Fluid-assisted electrosurgical scissors and methods

Information

  • Patent Grant
  • 8475455
  • Patent Number
    8,475,455
  • Date Filed
    Tuesday, October 28, 2003
    20 years ago
  • Date Issued
    Tuesday, July 2, 2013
    10 years ago
Abstract
An electrosurgical scissors comprising an end effector comprising a first blade member and a second blade member, the first blade member and the second blade member pivotally connected; an electrical connector configured to couple the scissors to a power source; and a fluid passage in fluid communication with at least one fluid outlet.
Description

This application is being filed on 28 Oct. 2003 as a PCT International Patent application in the name of TissueLink Medical, Inc. (a U.S. national corporation), applicant for the designation of all countries except the US, and Michael E. McClurken, Roger D. Greeley, and John W. Berry (all US citizens), applicants for the designation of the US only.


FIELD

This invention relates generally to the field of medical devices, systems and methods for use upon a body during surgery. More particularly, the invention relates to electrosurgical devices, systems and methods for use upon tissues of a human body during surgery, particularly open surgery and minimally invasive surgery such as laparoscopic surgery.


BACKGROUND

As is well known in electrosurgery, with a monopolar device configuration, electrical power is delivered from a power source to an active terminal provided with the device. The electrical energy from the device then is passed through the patient generally to a large surface, electrically dispersive ground pad, often referred to as the return terminal, located on the back or other suitable anatomical location of the patient, and then back to the power source. Conversely, bipolar devices include both the active and return electrodes on the device. Electrical current flows from the active electrode generally through localized tissue and then to the return electrode and back to the power source.


One often cited advantage of bipolar devices as compared to monopolar devices is the elimination of electrical current flowing through the patient to a ground pad. However, devices such as bipolar scissors tend to be fairly complex in attempting to electrically isolate the active electrical terminal (pole) from the other return electrical terminal (pole). Furthermore, as disclosed in U.S. Pat. No. 5,658,281 in the name of Heard entitled “Bipolar Electrosurgical Scissors and Method Of Manufacture”, one of the advantages of monopolar electrosurgical tools is that the surgeon can apply electrosurgical current whenever the conductive portion of the tool is in electrical contact with the patient. Thus, a surgeon may operate with monopolar electrosurgical tools from many different angles. In contrast, bipolar tools suffer from the drawback that the surgeon must carefully position the tool to ensure that both electrical poles are in electrical contact with the patient in order to apply electrosurgical current. This may limit the range of motion and the angle from which the surgeon can effectively use the bipolar tool.


However, with dry tip electrosurgical devices, both monopolar and bipolar, the temperature of tissue being treated may rise significantly higher than 100° C., possibly resulting in tissue desiccation, tissue sticking to the electrodes, tissue perforation, char formation and smoke generation.


One attempt with monopolar scissors, in order to restrict the electric current flow through the patient, has been to decrease the size of the active electrode to only a portion of the confronting (shearing) surfaces. In this manner, the chance that a surgeon may inadvertently conduct current into and burn surrounding tissue is also reduced. One such solution, as disclosed in U.S. Pat. No. 5,827,281 in the name of Levin entitled “Insulated Surgical Scissors,” is to entirely cover the pair of opposing cutting blades with an electrically and thermally insulative material except along corresponding segments of the confronting surfaces. Thus, this '281 patent does not recognize any benefit to providing electrically active surfaces on the pair of opposing cutting blades other than certain segments of the confronting surfaces and aims to prevent such. However, the need for this insulative material also increases the complexity of the scissors.


However, the teachings of the U.S. Pat. No. 5,827,281 patent are somewhat in contrast to the U.S. Pat. No. 5,658,281 patent. The U.S. Pat. No. 5,658,281 patent discloses that it would be desirable to allow surgeons to use the exterior surfaces of the scissors to coagulate tissue. However, the U.S. Pat. No. 5,658,281 patent does not address how to reduce the burning of surrounding tissue addressed by the U.S. Pat. No. 5,827,281 patent, nor any other concerns of tissue desiccation, tissue sticking to the electrodes, coagulum build-up on the electrodes, tissue perforation, char formation and smoke generation which may occur with use of dry electrosurgical devices.


In light of the above, it is an object of the invention to provide devices, systems and methods which overcome the limitations of the art.


SUMMARY OF THE INVENTION

According to the present invention, radio frequency electrical power from a device is coupled to tissue through a coupling of fluid, also provided from the device, to inhibit such undesirable effects of tissue desiccation, sticking to the device, coagulum build-up on the device, tissue perforation, char formation and smoke generation. Specifically with regards to inhibiting tissue desiccation, one key factor is to inhibit the tissue temperature from exceeding 100° C. where the intracellular water may boil away, leaving the tissue extremely dry and much less electrically conductive.


According to one embodiment, electrosurgical scissors are provided comprising an end effector comprising a first blade member and a second blade member with the first blade member and the second blade member pivotally connected, an electrical connector configured to couple the scissors to a power source; and a fluid passage in fluid communication with at least one fluid outlet.





BRIEF DESCRIPTION OF THE DRAWINGS

To better understand and appreciate the invention, refer to the following detailed description in connection with the accompanying drawings, hand and computer generated:



FIG. 1 is a schematic side view of an exemplary device as part of a system according to the present invention;



FIG. 2 is a schematic isometric view of the device shown in FIG. 1 with a portion of the handle removed;



FIG. 3 is a schematic side view of the device shown in FIG. 2 with power cable and fluid line connected to the device;



FIG. 4 is a schematic, close-up, exploded isometric view of a distal portion of the device shown in FIG. 3;



FIG. 5 is another schematic, close-up, exploded isometric view of a distal portion of the device shown in FIG. 3;



FIG. 6 is a schematic, cross-sectional side view of the device shown in FIG. 2 with the blade members removed;



FIG. 7 is a schematic, close-up, cross-sectional side view of a distal portion of the device shown in FIG. 6;



FIG. 8 is a schematic, close-up, top view of a distal portion of the device shown in FIG. 2 in the presence of tissue;



FIG. 9 is a schematic, close-up, top view of a distal portion of an alternative embodiment of the device of FIG. 2;



FIG. 10 is a schematic, close-up, isometric view of a distal portion of another alternative embodiment of the device of FIG. 2;



FIG. 11 is a schematic, close-up, cross-sectional view taken along line 11-11 of FIG. 10 with tissue located between the blade members; and



FIG. 12 is an isometric view of a cannula which may be used with the device of the present invention.





DETAILED DESCRIPTION

Throughout the present description, like reference numerals and letters indicate corresponding structure throughout the several views, and such corresponding structure need not be separately discussed. Furthermore, any particular feature(s) of a particular exemplary embodiment may be equally applied to any other exemplary embodiment(s) of this specification as suitable. In other words, features between the various exemplary embodiments described herein are interchangeable as suitable, and not exclusive. Also, from the specification, it should be clear that any use of the terms “distal” and “proximal” are made in reference to the user of the device, and not the patient.


An exemplary electrosurgical device according to the present invention will now be described in detail. The electrosurgical device may be used with the system of the invention to be described herein. However, it should be understood that the description of the combination is for purposes of illustrating the system of the invention only. Consequently, it should be understood that the electrosurgical device of the present invention can be used alone, or in conjunction with, the system of the invention. Conversely, it should be equally understood that the system of the present invention can be used with a wide variety of devices.


The electrosurgical devices disclosed herein may be configured for both open and laparoscopic surgery. For laparoscopic surgery, the devices are preferably configured to fit through either a 5 mm or 10 mm trocar cannula. When used in conjunction with a cannula, the devices disclosed herein eliminate the need to switch instruments from the cannula for the purposes of coagulating and cutting tissue.


An exemplary electrosurgical device of the present invention, which may be used in conjunction with one or more aspects of the system of the present invention, is shown at reference character 22 in FIG. 1. As shown, device 22 preferably comprises electrosurgical scissors, and more particularly laparoscopic electrosurgical scissors. When device 22 comprises laparoscopic electrosurgical scissors, preferably device 22 is configured to extend through a working channel of a trocar cannula.


Device 22 is designed and configured to coagulate and seal tissue from the flow of bodily fluids and/or air by shrinking the tissue (particularly collagen in the tissue and particularly vessels) and cut tissue. More specifically, device 22 can be painted over a raw, oozing surface of tissue to seal the tissue against bleeding, or focused on individual large vessels, such as to seal a bleeding vessel which has been cut or to occlude a vessel prior to its being cut.


As shown in FIG. 1, the system of the invention includes both a fluid source 78 and a power source 76 coupled to device 22 as discussed in greater detail below. As shown, fluid source 78 comprises an I.V. bag. The power source 76 shown in FIG. 1 preferably comprises a generator which provides alternating current, radio-frequency electrical energy at various rates (i.e. power). As to the frequency of the RF electrical energy, it is preferably provided within a frequency band (i.e. a continuous range of frequencies extending between two limiting frequencies) in the range between and including about 9 kHz (kilohertz) to 300 GHz (gigahertz). More preferably, the RF energy is provided within a frequency band in the range between and including about 50 kHz (kilohertz) to 50 MHz (megahertz). Even more preferably, the RF energy is provided within a frequency band in the range between and including about 200 kHz (kilohertz) to 2 MHz (megahertz). Most preferably, RF energy is provided within a frequency band in the range between and including about 400 kHz (kilohertz) to 600 kHz (kilohertz). The power from the power source 76 to device 22 is preferably turned on and off via a footswitch 77 or other easily operated switch connected to the power source 76.


As best shown in FIGS. 2 and 3, device 22 preferably includes an intermediate portion comprising an elongated, hollow, electrically insulated, rigid shaft 24 having a distal end 26, a proximal end 28 and a central lumen 30 (shown in FIG. 7). While shown greatly shortened as indicated by the break lines, the length of shaft 24 is preferably in the range between and including about 5 inches to 15 inches.


As best shown in FIG. 4, for strength purposes, shaft 24 preferably comprises an inner, cylindrical metal tube 27, such as stainless steel, with the outer layer 29 of insulating material applied thereon, such as a polymer, ceramic or glass material. Where the outer layer 29 comprises a polymer, preferably the outer layer is provided in the form of a shrink wrap sleeve which may be heated and thereafter shrunk directly onto the metal tube 27 in a manner known in the art. In other embodiments, cylindrical tube 27 may comprise an electrically insulating material itself, such as a polymer, ceramic or glass material, thus eliminating the need for outer layer 29.


Also as shown in FIGS. 2 and 3, device 22 also preferably includes an end effector 32. As best shown in FIGS. 4 and 5, end effector 32 comprises two cooperating, relatively moveable blade members 34, 36. Blade members 34, 36 extend distally from and are pivotally coupled adjacent the distal end 26 of the shaft 24 such that they hinge about a pivot 38 provided, for example, by a separate metal pin, extending through a fixed pivot hole 40 of shaft 24 and aligning holes 35, 37 in the blade members 34, 36.


