060178699 Surti Aug 2006 A1
20060184164 Malis et al. Aug 2006 A1
20060184167 Vaska et al. Aug 2006 A1
20060189977 Allen et al. Aug 2006 A1
20060189979 Esch et al. Aug 2006 A1
20060195079 Eberl Aug 2006 A1
20060200123 Ryan Sep 2006 A1
20060217700 Garito et al. Sep 2006 A1
20060217701 Young et al. Sep 2006 A1
20060217707 Daniel et al. Sep 2006 A1
20060224154 Shadduck et al. Oct 2006 A1
20060235286 Stone et al. Oct 2006 A1
20060235377 Earley et al. Oct 2006 A1
20060235379 McClurken et al. Oct 2006 A1
20060241577 Balbierz et al. Oct 2006 A1
20060241587 Heim et al. Oct 2006 A1
20060241588 Heim et al. Oct 2006 A1
20060241589 Heim et al. Oct 2006 A1
20060247614 Sampson et al. Nov 2006 A1
20060259025 Dahla Nov 2006 A1
20060259031 Carmel et al. Nov 2006 A1
20060259070 Livneh Nov 2006 A1
20060264927 Ryan Nov 2006 A1
20060264929 Goble et al. Nov 2006 A1
20060264931 Chapman et al. Nov 2006 A1
20060271033 Ein-Gal Nov 2006 A1
20060271036 Garabedian et al. Nov 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20060276783 Cosmescu Dec 2006 A1
20060276785 Asahara et al. Dec 2006 A1
20070000501 Wert et al. Jan 2007 A1
20070010812 Mittelstein et al. Jan 2007 A1
20070016182 Lipson et al. Jan 2007 A1
20070049920 McClurken et al. Mar 2007 A1
20070093808 Mulier et al. Apr 2007 A1
20070118114 Mulier et al. May 2007 A1
20070208332 Mulier et al. Sep 2007 A1
20080015563 Hoey et al. Jan 2008 A1
20080071270 Desinger et al. Mar 2008 A1
Foreign Referenced Citations (34)
Number Date Country
1 007 960 May 1957 DE
0 175 595 Mar 1986 EP
0895756 Feb 1999 EP
1 095 627 May 2001 EP
1 157 666 Nov 2001 EP
2 235 669 Jan 1975 FR
57-117843 Jul 1982 JP
5-092009 Apr 1993 JP
7-124245 May 1995 JP
WO 9003152 Apr 1990 WO
WO 9402077 Feb 1994 WO
WO 9426228 Nov 1994 WO
WO 9505781 Mar 1995 WO
WO 9509570 Apr 1995 WO
WO 9517222 Jun 1995 WO
WO 9634571 Nov 1996 WO
WO 9705829 Feb 1997 WO
WO 9716127 May 1997 WO
WO 9814131 Apr 1998 WO
WO 9838932 Sep 1998 WO
WO 9903414 Jan 1999 WO
WO 9920213 Apr 1999 WO
WO 9958070 Nov 1999 WO
WO 9966850 Dec 1999 WO
WO 0078240 Dec 2000 WO
WO 0126570 Apr 2001 WO
WO 0128444 Apr 2001 WO
WO 0135845 May 2001 WO
WO 0160273 Aug 2001 WO
WO 0166026 Sep 2001 WO
WO 0180757 Nov 2001 WO
WO 2005122938 Dec 2005 WO
WO 2006062916 Jun 2006 WO
WO 2006062939 Jun 2006 WO
Related Publications (1)
Number Date Country
20060149225 A1 Jul 2006 US
Provisional Applications (4)
Number Date Country
60356390 Feb 2002 US
60368177 Mar 2002 US
60187114 Mar 2000 US
60630582 Nov 2004 US
Continuations (1)
Number Date Country
Parent PCT/US02/28488 Sep 2002 US
Child 10488801 US
Continuation in Parts (3)
Number Date Country
Parent 10488801 Dec 2004 US
Child 11274908 US
Parent 09947658 Sep 2001 US
Child PCT/US02/28488 US
Parent 09797049 Mar 2001 US
Child 09947658 US