Returning to FIGS. 2 and 3, device 22 also preferably includes a collar 42 for rotating the entire shaft 24 and end effector 32 relative to a proximal handle 44 comprising an electrically insulated first handle member 46 and an electrically insulated second handle member 48, which are coupled adjacent the proximal end 28 of shaft 24. As shown in FIGS. 2 and 3, a mirrored half of the first handle member 46, which is preferably formed from two separately formed mating pieces, has been removed to expose the inner workings of the handle 44. The first and second handle members 46, 48 are preferably made electrically insulating by virtue of being molded of an electrically insulating polymer material.


First handle member 46 is preferably coupled to the proximal end 28 of the shaft 24 by means a circular flange lip 43 of the shaft 24 contained within a mating and interlocking circular recess 45 formed in the first handle member 46, while the second handle member 48 is pivotally coupled to the first handle member 46 about a pivot 50 provided, for example, by a pin. The second handle member 48 is indirectly coupled to the blade members 34, 36 through a push/pull rod assembly 52 extending through the lumen 30 of the elongated shaft 24 so that axial reciprocal movement of the push/pull rod assembly 52 relative to shaft 24 opens and closes the blade members 34, 36. In this manner, shaft 24 functions as a guide barrel for the rod 54 of the push/pull rod assembly 52.


As best shown in FIGS. 2 and 6, a proximal portion 56 of a rod 54 extends through a longitudinally orientated (i.e. extending proximally and distally with respect to device 22) slotted receptacle 60 extending through a head portion 51 of second handle member 48. Returning to FIG. 3, rod 54 is preferably coupled to second handle member 48 such that the position of rod 54 relative to the position of the second handle member 48 may be adjustably fixed thereto (e.g. to accommodate manufacturing). As shown, rod 54 is coupled to the second handle member 48 by a mechanical fastener 62 comprising here, for example, a set screw. However, rather than threading the screw into a threaded hole in handle 48 and into contact with the rod 54, preferably the set screw 62 is threaded into the side wall of metal sleeve 64. In this manner the strength of the threaded connection is substantially increased with less likelihood of stripping threads. Screw 62 is preferably treaded through the side wall of sleeve 64 such that the distal end surface of the set screw 62 engages and locks against a side surface of the rod 54 intersecting the threaded hole in the sleeve 64.


As shown in FIGS. 2 and 3, once sleeve 64 is fixed to rod 54, the sleeve 64 is than coupled to handle 48 by being located in a fastener or sleeve interlocking receptacle 65. As receptacle 65 moves proximally and distally with the movement of handle 48, the surfaces of the receptacle accordingly act on the opposing surfaces of the sleeve 64 to move the sleeve 64 and fixed rod 54 in unison with the handle 48.


In addition, rod 54 is also preferably pivotally coupled to the second handle member 48 about a pivot connection, provided here, for example, by the sleeve 64 and receptacle 65 interaction. As shown in FIGS. 3 and 6, certain surfaces 69 of receptacle 65 are spaced from interacting surfaces 67 of the sleeve 64 to allot for limited pivotal movement between sleeve 64 and receptacle 65.


Continuing with FIG. 3, the grasping first handle member 46 also provides a pistol grip configuration while second handle member 48 provides a trigger or lever configuration. Also as shown, first handle member 46 is provided with a thumb loop 47 while second handle member 48 is provided with a finger loop 49 for easier grasping and manipulation of device 22. With the configuration shown, as the first and second handle members 46, 48 are moved towards one another, rod 54 is moved proximally to close the blade members 34, 36 relative to one another. Conversely, when the first and second handle members 46, 48 are moved apart from one another, rod 54 is moved distally to open the blade members 34, 36 relative to one another.


As shown in FIGS. 1 and 3, device 22 is preferably connected to a power source 76 (shown in FIG. 1) via proximal portion 56 of rod 54. As shown, to provide power to device 22, an electrical connection to a power source 76 is preferably provided with a cable 68. As shown in FIG. 3, cable 68 comprises an insulated wire 70, comprising a wire conductor 72, and a plug 74 (shown in FIG. 1). With regards to the electrical connection, rod 54 is coupled to one end of cable 68 by a soldered connection 66 while the other end of the cable 68 is coupled to power source 76 with plug 74 inserted into a plug receptacle of the power source 76.


With the above configuration, device 22 may be electrically energized for coagulating and cutting tissue to be discussed in greater detail herein. As constructed, electrical power provided to rod 54 from power source 76, which may be referred to as the active terminal, will also flow to blade members 34, 36 by virtue of their mechanical and metallic coupling to the rod 54, as well as tube 27 of shaft 24. Thus, the device 22 comprises a monopolar configuration, i.e., electrical power is delivered from the power source 76 via a single conductor 72 to each of the blade members 34, 36 (each comprising a metal such as titanium or stainless steel), with both blade members consequently being at substantially the same voltage or electrical potential. The return for the electrical energy from device 22 is through the patient (not shown) generally to a large surface, electrically dispersive ground pad 79 (shown in FIG. 1), often referred to as the return or indifferent terminal, located on the patient, typically on the back or other suitable anatomical location, and then back to the power source 76, as is well-known in the art.


Continuing with FIGS. 1 and 3, device 22 is preferably connected to a fluid source 78 (shown in FIG. 1) also via proximal portion 56 of rod 54. As shown, to provide fluid 84 to device 22, a fluid connection to a fluid source 78 is preferably provided with an input fluid line 80. As shown in FIG. 3, input fluid line 80 comprises a flexible fluid line made from a polymeric material, such as polyvinylchloride (PVC) or polyolefin (e.g. polypropylene, polyethylene) and has a fluid passage 82 (lumen). With regards to the fluid connection, rod 54 is coupled to one end of fluid line 80 by interference fitting the lumen 82 of the input fluid line 80 over the proximal end 57 and outside diameter of rod 54 to provide a press fit seal there between. Additionally an adhesive may be disposed there between to strengthen the seal. The other end of input fluid line 80 may be directly connected to fluid source 78.


Fluid source 78 preferably provides an electrically conductive fluid 84, which preferably is a saline solution and, more preferably sterile, physiologic saline. It should be understood that where description herein references the use of saline as the fluid 84, other electrically conductive fluids can be used in accordance with the invention.


For example, in addition to the conductive fluid comprising physiologic saline (also known as “normal” saline, isotonic saline or 0.9 weight-volume percentage sodium chloride (NaCl) solution), the conductive fluid may comprise hypertonic saline solution, hypotonic saline solution, Ringers solution, lactated Ringer's solution, Locke-Ringer's solution, or any other electrolyte solution. In other words, a solution that conducts electricity via an electrolyte, a substance (salt, acid or base) that dissociates into electrically charged ions when dissolved in a solvent, such as water, resulting solution comprising an ionic conductor.


In certain embodiments as discussed herein, hypertonic saline, saturated with NaCl to a concentration of about 15% (weight-volume percentage), may be preferred to physiologic saline to reduce the electrical resistivity of the saline from about 50 ohm-cm at 0.9% to about 5 ohm-cm at 15%. This ten-fold reduction in electrical resistivity of the conductive fluid will enhance the reduction in heating (both resistance heating and conduction heating) of tissue and the conductive fluid itself as shown herein.


While a conductive fluid is preferred, as will become more apparent with further reading of this specification, the fluid 84 may also comprise an electrically non-conductive fluid. The use of a non-conductive fluid is less preferred to that of a conductive fluid as the non-conductive fluid does not conduct electricity. However, the use of a non-conductive fluid still provides certain advantages over the use of a dry electrode including, for example, reduced occurrence of tissue sticking to the blade members 34, 36, cooling of tissue and/or the blade members 34, 36, and removal of any coagula, if existent, from the blade members 34, 36 and/or the tissue treatment site. Therefore, it is also within the scope of the invention to include the use of a non-conducting fluid, such as, for example, deionized water. Other non-conductive fluids include 5% w/v dextrose injection USP and 10% w/v dextrose injection USP (i.e. sterile solutions of 5 g and 10 g dextrose hydrous in 100 ml water, respectively); 1.5% w/v glycine irrigation USP (i.e. sterile solution of 1.5 g glycine in 100 ml water); 5% w/v, 10% w/v, 15% w/v and 20% w/v mannitol injection USP (i.e. sterile solution of 5 g, 10 g, 15 g and 20g mannitol in 100 ml water, respectively); 3% sorbitol irrigation USP (i.e. sterile solution of 3 g sorbitol in 100 ml water); 0.54% sorbitol/2.75% mannitol irrigation USP (i.e. sterile solution of 0.54 g sorbitol and 2.75 g mannitol in 100 ml water); and sterile water for irrigation USP.


Once the input fluid line 80 is coupled to rod 54, the fluid passage 82 provided by fluid line 80 is now fluidly coupled to fluid passage 55, here provided by the bore or lumen, of rod 54 (shown in FIGS. 6 and 7). In this manner fluid 84 from fluid source 78 may flow towards the distal end of device 22.


As best shown in FIGS. 4 and 7, the distal end 59 of rod 54 is preferably coupled to a connector member 86. More specifically, as shown in FIG. 7, a distal portion 58 of rod 54 is interference fit (pressed) into rod connector portion comprising a circular receptacle portion 88. Alternatively, the outer side wall of distal portion 58 of rod 54 may be provided with external threads configured to mate with internal threads contained on the inner side wall of receptacle portion 88.


Continuing with FIGS. 4 and 7, a circular portion 90 of connector member 86 is configured to have an outer diameter slightly smaller (e.g. about 0.001 inches to 0.040 inches) than the inner diameter of tube 27. In this manner, outer circular surface 92 of connector member 86 may easily slide along inner surface 31 of tube 27 with the reciprocal movement of rod 54 while, at the same time, receptacle portion 88 of connector member 86 is able to position the distal portion 58 of rod 54 towards the center of tube 27. In order to inhibit the back flow of fluid 84 (which has been provided from device 22 to a tissue treatment site or by virtue of the orientation of device 22 with the distal end positioned above the proximal end) into lumen 30, preferably the outer diameter of the circular portion 90 fits with the inner surface 31 of tube 27 to substantially seal the lumen 30 of tube 27 and handle 44 against the back flow of fluid 84 therein. In order to increase the seal, a separate seal member 94 (shown in FIG. 4) may be placed between surfaces 92 and 31, such as a flexible O-ring gasket. Alternatively, the O-ring gasket may be located near between a proximal portion 56 of rod 54 and a proximal portion of shaft 24.


As best shown in FIG. 5, located distally from receptacle portion 88, connector member 86 comprises a blade member connector portion 96, which has a substantially planar tongue extending distally relative to the circular receptacle portion 88, and which is sandwiched between and spaces apart the proximal portions 98, 100 of blade members 34, 36 respectively. As shown, flat interior surfaces 102, 104 of blade members 34, 36, which face one another, overlie opposing flat surfaces 106, 108 of blade member connector portion 96.


Continuing with FIG. 5, blade member connector portion 96 includes opposing pins 110, 112 extending laterally from opposing surfaces 106, 108. Pins 110, 112 are configured to fit within and travel along the slotted recesses 114, 116 in surfaces 102, 104 of blade members 34, 36 to open and close blade members 34, 36 relative to each other. More specifically, as pins 110, 112 move proximally while in recesses 114, 116 (due to proximal movement of rod 54), blade members 34, 36 rotate in opposing directions relative to each other around pivot 38 and close relative to one another. Conversely, as pins 110, 112, move distally while in recesses 114, 116 (due to distal movement of rod 54), blade members 34, 36, which still rotate in opposing directions relative to each other, now rotate in opposing directions to their closing directions around pivot 38, to open relative to one another. As shown, in order to facilitate the opening and closing movement of blade members 34, 36, the orientation of recesses 114, 116 is such that they are orientated in opposing directions relative to one another.


In order to expel fluid 84 which has flowed distally in lumen 55 of rod 54 from device 22, the connector member 86 is preferably provided with one or more apertures in fluid communication with lumen 55, the apertures providing a fluid outlet for fluid 84. As best shown in FIG. 7, the bottom wall of receptacle portion 88 includes an aperture 118 there through to provide a fluid outlet 120 for fluid 84. As shown in FIG. 7, fluid outlet 120 is located proximal to the distal end 26 of shaft 24 such that it is remote from the tissue interacting portions of blade members 34, 36. Stated another way, fluid outlet 120 is recessed and protected within the distal end 26 of shaft 24 which provides a location substantially inaccessible to direct contact or occlusion with tissue. While only a single fluid outlet 120 is shown, it should be understood that additional fluid outlets (with varying locations) may be similarly incorporated to the extent necessary.


As shown in FIG. 8, during use of device 22 for coagulating tissue, a fluid coupling 122, preferably comprising a discrete localized web, provides a film of fluid 84 between the surface 126 of the tissue 124 and blade members 34, 36. When a user of device 22 places the blade members 34, 36 at a tissue treatment site and moves the blade members 34, 36 across the surface 126 of the tissue 124, fluid 84 is simultaneously expelled from fluid outlet 120 around and onto the proximal portions 98, 100 and to the distal portions 128, 130 of blade members 34, 36 and thereafter onto the surface 126 of tissue 124 via fluid coupling 122. The fluid 84 flows from the distal end of connector 86 towards the distal portions 128, 130 and ends 140, 142 of blade members 34, 36 due to the force of gravity, and the orientation of the device 22, which is almost always with the distal end downward. Surface tension forces tend to keep the fluid 84 from dripping off the blade members 34, 36 before the fluid 84 reaches the distal ends 140, 142 of blade members 34, 36 and the contact with tissue 124.


Fluid 84 lubricates the surface 126 of the tissue 124 and facilitates the movement of blade members 34, 36 across the surface 126 of the tissue 124 and, in the instance of an electrically conductive fluid, provides an electrical coupling between the device 22 and the tissue 124. During movement of the blade members 34, 36, the user of device 22 typically slides the blade members 34, 36 across the surface 126 of the tissue 124 back and forth with a painting motion while using the fluid 84 as, among other things, a lubricating coating. Preferably the thickness of the fluid coupling 122 between the blade members 34, 36 and the surface 126 of the tissue 124 is in the range between and including about 0.05 mm to 2.5 mm. More preferably, the fluid coupling 122 between the blade members 34, 36 and the surface 126 of the tissue 124 is in the range between and including about 0.1 mm to 1.0 mm.


Preferably tissue coagulation is performed with blade member exterior side surfaces 137, 139 of blade members 34, 36 which oppose blade member interior side shearing surfaces 136, 138, respectively. As shown in FIG. 8, in order to better facilitate sliding of device 22 on the surface 126 of tissue 124, preferably the distal portions 128, 130 of blade members 34, 36 proximally adjacent distal ends 140, 142 may each comprise opposing bulbous portions, here having preferably smooth (i.e. devoid of edges), semi-circular surfaces 150, 152 (preferably of about 180 degrees and having a surface finish in the range between and including about 16-64 microinches RMS (Root Mean Square)) provided by enlarged semi-circular regions. Consequently, when blade members 34, 36 are closed together, the two opposing semi-circular regions may provide a spherical distal end tip for device 22. In this manner, the distal end surface area of device 22 is increased to provide an appropriate power density for coagulating tissue with a painting motion. For example, for a power level of 50 watts, which is a typical upper limit for most laparoscopic procedures, a spherical cross-sectional dimension, here diameter, in the range of between and including about 2 to 2.5 millimeters has been found to work best. If the power can be as high as 100 watts, then the dimension should be larger, in the range of between and including about 3 to 4 millimeters. If the power is smaller, for instance 25 watts, then the dimension should be smaller, in the range between and including about 1.25 to 1.75 millimeters. Furthermore, in order to further facilitate tissue coagulation, preferably the distal portions 128, 130 of blade members 34, 36 are arcuate to provide a convex surface 139 of blade member 36 which may be more easily positioned against tissue and slide there along.


When electric current is applied to blade members 34, 36, heating of the tissue 124 occurs by means of electrical resistance heating. In other words, increasing the temperature of the tissue 124 as a result of electric current flow through the tissue, with the associated electrical energy being converted into thermal energy (i.e. heat) via accelerated movement of ions as a function of the tissue's electrical resistance. Resistance heating provides direct, instantaneous heating inside tissue 124 due to the current flow through tissue 124.


Device 22 is particularly useful to a surgeon who wishes to coagulate and seal tissue, including vessels such as blood vessels, prior to tissue 124 being cut with blade members 34, 36. More specifically, as blade members 34, 36 are moved along the surface 126 of tissue 124, tissue 124 there beneath is coagulated. As known in the art, when exposed to heat, the collagen of the blood vessels will shrink, thus decreasing the diameter and associated lumen of the vessel. Certain vessels, depending on size and proximity to surface 126 of tissue 124 will become completely occluded (e.g. vessels up to about 1 mm in diameter and 1-5 mm deep), while vessels greater than 1 mm may become only partially occluded and need additional treatment with another device, such as a clip applier, or with suture ligation. Some vessels, such as those 1 mm diameter or less, may not be initially sealed because they are too deep in the tissue, but these may be occluded as the device 22 is used to coag and cut deeper into the tissue.


Once surface 126 of tissue 124 is adequately treated with device 22, at least one of the distal ends 140, 142 of blade members 34, 36 may be used to pierce and perforate tissue 124, such as through the capsule of a liver. Preferably, the depth of the perforation is no deeper than the depth of tissue treatment provided by the surface coagulation to avoid possible puncturing of an untreated vessel. After making the first perforation in tissue 124, a second perforation laterally spaced from the first perforation may be made, also into treated tissue 124. Thereafter, the portion of tissue 124 between the first and second perforations may be located between shearing edges 132, 134 and shearing surfaces 136, 138 and thereafter cut when blade members 34, 36 are closed together. In alternative embodiments, both perforations may be made simultaneously with distal ends 140, 142 of blade members 34, 36. In still other embodiments, only one perforation made may made. In this manner one blade member 34 may be located in the perforation while the distal end 142 of the other blade member 36 is laterally spaced and pressed against the surface 126 of tissue 124 to cut the tissue 124 when blade members 34, 36 are closed together. In still other embodiments, no perforations of tissue 124 may be required prior to cutting as where tissue 124 may be manipulated and located between the shearing edges 132, 134 and shearing surfaces 136, 138 of open blade members 34, 36 without the need for the perforations.


It should be noted that, as shown, preferably distal ends 140, 142 of blade members 34, 36 are blunt. In other words distal ends 140, 142 of blade members 34, 36 preferably do not comprise a distal end point. The distal ends 140, 142 of blade members 34, 36 preferably are not pointed so that the distal ends 140, 142 of blade members 34, 36 will slide along the tissue surface 126 while the blade members 34, 36 are moved along the tissue surface 126 with a back and forth painting motion, and while tissue coagulation is performed with blade member exterior side surfaces 137, 139 of blade members 34, 36.


In the instance of parenchyma tissue, such as for liver, the distal end 140, 142 of one or both of blade members 34, 36 may be used to simultaneously blunt dissect and coagulate tissue without first perforating the tissue 124. As the surface 126 of tissue 124 is coagulated under and around the at least one of the blade members 34, 36, the blade member may then be used to blunt dissect into the coagulated parenchyma, with the distal ends 140, 142. As the device 22 enters an elongated crevice in the surface 126 of the tissue 124 formed by the blunt dissection, shearing edges 132, 134 of blade members 34, 36 may be used to further blunt dissect the coagulated parenchyma on the sidewalls of the crevice, or blunt dissect and coagulate simultaneously. Blunt dissection of the coagulated parenchyma is performed by continuous abrading or splitting apart of the parenchyma with the substantially the same back and forth motion as coagulation of the surface 126 of the tissue 124. However, with blunt dissection, the surgeon typically applies more force to the tissue. In various embodiments, once the parenchyma is coagulated, blunt dissection may be performed with or without the radio frequency power (i.e. on or off) and/or with or without the presence of fluid 84.


In yet another technique, blade members 34, 36 may be used for wedge dissection. In other words, while blade members 34, 36 are in the closed position and without tissue 124 there between, they are wedged into tissue 124, preferably between adjacent tissue planes. Thereafter, the blade members 34, 36 may be slowly opened and, due to the separation forces placed on the tissue 124 at the distal ends 140, 142 of the blade members 34, 36, the tissue will dissect.


The above techniques can also be used on other parenchymal organs such as the pancreas, the kidney, and the lung. In addition, it may also be useful on muscle tissue and subcutaneous fat. Its use can also extend to benign tumors, cysts or other tissue masses found in the urological or gynecological areas. It would also enable the removal of highly vascularized tumors such as hemangiomas.


The use of the disclosed devices can result in significantly lower blood loss during surgical procedures such as liver resections. Typical blood loss for a right hepatectomy can be in the range of 500-1,000 cubic centimeters. Use of the devices disclosed herein to perform pre-transection coagulation of the liver can result in blood loss in the range of 50-300 cubic centimeters. Such a reduction in blood loss can reduce or eliminate the need for blood transfusions, and thus the cost and negative clinical consequences associated with blood transfusions, such as prolonged hospitalization and a greater likelihood of cancer recurrence. Use of the device can also provide improved sealing of bile ducts, and reduce the incidence of post-operative bile leakage, which is considered a major surgical complication.


In addition to liver resections, device 22 may be particularly useful to a surgeon performing a laparoscopic cholecystectomy (abbr. “lap chole”) for the case of, for instance, either acute cholecystitis or an intrahepatic gallbladder in that the device provides multi-functional uses. More particularly, device 22 is useful to the surgeon for coagulation and dissection of an inflamed serosal layer of tissue 124 between the liver and gallbladder, which may include tough, fibrous, highly vascular connecting tissue between the organs.


The power provided from the surgical device 22 is generally in the range between and including about 20 watts to 150 watts, and more preferably in the range between and including about 50 watts to 100 watts. The fluid provided from the surgical device 22 is generally in the range between and including about 1 cubic centimeter per minute to 100 cubic centimeters per minute, and more preferably in the range between and including about 5 cubic centimeter per minute to 25 cubic centimeters per minute. For a more complete discussion of an exemplary power to fluid flow rate relationship see U.S. Publication No. 2002/0062123 in the name of McClurken entitled “Fluid-Assisted Medical Devices, Fluid Delivery Systems And Controllers For Such Devices, And Methods” published May 23, 2002.


In order to minimize the sticking of tissue, particularly coagulum, to blade members 34, 36, but yet adequately heat the tissue for treatment, preferably the temperature of the tissue should remain in the range between and including about 75° C. to 120° C. As known in the art, tissue containing Type I collagen (e.g., walls of blood vessels, bronchi, bile ducts, etc.) shrinks when exposed to about 85° C. for an exposure time of 0.01 seconds, or when exposed to about 65° C. for an exposure time of 15 minutes. An exemplary target temperature/time for tissue shrinkage is about 75° C. with an exposure time of about 1 second. More generally, the power provided to the tissue should be sufficient to shrink collagen in the range between and including about 1 second to 10 seconds after RF activation. An exemplary method of controlling the tissue temperature below 120° C. is to remove excess heat generated in the tissue by means of fluid 84, particularly by boiling the fluid coupling 122. Where fluid 84 comprises saline, the fluid 84 boils at approximately 100° C. to remove heat from the tissue and inhibit the tissue temperature from exceeding 100° C. For a more detailed discussion, see U.S. Publication No. 2002/0062123 in the name of McClurken as identified above.


Thus far the device 22 has been described relative to use with scissors with curved blade members 34, 36. In still other embodiments, as shown in FIG. 9, the device of the present invention may comprise straight blade members 34, 36.


In yet another embodiment as shown in FIG. 10, only blade members 36 of electrosurgical device 22 has a bulbous portion 154, thus providing an asymmetric tip. Also different from previous embodiments, as shown the exterior side surfaces 137, 139 of blade members 34, 36 include a covering 156 of electrically insulating material, such as a polymer, ceramic or glass, except for the surface 152 of bulbous portion 154. An exemplary polymer comprises fluorine and, more particularly, polytetrafluoroethylene. In this manner, electrical current from blade members 34, 36 may be concentrated into tissue through bulbous portion 154. From the above description it should be understood that in other embodiments, covering 152 may also be used when neither of blade members 34, 36 include a bulbous portion 154.


While exterior bulbous portion 154 is configured to coagulate tissue, blade members 34, 36 are also used to coagulate and cut tissue, and particularly seal vessels 158, such as blood vessels, as shown in FIG. 11. When blade members 34, 36 are electrified and provide RF power to tissue including a blood vessel 158, the collagen in the tissue and forming the wall 160 begins to shrink as discussed above. As the vessel 158 continues to shrink, the lumen 162 goes from being partially occluded to being completely occluded.


Due to tissue irregularities, the surface 164 of the vessel 158 to be treated may be uneven or undulated with microscopic peaks and valleys. Consequently, with conventional scissors, the area of direct electrical coupling of the vessel 158 to the scissors can be limited to the isolated peaks in the tissue surface 164. In this situation, upon the application of RF power to vessel 158, the electrical coupling of only the tissue peaks to the scissors may result in corresponding increase in current density through the electrically coupled peaks which has the ability to desiccate and char the vessel 158 at these isolated locations. In other locations, the electric current in the form of a spark may jump a gap created between a valley in the surface 164 of the vessel 158 and the scissors and burn, or even perforate, the vessel 158.


Also with conventional scissors, there may be a decrease in the electrical coupling between the surface 164 of vessel 158 and scissor surfaces upon tissue shrinkage and/or desiccation during treatment. As tissue shrinks and/or desiccates during treatment, the surface 164 of vessel 158 may loose contact with the scissors, which, similar to above, decreases the area of electrical coupling therebetween and correspondingly increases the current density and associated heat at the locations which remain electrically coupled. This difficulty is further exacerbated if the tissue is undulated as described above.


To offset a decrease in electrical coupling between the scissors and vessel 158 as the vessel shrinks, the user of conventional scissors may be required to further close or push the scissors into increased contact with the vessel 158. However, with the increased force placed on the vessel 158, there may be increased risk of inadvertently severing the vessel with a shearing edges 132, 134 of the scissors before the vessel is completely occluded.


As shown in FIG. 11, in addition to direct electrical coupling of the surface 164 of vessel 158 to the tissue abutting surfaces 144, 146 of blade members 34, 36, the surface 164 of vessel 158 is indirectly coupled to the shearing surfaces 136, 138 of blade members through fluid coupling 148 comprising an electrically conductive fluid 84. Furthermore, fluid coupling 148 couples the tissue abutting surfaces 144, 146 of blade members 34, 36 at locations where there may be a gap 166 and no direct contact between the surface 164 of vessel 158 to the tissue abutting surfaces 144, 146 of blade members 34, 36.


The fluid coupling 148, preferably comprising saline, inhibits the desiccation, tissue sticking to the shearing surfaces 136, 138 and tissue abutting surfaces 144, 146 of blade members 34, 36, tissue perforation, char formation, smoke generation and sparking encountered with conventional scissors. When an electrically conductive fluid 84 such as saline is used, the fluid cools the tissue while at the same time better dispersing the electrical current into the tissue more uniformly to inhibit heating of the tissue to where desiccation, charring, smoking, sticking and burning occur.


In addition to fluid coupling 148 offsetting (reducing) increases in current densities associated with undulated tissue, or tissue otherwise poorly coupled to the device, fluid coupling 148 also offsets increases in current densities due to so called “edge effects” often associated with sharp edges of electrodes. For example, the sharpness of shearing edges 132, 134 of device 22 may give rise to an increase in current density into tissue adjacent thereto. In providing fluid coupling 148 adjacent each side of shearing edges 132, 134, the increase in current density will be offset by the presence of fluid coupling 148 which spreads the electrical current transmission into the tissue over a larger surface area.


As previously disclosed, the electrosurgical devices 22 disclosed herein may be used in conjunction with a cannula as illustrated in FIG. 12 at reference character 10, during laparoscopic surgery such as, for example, a laparoscopic cholecystectomy. Cannula 10 comprises a proximal portion 12 separated from a distal portion 14 by an elongated rigid shaft portion 16. Proximal portion 12 of cannula 10 preferably comprises a head portion 18 connected to rigid shaft portion 16, preferably by threaded engagement. Most importantly, cannula 10 has a working channel 20 which extends through head portion 18 and shaft portion 16 from proximal portion 12 to distal portion 14 of cannula 10. In one particular embodiment, during insertion into cannula 10, the electrosurgical devices disclosed herein configured to enter the proximal end of working channel 20, move along the channel 20 distally, and then be extended from the distal end of the working channel 20. In the same embodiment, during retraction from cannula 10, electrosurgical devices disclosed herein are configured to enter the distal end of working channel 20, move along the channel 20 proximally, and then be removed from the proximal end of working channel 20.


For purposes of the appended claims, the term “tissue” includes, but is not limited to, organs (e.g. liver, lung, spleen, gallbladder), highly vascular tissues (e.g. liver, spleen), soft tissues, hard tissues and tissue masses (e.g. tumors).


While a preferred embodiment of the present invention has been described, it should be understood that various changes, adaptations and modifications can be made therein without departing from the spirit of the invention and the scope of the appended claims. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.


For example, while the above description of the coupling and operation between rod 54 and first and second handle members 46, 48 has been presented in detail, it should be understood not to constitute a limitation of the invention and that a variety of mechanisms may be employed. Similarly to the coupling and operation between rod 54 and first and second handle members 46, 48, the coupling of blade members 34, 36 to the distal end portion 58 of rod 54 for controlling or effecting the relative movement of blade members 34, 36 at the distal end of device 22 may be performed by a variety of mechanisms known in the art and the specific structures disclosed should be understood not to constitute a limitation of the invention.


Furthermore, it should be understood that the appended claims do not necessarily comprise the broadest scope of the invention which the Applicant is entitled to claim, or the only manner(s) in which the invention may be claimed, or that all recited features are necessary.

Claims
  • 1. A fluid-assisted electrosurgical scissors to treat tissue, the scissors comprising: an end effector comprising a first blade member and a second blade member, the first blade member and the second blade member pivotally connected and arranged to cut tissue;at least one of the first blade member and the second blade member electrically coupled to an electrical connector connectable to a radio frequency power source;the first blade member comprising a first blade member shearing edge extending to a distal end of the first blade member and the second blade member comprising a second blade member shearing edge extending to a distal end of the second blade member;the first blade member comprising a first blade member distal portion and the second blade member comprising a second blade member distal portion, wherein at least one of the distal portions further comprises a bulbous portion protruding from a respective one of the first blade member or second blade member, the bulbous portion being bulbous relative to a remainder of the respective one of the first blade member or the second blade member, wherein the bulbous portion has an exposed electrically-conductive surface;a fluid passage in fluid communication with at least one fluid outlet, wherein the at least one fluid outlet is positioned to expel fluid to the end effector;a shaft having a first lumen, wherein the end effector is connected to the shaft; anda rod having a second lumen providing a portion of the fluid passage, wherein a portion of the rod is positioned in the first lumen.
  • 2. The electrosurgical scissors of claim 1, wherein the rod comprises a first end positioned in the first lumen and a second end connected to a fluid line.
  • 3. The electrosurgical scissors of claim 1, wherein the at least one fluid outlet is located within the shaft.
  • 4. The electrosurgical scissors of claim 1, wherein: the first blade member comprises a first blade member exterior surface;the second blade member comprises a second blade member exterior surface;at least one of the exterior surfaces is configured to slide along tissue at the treatment site such that fluid expelled from the at least one fluid outlet creates a fluid coupling between the exterior surface and the tissue; andradio frequency power is provided to the tissue from the scissors.
  • 5. A fluid-assisted electrosurgical scissors to treat tissue, the scissors comprising: an end effector comprising a first blade member and a second blade member, the first blade member and the second blade member pivotally connected and arranged to cut tissue;at least one of the first blade member and the second blade member electrically coupled to an electrical connector connectable to a radio frequency power source;the first blade member comprising a first blade member shearing edge extending to a distal end of the first blade member and the second blade member comprising a second blade member shearing edge extending to a distal end of the second blade member;the first blade member comprising a first blade member distal portion and the second blade member comprising a second blade member distal portion, wherein at least one of the distal portions further comprises a bulbous portion protruding from an exterior side of a respective one of the first blade member or second blade member, the bulbous portion being bulbous relative to a remainder of the respective one of the first blade member or second blade member, wherein:the bulbous portion has an exposed electrically-conductive surface serving as an electrode pole configured to operate in a monopolar configuration, the exposed electrically-conductive surface facing opposite of an interior side surface of the respective blade member which is provided with the shearing edge;a fluid passage in fluid communication with at least one fluid outlet; andthe at least one fluid outlet positioned to expel a fluid to the end effector to create a fluid coupling between the end effector and tissue at a treatment site and wherein the at least one fluid outlet is obstructed from contact with tissue by at least one of the blade members.
  • 6. The electrosurgical scissors of claim 5 are monopolar electrosurgical scissors.
  • 7. The electrosurgical scissors of claim 5 are laparoscopic electrosurgical scissors.
  • 8. The electrosurgical scissors of claim 5 wherein: the first blade member comprises a first blade member exterior surface;the second blade member comprises a second blade member exterior surface; andat least one of the first blade member exterior surface and the second blade member exterior surface at least partially comprises an electrically insulative material.
  • 9. The electrosurgical scissors of claim 5 wherein: the first blade member comprises a first blade member shearing surface;the second blade member comprises a second blade member shearing surface; andthe first blade member shearing surface and the second blade member shearing surface face one another when the first blade member and the second blade member are in a closed position.
  • 10. The electrosurgical scissors of claim 5 further comprising: a push rod;a lumen located within the push rod; andthe lumen providing a portion of the fluid passage.
  • 11. The electrosurgical scissors of claim 5 wherein: the fluid passage passes through a connector member which couples the blade members to a push rod.
  • 12. The electrosurgical scissors of claim 5 wherein: the at least one fluid outlet is provided by a connector member which couples the blade members and a push rod.
  • 13. The electrosurgical scissors of claim 5 wherein: at least one of the blade members is curved.
  • 14. The electrosurgical scissors of claim 5 wherein: the first blade member comprises a first blade member exterior surface;the second blade member comprises a second blade member exterior surface;at least one of the exterior surfaces is configured to slide along the tissue at the treatment site such that the fluid coupling is between the exterior surface and the tissue; andradio frequency power is provided to the tissue from the scissors.
  • 15. The electrosurgical scissors of claim 5 wherein: the first blade member distal portion and the second blade member distal portion each comprise a bulbous portion protruding from the exterior side of each respective blade member.
  • 16. The electrosurgical scissors of claim 5 wherein: the bulbous portion protrudes from a convex side of the respective blade member.
  • 17. The electrosurgical Scissors of claim 5 wherein: the bulbous portion is hemispherical.
  • 18. The electrosurgical scissors of claim 17 wherein: the exposed electrically-conductive surface of the hemispherical bulbous portion is a hemispherical surface.
  • 19. The electrosurgical scissors of claim 5 wherein: the at least one fluid outlet is further positioned to provide fluid adjacent each side of at least one of the shearing edges.
  • 20. The electrosurgical scissors of claim 5 wherein: the bulbous portion is located only on the exterior side of the respective blade member.
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application is a U.S. national stage application of PCT international patent application serial no. PCT/US2003/034306, filed Oct. 28, 2003, which claims priority under 35 U.S.C. §119(e) to U.S. provisional application Ser. No. 60/422,190, filed Oct. 29, 2002. The entire disclosure of each of these patent applications is incorporated herein by reference to the extent it is consistent.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US03/34306 10/28/2003 WO 00 5/2/2006
Publishing Document Publishing Date Country Kind
WO2004/039416 5/13/2004 WO A
US Referenced Citations (957)
Number Name Date Kind
623022 Johnson Apr 1899 A
1735271 Groff Nov 1929 A
1814791 Ende Jul 1931 A
2002594 Wappler et al. May 1935 A
2031682 Wappler et al. Feb 1936 A
2102270 Hyams Dec 1937 A
2275167 Bierman Mar 1942 A
2568234 Haufrect Sep 1951 A
2888928 Seiger Jun 1959 A
3084433 Kimmel Apr 1963 A
3163166 Brant et al. Dec 1964 A
3682130 Jeffers Aug 1972 A
3750650 Ruttgers Aug 1973 A
3901241 Allen, Jr. Aug 1975 A
4037590 Dohring et al. Jul 1977 A
4060088 Morrison, Jr. et al. Nov 1977 A
4116198 Roos Sep 1978 A
4244371 Farin Jan 1981 A
4276874 Wolvek et al. Jul 1981 A
4301802 Poler Nov 1981 A
4307720 Weber, Jr. Dec 1981 A
4321931 Hon Mar 1982 A
4326529 Doss et al. Apr 1982 A
4342218 Fox Aug 1982 A
4355642 Alferness Oct 1982 A
4381007 Doss Apr 1983 A
4532924 Auth et al. Aug 1985 A
4548207 Reimels Oct 1985 A
4567890 Ohta et al. Feb 1986 A
4602628 Allen, Jr. Jul 1986 A
4671274 Sorochenko Jun 1987 A
4674499 Pao Jun 1987 A
4920982 Goldstein May 1990 A
4931047 Broadwin et al. Jun 1990 A
4932952 Wojciechowicz, Jr. Jun 1990 A
4943290 Rexroth et al. Jul 1990 A
4950232 Ruzicka et al. Aug 1990 A
4976711 Parins et al. Dec 1990 A
4985030 Melzer et al. Jan 1991 A
4998933 Eggers et al. Mar 1991 A
5009656 Reimels Apr 1991 A
5013312 Parins et al. May 1991 A
5035696 Rydell Jul 1991 A
5071419 Rydell et al. Dec 1991 A
5080660 Buelna Jan 1992 A
5122138 Manwaring Jun 1992 A
5125928 Parins et al. Jun 1992 A
5147357 Rose et al. Sep 1992 A
5151102 Kamiyama et al. Sep 1992 A
5156613 Sawyer Oct 1992 A
5167659 Ohtomo et al. Dec 1992 A
5171311 Rydell et al. Dec 1992 A
5190541 Abele et al. Mar 1993 A
5195959 Smith Mar 1993 A
5197963 Parins Mar 1993 A
5197964 Parins Mar 1993 A
5217460 Knoepfler Jun 1993 A
5234428 Kaufman Aug 1993 A
5242441 Avitall Sep 1993 A
5242442 Hirschfeld Sep 1993 A
5269780 Roos Dec 1993 A
5269781 Hewell, III Dec 1993 A
5277696 Hagen Jan 1994 A
5281215 Milder Jan 1994 A
5281216 Klicek Jan 1994 A
5282799 Rydell Feb 1994 A
5290286 Parins Mar 1994 A
5300087 Knoepfler Apr 1994 A
5313943 Houser et al. May 1994 A
5318589 Lichtman Jun 1994 A
5322055 Davison et al. Jun 1994 A
5322503 Desai Jun 1994 A
5330521 Cohen Jul 1994 A
5334193 Nardella Aug 1994 A
5342357 Nardella Aug 1994 A
5342359 Rydell Aug 1994 A
5348554 Imran et al. Sep 1994 A
5352222 Rydell Oct 1994 A
5364394 Mehl Nov 1994 A
5383874 Jackson et al. Jan 1995 A
5383876 Nardella Jan 1995 A
5395312 Desai Mar 1995 A
5395363 Billings et al. Mar 1995 A
5401272 Perkins Mar 1995 A
5403311 Abele et al. Apr 1995 A
5403312 Yates et al. Apr 1995 A
5405344 Williamson et al. Apr 1995 A
5405376 Mulier et al. Apr 1995 A
5417672 Nita et al. May 1995 A
5417709 Slater May 1995 A
5431649 Mulier et al. Jul 1995 A
5433708 Nichols et al. Jul 1995 A
5437662 Nardella Aug 1995 A
5437664 Cohen et al. Aug 1995 A
5441498 Perkins Aug 1995 A
5441503 Considine et al. Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5456682 Edwards et al. Oct 1995 A
5456684 Schmidt et al. Oct 1995 A
5458596 Lax et al. Oct 1995 A
5458597 Edwards et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5460629 Shlain et al. Oct 1995 A
5462521 Brucker et al. Oct 1995 A
5472441 Edwards et al. Dec 1995 A
5472443 Cordis et al. Dec 1995 A
5487385 Avitall Jan 1996 A
5490819 Nicholas et al. Feb 1996 A
5500012 Brucker et al. Mar 1996 A
5514130 Baker May 1996 A
5522815 Durgin, Jr. et al. Jun 1996 A
5536267 Edwards et al. Jul 1996 A
5540562 Giter Jul 1996 A
5542928 Evans et al. Aug 1996 A
5558671 Yates Sep 1996 A
5562503 Ellman et al. Oct 1996 A
5562703 Desai Oct 1996 A
5564440 Swartz et al. Oct 1996 A
5569242 Lax et al. Oct 1996 A
5569243 Kortenbach et al. Oct 1996 A
5573424 Poppe Nov 1996 A
5573533 Strul Nov 1996 A
5575810 Swanson et al. Nov 1996 A
5584872 LaFontaine et al. Dec 1996 A
5599346 Edwards et al. Feb 1997 A
5599350 Schulze et al. Feb 1997 A
5605539 Buelna et al. Feb 1997 A
5609151 Mulier et al. Mar 1997 A
5611813 Lichtman Mar 1997 A
5620415 Lucey et al. Apr 1997 A
5633578 Eggers et al. May 1997 A
5637110 Pennybacker et al. Jun 1997 A
5640955 Ockuly et al. Jun 1997 A
5643197 Brucker et al. Jul 1997 A
5647869 Goble et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5653692 Masterson et al. Aug 1997 A
5658281 Heard Aug 1997 A
5660836 Knowlton Aug 1997 A
5676662 Fleischhacker et al. Oct 1997 A
5676693 LaFontaine Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5683366 Eggers et al. Nov 1997 A
5683384 Gough et al. Nov 1997 A
5687723 Avitall Nov 1997 A
5688270 Yates et al. Nov 1997 A
5693045 Eggers Dec 1997 A
5697281 Eggers et al. Dec 1997 A
5697536 Eggers et al. Dec 1997 A
5697882 Eggers et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5697927 Imran et al. Dec 1997 A
5702386 Stern et al. Dec 1997 A
5709680 Yates et al. Jan 1998 A
5713896 Nardella Feb 1998 A
5718241 Ben-Haim et al. Feb 1998 A
5718701 Shai et al. Feb 1998 A
5718703 Chin Feb 1998 A
5722400 Ockuly et al. Mar 1998 A
5725524 Mulier et al. Mar 1998 A
5730127 Avitall Mar 1998 A
5735846 Panescu et al. Apr 1998 A
5743903 Stern et al. Apr 1998 A
5746739 Sutter May 1998 A
5749869 Lindenmeier et al. May 1998 A
5755717 Yates et al. May 1998 A
5755753 Knowlton May 1998 A
5766153 Eggers et al. Jun 1998 A
5766167 Eggers et al. Jun 1998 A
5785705 Baker Jul 1998 A
5785706 Bednarek Jul 1998 A
5792140 Tu et al. Aug 1998 A
5797905 Fleischman et al. Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5800413 Swartz et al. Sep 1998 A
5800482 Pomeranz Sep 1998 A
5807393 Williamson et al. Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810805 Sutcu et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5817093 Williamson et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5827271 Buysse et al. Oct 1998 A
5827281 Levin Oct 1998 A
5833703 Manushakian Nov 1998 A
5843019 Eggers et al. Dec 1998 A
5843021 Edwards et al. Dec 1998 A
5843078 Sharkey Dec 1998 A
5843152 Tu et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5860951 Eggers et al. Jan 1999 A
5860974 Abele Jan 1999 A
5861002 Desai Jan 1999 A
5861021 Thome et al. Jan 1999 A
5868739 Lindenmeier et al. Feb 1999 A
5871469 Eggers et al. Feb 1999 A
5871524 Knowlton Feb 1999 A
5873855 Eggers et al. Feb 1999 A
5876398 Mulier et al. Mar 1999 A
5888198 Eggers et al. Mar 1999 A
5891095 Eggers et al. Apr 1999 A
5891141 Rydell Apr 1999 A
5891142 Eggers et al. Apr 1999 A
5893848 Negus et al. Apr 1999 A
5895355 Schaer Apr 1999 A
5895417 Pomeranz et al. Apr 1999 A
5897553 Mulier et al. Apr 1999 A
5902272 Eggers et al. May 1999 A
5902328 LaFontaine et al. May 1999 A
5904711 Flom et al. May 1999 A
5906613 Mulier et al. May 1999 A
5913854 Maguire et al. Jun 1999 A
5913856 Chia et al. Jun 1999 A
5919191 Lennox et al. Jul 1999 A
5919219 Knowlton Jul 1999 A
5921982 Lesh et al. Jul 1999 A
5921983 Shannon, Jr. Jul 1999 A
5925045 Reimels et al. Jul 1999 A
5935123 Edwards et al. Aug 1999 A
5948011 Knowlton Sep 1999 A
5951549 Richardson et al. Sep 1999 A
5954716 Sharkey et al. Sep 1999 A
5957919 Laufer Sep 1999 A
5964755 Edwards Oct 1999 A
5971983 Lesh Oct 1999 A
5976128 Schilling et al. Nov 1999 A
5980504 Sharkey et al. Nov 1999 A
5980516 Mulier et al. Nov 1999 A
5989248 Tu et al. Nov 1999 A
5992418 de la Rama et al. Nov 1999 A
5993412 Deily et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6004316 Laufer Dec 1999 A
6004319 Goble et al. Dec 1999 A
6007570 Sharkey et al. Dec 1999 A
6010500 Sherman et al. Jan 2000 A
6015391 Rishton et al. Jan 2000 A
6015407 Rieb et al. Jan 2000 A
6016809 Mulier et al. Jan 2000 A
6017338 Brucker et al. Jan 2000 A
6018676 Davis et al. Jan 2000 A
6019757 Scheldrup Feb 2000 A
6024733 Eggers et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6027501 Goble et al. Feb 2000 A
6030379 Panescu et al. Feb 2000 A
6032077 Pomeranz Feb 2000 A
6032674 Eggers et al. Mar 2000 A
6033398 Farley et al. Mar 2000 A
6035238 Ingle et al. Mar 2000 A
6036687 Laufer et al. Mar 2000 A
6045532 Eggers et al. Apr 2000 A
6047700 Eggers et al. Apr 2000 A
6048333 Lennox et al. Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6053912 Panescu et al. Apr 2000 A
6056744 Edwards May 2000 A
6056745 Panescu et al. May 2000 A
6056747 Saadat et al. May 2000 A
6059781 Yamanashi et al. May 2000 A
6063079 Hovda et al. May 2000 A
6063081 Mulier et al. May 2000 A
6066134 Eggers et al. May 2000 A
6066139 Ryan et al. May 2000 A
6068627 Orszulak et al. May 2000 A
6068653 LaFontaine May 2000 A
6071280 Edwards et al. Jun 2000 A
6073051 Sharkey et al. Jun 2000 A
6074389 Levine et al. Jun 2000 A
6080151 Swartz et al. Jun 2000 A
6081749 Ingle et al. Jun 2000 A
6083237 Huitema et al. Jul 2000 A
6086585 Hovda et al. Jul 2000 A
6086586 Hooven Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6093186 Goble Jul 2000 A
6095149 Sharkey et al. Aug 2000 A
6096037 Mulier et al. Aug 2000 A
6099514 Sharkey et al. Aug 2000 A
6102046 Weinstein et al. Aug 2000 A
6105581 Eggers et al. Aug 2000 A
6109268 Thapliyal et al. Aug 2000 A
6113596 Hooven et al. Sep 2000 A
6113597 Eggers et al. Sep 2000 A
6117109 Eggers et al. Sep 2000 A
6122549 Sharkey et al. Sep 2000 A
H1904 Yates et al. Oct 2000 H
6126682 Sharkey et al. Oct 2000 A
6135999 Fanton et al. Oct 2000 A
6141576 Littmann et al. Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6159194 Eggers et al. Dec 2000 A
6159208 Hovda et al. Dec 2000 A
6165169 Panescu et al. Dec 2000 A
6165175 Wampler et al. Dec 2000 A
6168594 LaFontaine et al. Jan 2001 B1
6171275 Webster, Jr. Jan 2001 B1
6174308 Goble et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6179824 Eggers et al. Jan 2001 B1
6179836 Eggers et al. Jan 2001 B1
6183469 Thapliyal et al. Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6190384 Ouchi Feb 2001 B1
6193715 Wrublewski et al. Feb 2001 B1
6193716 Shannon, Jr. Feb 2001 B1
6203542 Ellsberry et al. Mar 2001 B1
6210402 Olsen et al. Apr 2001 B1
6210410 Farin et al. Apr 2001 B1
6210411 Hofmann et al. Apr 2001 B1
6212426 Swanson Apr 2001 B1
6216704 Ingle et al. Apr 2001 B1
6217576 Tu et al. Apr 2001 B1
6221039 Durgin et al. Apr 2001 B1
6221069 Daikuzono Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6224593 Ryan et al. May 2001 B1
6226554 Tu et al. May 2001 B1
6228078 Eggers et al. May 2001 B1
6228082 Baker et al. May 2001 B1
6231591 Desai May 2001 B1
6235020 Cheng et al. May 2001 B1
6236891 Ingle et al. May 2001 B1
6238387 Miller, III May 2001 B1
6238391 Olsen et al. May 2001 B1
6238393 Mulier et al. May 2001 B1
6241753 Knowlton Jun 2001 B1
6241754 Swanson et al. Jun 2001 B1
6251110 Wampler Jun 2001 B1
6254600 Willink et al. Jul 2001 B1
6258086 Ashley et al. Jul 2001 B1
6258087 Edwards et al. Jul 2001 B1
6261311 Sharkey et al. Jul 2001 B1
6264650 Hovda et al. Jul 2001 B1
6264651 Underwood et al. Jul 2001 B1
6264652 Eggers et al. Jul 2001 B1
6264654 Swartz et al. Jul 2001 B1
6266551 Osadchy et al. Jul 2001 B1
6277112 Underwood et al. Aug 2001 B1
6280440 Gocho Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
6283988 Laufer et al. Sep 2001 B1
6283989 Laufer et al. Sep 2001 B1
6290715 Sharkey et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6293945 Parins et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6296638 Davison et al. Oct 2001 B1
6296640 Wampler et al. Oct 2001 B1
6299633 Laufer Oct 2001 B1
6302903 Mulier et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6309387 Eggers et al. Oct 2001 B1
6311090 Knowlton Oct 2001 B1
6312408 Eggers et al. Nov 2001 B1
6312430 Wilson et al. Nov 2001 B1
6315777 Comben Nov 2001 B1
6322549 Eggers et al. Nov 2001 B1
6322559 Daulton et al. Nov 2001 B1
6327505 Medhkour et al. Dec 2001 B1
6328735 Curley et al. Dec 2001 B1
6328736 Mulier et al. Dec 2001 B1
6336926 Goble Jan 2002 B1
6350262 Ashley Feb 2002 B1
6350276 Knowlton Feb 2002 B1
6352533 Ellman et al. Mar 2002 B1
6355032 Hovda et al. Mar 2002 B1
6358245 Edwards et al. Mar 2002 B1
6358248 Mulier et al. Mar 2002 B1
6363937 Hovda et al. Apr 2002 B1
6371956 Wilson et al. Apr 2002 B1
6379350 Sharkey et al. Apr 2002 B1
6379351 Thapliyal et al. Apr 2002 B1
6391025 Weinstein et al. May 2002 B1
6391028 Fanton et al. May 2002 B1
6402742 Blewett et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
6409723 Edwards Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6416507 Eggers et al. Jul 2002 B1
6416508 Eggers et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6425877 Edwards Jul 2002 B1
6432103 Ellsberry et al. Aug 2002 B1
6440130 Mulier et al. Aug 2002 B1
6443952 Mulier et al. Sep 2002 B1
6451017 Moutafis et al. Sep 2002 B1
6458123 Brucker et al. Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6461350 Underwood et al. Oct 2002 B1
6461354 Olsen et al. Oct 2002 B1
6461357 Sharkey et al. Oct 2002 B1
6464695 Hovda et al. Oct 2002 B2
6468270 Hovda et al. Oct 2002 B1
6468274 Alleyne et al. Oct 2002 B1
6468275 Wampler et al. Oct 2002 B1
6471698 Edwards et al. Oct 2002 B1
6475216 Mulier et al. Nov 2002 B2
6478793 Cosman et al. Nov 2002 B1
6482202 Goble et al. Nov 2002 B1
6485490 Wampler et al. Nov 2002 B2
6488680 Francischelli et al. Dec 2002 B1
6493589 Medhkour et al. Dec 2002 B1
6494902 Hoey et al. Dec 2002 B2
6497704 Ein-Gal Dec 2002 B2
6497705 Comben Dec 2002 B2
6506189 Rittman, III et al. Jan 2003 B1
6508815 Strul et al. Jan 2003 B1
6517536 Hooven et al. Feb 2003 B2
6526320 Mitchell Feb 2003 B2
6537248 Mulier et al. Mar 2003 B2
6537272 Christopherson et al. Mar 2003 B2
6539265 Medhkour et al. Mar 2003 B2
6558379 Batchelor et al. May 2003 B1
6558385 McClurken et al. May 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6577902 Laufer et al. Jun 2003 B1
6579288 Swanson et al. Jun 2003 B1
6585732 Mulier et al. Jul 2003 B2
6602248 Sharps et al. Aug 2003 B1
6603988 Dowlatshahi Aug 2003 B2
6610060 Mulier et al. Aug 2003 B2
6613048 Mulier et al. Sep 2003 B2
6623515 Mulier et al. Sep 2003 B2
6626899 Houser et al. Sep 2003 B2
6645202 Pless et al. Nov 2003 B1
6666862 Jain et al. Dec 2003 B2
6669692 Nelson et al. Dec 2003 B1
6676660 Wampler Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6682501 Nelson et al. Jan 2004 B1
6682527 Strul Jan 2004 B2
6682528 Frazier et al. Jan 2004 B2
6685700 Behl et al. Feb 2004 B2
6685701 Orszulak et al. Feb 2004 B2
6685704 Greep Feb 2004 B2
6689129 Baker Feb 2004 B2
6689131 McClurken Feb 2004 B2
6692489 Heim et al. Feb 2004 B1
6694984 Habib Feb 2004 B2
6695837 Howell Feb 2004 B2
6695840 Schulze Feb 2004 B2
6699240 Francischelli Mar 2004 B2
6699242 Heggeness Mar 2004 B2
6699244 Carranza et al. Mar 2004 B2
6699268 Kordis et al. Mar 2004 B2
6702810 McClurken et al. Mar 2004 B2
6702812 Cosmescu Mar 2004 B2
6706039 Mulier et al. Mar 2004 B2
6712074 Edwards et al. Mar 2004 B2
6712811 Underwood et al. Mar 2004 B2
6712813 Ellman et al. Mar 2004 B2
6712816 Hung et al. Mar 2004 B2
6716211 Mulier et al. Apr 2004 B2
6719754 Underwood et al. Apr 2004 B2
6723094 Desinger Apr 2004 B1
6726683 Shaw Apr 2004 B1
6726684 Woloszko et al. Apr 2004 B1
6726686 Buysse et al. Apr 2004 B2
6730081 Desai May 2004 B1
6733496 Ashley et al. May 2004 B2
6733498 Paton et al. May 2004 B2
6733501 Levine May 2004 B2
6736810 Hoey et al. May 2004 B2
6740058 Lal et al. May 2004 B2
6740079 Eggers et al. May 2004 B1
6740082 Shadduck May 2004 B2
6740084 Ryan May 2004 B2
6740102 Hess et al. May 2004 B2
6743197 Edwards Jun 2004 B1
6743229 Buysse et al. Jun 2004 B2
6743230 Lutze et al. Jun 2004 B2
6746447 Davison et al. Jun 2004 B2
6755825 Shoenman et al. Jun 2004 B2
6755827 Mulier et al. Jun 2004 B2
6757565 Sharkey et al. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6761718 Madsen Jul 2004 B2
6764487 Mulier et al. Jul 2004 B2
6770070 Balbierz Aug 2004 B1
6770071 Woloszko et al. Aug 2004 B2
6770072 Truckai et al. Aug 2004 B1
6772012 Ricart et al. Aug 2004 B2
6772013 Ingle et al. Aug 2004 B1
6775575 Bommannan et al. Aug 2004 B2
6776780 Mulier et al. Aug 2004 B2
6780177 Shafirstein et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6786906 Cobb Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
6800077 Mucko et al. Oct 2004 B1
6802842 Ellman et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6808525 Latterell et al. Oct 2004 B2
6813520 Truckai et al. Nov 2004 B2
6814714 Novak et al. Nov 2004 B1
6814731 Swanson Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6827713 Bek et al. Dec 2004 B2
6827725 Batchelor et al. Dec 2004 B2
6832997 Uchida et al. Dec 2004 B2
6835195 Schulze et al. Dec 2004 B2
6836688 Ingle et al. Dec 2004 B2
6843789 Goble Jan 2005 B2
6845264 Skladnev et al. Jan 2005 B1
6849073 Hoey et al. Feb 2005 B2
6855145 Ciarrocca Feb 2005 B2
6858028 Mulier et al. Feb 2005 B2
6860882 Battles et al. Mar 2005 B2
6863669 Spitzer Mar 2005 B2
6864686 Novak et al. Mar 2005 B2
6881214 Cosman et al. Apr 2005 B2
6882885 Levy, Jr. et al. Apr 2005 B2
6887237 McGaffigan May 2005 B2
6887240 Lands et al. May 2005 B1
6893435 Goble May 2005 B2
6893440 Durgin et al. May 2005 B2
6896672 Eggers et al. May 2005 B1
6896674 Woloszko et al. May 2005 B1
6899712 Moutafis et al. May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6905499 Mucko et al. Jun 2005 B1
6911019 Mulier et al. Jun 2005 B2
6915806 Pacek et al. Jul 2005 B2
6921398 Carmel et al. Jul 2005 B2
6921399 Carmel et al. Jul 2005 B2
6923803 Goble Aug 2005 B2
6923805 LaFontaine et al. Aug 2005 B1
6926706 Sealfon Aug 2005 B1
6926716 Baker et al. Aug 2005 B2
6926717 Garito et al. Aug 2005 B1
6929640 Underwood et al. Aug 2005 B1
6929641 Goble et al. Aug 2005 B2
6929642 Xiao et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6929645 Battles et al. Aug 2005 B2
6932810 Ryan Aug 2005 B2
6932815 Sutter Aug 2005 B2
6942661 Swanson Sep 2005 B2
6949096 Davison et al. Sep 2005 B2
6949098 Mulier et al. Sep 2005 B2
6951559 Greep Oct 2005 B1
6953461 McClurken et al. Oct 2005 B2
6960204 Eggers et al. Nov 2005 B2
6960207 Vanney et al. Nov 2005 B2
6960210 Lands et al. Nov 2005 B2
6962589 Mulier et al. Nov 2005 B2
6964274 Ryan et al. Nov 2005 B1
6964661 Rioux et al. Nov 2005 B2
6966907 Goble Nov 2005 B2
6966909 Marshall et al. Nov 2005 B2
6971394 Sliwa, Jr. et al. Dec 2005 B2
6974452 Gille et al. Dec 2005 B1
6974453 Woloszko et al. Dec 2005 B2
6979332 Adams Dec 2005 B2
6984231 Goble et al. Jan 2006 B2
6986769 Nelson et al. Jan 2006 B2
6991631 Woloszko et al. Jan 2006 B2
7001380 Goble Feb 2006 B2
7001382 Gallo, Sr. Feb 2006 B2
7004941 Tvinnereim et al. Feb 2006 B2
7004942 Laird et al. Feb 2006 B2
7008419 Shadduck Mar 2006 B2
7008421 Daniel et al. Mar 2006 B2
7033348 Alfano et al. Apr 2006 B2
7033356 Latterell et al. Apr 2006 B2
7041096 Malis et al. May 2006 B2
7041101 Eggers May 2006 B2
7041102 Truckai et al. May 2006 B2
7052494 Goble et al. May 2006 B2
7060064 Allen et al. Jun 2006 B2
7063670 Sampson et al. Jun 2006 B2
7066932 Morgan et al. Jun 2006 B1
7066936 Ryan Jun 2006 B2
7070596 Woloszko et al. Jul 2006 B1
7070604 Garito et al. Jul 2006 B1
7074217 Strul et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7083601 Cosmescu Aug 2006 B1
7087051 Bourne et al. Aug 2006 B2
7087053 Vanney Aug 2006 B2
7094215 Davison et al. Aug 2006 B2
7101387 Garabedian et al. Sep 2006 B2
7104986 Hovda et al. Sep 2006 B2
7112199 Cosmescu Sep 2006 B2
7115139 McClurken et al. Oct 2006 B2
7125406 Given Oct 2006 B2
7147634 Nesbitt Dec 2006 B2
7147635 Ciarrocca Dec 2006 B2
7147637 Goble Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7150746 DeCesare et al. Dec 2006 B2
7150747 McDonald et al. Dec 2006 B1
7150748 Ebbutt et al. Dec 2006 B2
7153300 Goble Dec 2006 B2
7156845 Mulier et al. Jan 2007 B2
7166105 Mulier et al. Jan 2007 B2
7166106 Bartel et al. Jan 2007 B2
7169143 Eggers et al. Jan 2007 B2
7169144 Hoey et al. Jan 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7247155 Hoey et al. Jul 2007 B2
7261711 Mulier et al. Aug 2007 B2
7309325 Mulier et al. Dec 2007 B2
7311708 McClurken Dec 2007 B2
7322974 Swoyer et al. Jan 2008 B2
7361175 Suslov Apr 2008 B2
7364579 Mulier et al. Apr 2008 B2
20010014819 Ingle et al. Aug 2001 A1
20010020167 Woloszko et al. Sep 2001 A1
20010023365 Medhkour et al. Sep 2001 A1
20010025178 Mulier et al. Sep 2001 A1
20010032002 McClurken et al. Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20010041921 Mulier et al. Nov 2001 A1
20010051802 Woloszko et al. Dec 2001 A1
20010051804 Mulier et al. Dec 2001 A1
20020002393 Mitchell Jan 2002 A1
20020010463 Mulier et al. Jan 2002 A1
20020013582 Mulier et al. Jan 2002 A1
20020016589 Swartz et al. Feb 2002 A1
20020019628 Comben Feb 2002 A1
20020022870 Truckai et al. Feb 2002 A1
20020026186 Woloszko et al. Feb 2002 A1
20020026187 Swanson Feb 2002 A1
20020029036 Goble et al. Mar 2002 A1
20020035361 Houser et al. Mar 2002 A1
20020035387 Mulier et al. Mar 2002 A1
20020049438 Sharkey et al. Apr 2002 A1
20020049439 Mulier et al. Apr 2002 A1
20020049483 Knowlton Apr 2002 A1
20020058933 Christopherson et al. May 2002 A1
20020058935 Hoey et al. May 2002 A1
20020062123 McClurken et al. May 2002 A1
20020095150 Goble Jul 2002 A1
20020095151 Dahla et al. Jul 2002 A1
20020095152 Ciarrocca et al. Jul 2002 A1
20020099366 Dahla et al. Jul 2002 A1
20020115991 Edwards Aug 2002 A1
20020115992 Utley et al. Aug 2002 A1
20020120259 Lettice et al. Aug 2002 A1
20020120260 Morris et al. Aug 2002 A1
20020120261 Morris et al. Aug 2002 A1
20020128650 McClurken Sep 2002 A1
20020133148 Daniel et al. Sep 2002 A1
20020151884 Hoey et al. Oct 2002 A1
20020156511 Habib Oct 2002 A1
20020161364 Mulier et al. Oct 2002 A1
20020169446 Mulier et al. Nov 2002 A1
20020177846 Mulier et al. Nov 2002 A1
20020183733 Mulier et al. Dec 2002 A1
20020188284 To et al. Dec 2002 A1
20020193851 Silverman et al. Dec 2002 A1
20020198524 Mulier et al. Dec 2002 A1
20030004510 Wham et al. Jan 2003 A1
20030032955 Mulier et al. Feb 2003 A1
20030073989 Hoey et al. Apr 2003 A1
20030114850 McClurken et al. Jun 2003 A1
20030181902 Mulier et al. Sep 2003 A1
20030204185 Sherman et al. Oct 2003 A1
20030216733 McClurken et al. Nov 2003 A1
20040015162 McGaffigan Jan 2004 A1
20040015163 Buysse et al. Jan 2004 A1
20040015215 Fredricks et al. Jan 2004 A1
20040015216 DeSisto Jan 2004 A1
20040015218 Finch et al. Jan 2004 A1
20040019350 O'Brien et al. Jan 2004 A1
20040024395 Ellman et al. Feb 2004 A1
20040024396 Eggers Feb 2004 A1
20040024398 Hovda et al. Feb 2004 A1
20040024399 Sharps et al. Feb 2004 A1
20040030327 Golan Feb 2004 A1
20040030328 Eggers et al. Feb 2004 A1
20040030330 Brassell et al. Feb 2004 A1
20040030332 Knowlton et al. Feb 2004 A1
20040030333 Goble Feb 2004 A1
20040034340 Biscup Feb 2004 A1
20040034346 Stern et al. Feb 2004 A1
20040034349 Kirwan, Jr. et al. Feb 2004 A1
20040034400 Ingle et al. Feb 2004 A1
20040039429 Daniel et al. Feb 2004 A1
20040044341 Truckai et al. Mar 2004 A1
20040054363 Vaska et al. Mar 2004 A1
20040054365 Goble Mar 2004 A1
20040054366 Davison et al. Mar 2004 A1
20040054369 Nelson et al. Mar 2004 A1
20040054370 Given Mar 2004 A1
20040059328 Daniel et al. Mar 2004 A1
20040059363 Alvarez et al. Mar 2004 A1
20040064023 Ryan et al. Apr 2004 A1
20040064137 Pellegrino et al. Apr 2004 A1
20040068306 Shadduck Apr 2004 A1
20040068307 Goble Apr 2004 A1
20040073205 Treat et al. Apr 2004 A1
20040073208 Sutter Apr 2004 A1
20040078034 Acker et al. Apr 2004 A1
20040078037 Batchelor et al. Apr 2004 A1
20040078038 Desinger et al. Apr 2004 A1
20040082946 Malis et al. Apr 2004 A1
20040082952 Dycus et al. Apr 2004 A1
20040087937 Eggers et al. May 2004 A1
20040087939 Eggers et al. May 2004 A1
20040087940 Jahns et al. May 2004 A1
20040087943 Dycus et al. May 2004 A1
20040088029 Yamamoto May 2004 A1
20040092925 Rizoiu et al. May 2004 A1
20040092926 Hoey et al. May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040102770 Goble May 2004 A1
20040102824 Sharkey et al. May 2004 A1
20040116923 Desinger Jun 2004 A1
20040122420 Amoah Jun 2004 A1
20040122423 Dycus et al. Jun 2004 A1
20040122494 Eggers et al. Jun 2004 A1
20040138654 Goble Jul 2004 A1
20040138655 McClurken et al. Jul 2004 A1
20040138657 Bourne et al. Jul 2004 A1
20040143257 Fuimaono Jul 2004 A1
20040143258 Fuimaono Jul 2004 A1
20040143259 Mulier et al. Jul 2004 A1
20040143263 Schechter et al. Jul 2004 A1
20040147902 McGuckin, Jr. et al. Jul 2004 A1
20040147916 Baker Jul 2004 A1
20040147922 Keppel Jul 2004 A1
20040147925 Buysse et al. Jul 2004 A1
20040162552 McClurken Aug 2004 A1
20040162554 Lee et al. Aug 2004 A1
20040162557 Tetzlaff et al. Aug 2004 A1
20040162572 Sauer Aug 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040172111 Hijii et al. Sep 2004 A1
20040176760 Qiu Sep 2004 A1
20040176761 Desinger Sep 2004 A1
20040176762 Lawes et al. Sep 2004 A1
20040181219 Goble et al. Sep 2004 A1
20040181250 Adams et al. Sep 2004 A1
20040186469 Woloszko et al. Sep 2004 A1
20040186470 Goble et al. Sep 2004 A1
20040186535 Knowlton Sep 2004 A1
20040193148 Wham et al. Sep 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040193152 Sutton et al. Sep 2004 A1
20040193211 Voegele et al. Sep 2004 A1
20040199156 Rioux et al. Oct 2004 A1
20040199160 Slater Oct 2004 A1
20040206365 Knowlton Oct 2004 A1
20040210213 Fuimaono et al. Oct 2004 A1
20040210214 Knowlton Oct 2004 A1
20040215181 Christopherson et al. Oct 2004 A1
20040215182 Lee Oct 2004 A1
20040215183 Hoey et al. Oct 2004 A1
20040215184 Eggers et al. Oct 2004 A1
20040215185 Truckai et al. Oct 2004 A1
20040215188 Mulier et al. Oct 2004 A1
20040215235 Jackson et al. Oct 2004 A1
20040215296 Ganz et al. Oct 2004 A1
20040220561 Kirwan, Jr. et al. Nov 2004 A1
20040220562 Garabedian et al. Nov 2004 A1
20040225288 Buysse et al. Nov 2004 A1
20040230190 Dahla et al. Nov 2004 A1
20040236322 Mulier et al. Nov 2004 A1
20040236324 Muller et al. Nov 2004 A1
20040243125 Dycus et al. Dec 2004 A1
20040243163 Casiano et al. Dec 2004 A1
20040249371 Dycus et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040249425 Roy et al. Dec 2004 A1
20040260279 Goble et al. Dec 2004 A1
20040260280 Sartor Dec 2004 A1
20040260368 Ingle et al. Dec 2004 A1
20050010205 Hovda et al. Jan 2005 A1
20050010212 McClurken et al. Jan 2005 A1
20050015085 McClurken et al. Jan 2005 A1
20050015086 Platt Jan 2005 A1
20050015130 Gill Jan 2005 A1
20050021025 Buysse et al. Jan 2005 A1
20050021026 Baily Jan 2005 A1
20050021027 Shields et al. Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050033292 Teitelbaum et al. Feb 2005 A1
20050038471 Chan et al. Feb 2005 A1
20050043728 Ciarrocca Feb 2005 A1
20050049583 Swanson Mar 2005 A1
20050049586 Daniel et al. Mar 2005 A1
20050055019 Skarda Mar 2005 A1
20050055020 Skarda Mar 2005 A1
20050059966 McClurken et al. Mar 2005 A1
20050070888 Dimatteo et al. Mar 2005 A1
20050070891 DeSisto Mar 2005 A1
20050070894 McClurken Mar 2005 A1
20050070896 Daniel et al. Mar 2005 A1
20050080410 Rioux et al. Apr 2005 A1
20050080413 Canady Apr 2005 A1
20050085804 McGaffigan Apr 2005 A1
20050085809 Mucko et al. Apr 2005 A1
20050085880 Truckai et al. Apr 2005 A1
20050090816 McClurken et al. Apr 2005 A1
20050090819 Goble Apr 2005 A1
20050096649 Adams May 2005 A1
20050096651 Truckai et al. May 2005 A1
20050101951 Wham et al. May 2005 A1
20050101952 Lands et al. May 2005 A1
20050101965 Ryan May 2005 A1
20050107778 Rioux et al. May 2005 A1
20050107779 Ellman et al. May 2005 A1
20050107784 Moses et al. May 2005 A1
20050107786 Canady May 2005 A1
20050113820 Goble et al. May 2005 A1
20050113825 Cosmescu May 2005 A1
20050124987 Goble Jun 2005 A1
20050130929 Boyd Jun 2005 A1
20050131402 Ciarrocca et al. Jun 2005 A1
20050137590 Lawes et al. Jun 2005 A1
20050137662 Morris et al. Jun 2005 A1
20050143729 Francischelli et al. Jun 2005 A1
20050154385 Heim et al. Jul 2005 A1
20050154433 Levy, Jr. et al. Jul 2005 A1
20050159739 Paul et al. Jul 2005 A1
20050159740 Paul et al. Jul 2005 A1
20050159778 Heinrich et al. Jul 2005 A1
20050159797 Chandran et al. Jul 2005 A1
20050165444 Hart et al. Jul 2005 A1
20050171524 Stern et al. Aug 2005 A1
20050171526 Rioux et al. Aug 2005 A1
20050171532 Ciarrocca Aug 2005 A1
20050171533 Latterell et al. Aug 2005 A1
20050171534 Habib Aug 2005 A1
20050171583 Mosher et al. Aug 2005 A1
20050177150 Amoah et al. Aug 2005 A1
20050177209 Leung et al. Aug 2005 A1
20050187543 Underwood et al. Aug 2005 A1
20050187599 Sharkey et al. Aug 2005 A1
20050203503 Edwards et al. Sep 2005 A1
20050203504 Wham et al. Sep 2005 A1
20050209591 Sutter Sep 2005 A1
20050209621 Gordon et al. Sep 2005 A1
20050222602 Sutter et al. Oct 2005 A1
20050222611 Weitkamp Oct 2005 A1
20050228372 Truckai et al. Oct 2005 A1
20050245918 Sliwa, Jr. et al. Nov 2005 A1
20050245921 Strul et al. Nov 2005 A1
20050245922 Goble Nov 2005 A1
20050245923 Christopherson et al. Nov 2005 A1
20050250477 Eastwood et al. Nov 2005 A1
20050251128 Amoah Nov 2005 A1
20050251134 Woloszko et al. Nov 2005 A1
20050256519 Goble et al. Nov 2005 A1
20050261676 Hall et al. Nov 2005 A1
20050261677 Hall et al. Nov 2005 A1
20050267465 Hillier et al. Dec 2005 A1
20050267467 Paul et al. Dec 2005 A1
20050267468 Truckai et al. Dec 2005 A1
20050267469 Blocher Dec 2005 A1
20050273092 G. et al. Dec 2005 A1
20050273097 Ryan Dec 2005 A1
20050277915 DeCesare et al. Dec 2005 A1
20050277916 DeCesare et al. Dec 2005 A1
20050277917 Garito et al. Dec 2005 A1
20050283147 Yachi Dec 2005 A1
20050283148 Janssen et al. Dec 2005 A1
20050283149 Thorne et al. Dec 2005 A1
20050283150 Moutafis et al. Dec 2005 A1
20050283151 Ebbutt et al. Dec 2005 A1
20050288661 Sauvageau et al. Dec 2005 A1
20050288665 Woloszko Dec 2005 A1
20060004356 Bilski et al. Jan 2006 A1
20060009760 Mulier et al. Jan 2006 A1
20060009762 Whayne Jan 2006 A1
20060015097 Mulier et al. Jan 2006 A1
20060020265 Ryan Jan 2006 A1
20060025765 Landman et al. Feb 2006 A1
20060025766 Heinrich et al. Feb 2006 A1
20060030912 Eggers et al. Feb 2006 A1
20060036235 Swoyer et al. Feb 2006 A1
20060036237 Davison et al. Feb 2006 A1
20060036239 Canady Feb 2006 A1
20060041254 Francischelli et al. Feb 2006 A1
20060041255 Eggers et al. Feb 2006 A1
20060047275 Goble Mar 2006 A1
20060047280 Goble et al. Mar 2006 A1
20060047331 Lax et al. Mar 2006 A1
20060052770 Mulier et al. Mar 2006 A1
20060064085 Schechter et al. Mar 2006 A1
20060064101 Arramon Mar 2006 A1
20060074411 Carmel et al. Apr 2006 A1
20060074414 Mulier et al. Apr 2006 A1
20060079872 Eggleston Apr 2006 A1
20060079888 Mulier et al. Apr 2006 A1
20060084968 Truckai et al. Apr 2006 A1
20060095026 Ricart et al. May 2006 A1
20060095031 Ormsby May 2006 A1
20060095034 Garito et al. May 2006 A1
20060095075 Burkinshaw et al. May 2006 A1
20060095103 Eggers et al. May 2006 A1
20060100619 McClurken et al. May 2006 A1
20060106376 Godara et al. May 2006 A1
20060106379 O'Brien et al. May 2006 A1
20060111705 Janzen et al. May 2006 A1
20060111709 Goble et al. May 2006 A1
20060111710 Goble et al. May 2006 A1
20060111711 Goble May 2006 A1
20060111741 Nardella May 2006 A1
20060116675 McClurken et al. Jun 2006 A1
20060122593 Jun et al. Jun 2006 A1
20060129145 Woloszko et al. Jun 2006 A1
20060129185 Paternuosto Jun 2006 A1
20060142757 Daniel et al. Jun 2006 A1
20060149225 McClurken Jul 2006 A1
20060167446 Pozzato Jul 2006 A1
20060167449 Mulier et al. Jul 2006 A1
20060167451 Cropper Jul 2006 A1
20060178667 Sartor et al. Aug 2006 A1
20060178668 Albritton, IV Aug 2006 A1
20060178670 Woloszko et al. Aug 2006 A1
20060178699 Surti Aug 2006 A1
20060184164 Malis et al. Aug 2006 A1
20060184167 Vaska et al. Aug 2006 A1
20060189977 Allen et al. Aug 2006 A1
20060189979 Esch et al. Aug 2006 A1
20060195079 Eberl Aug 2006 A1
20060200123 Ryan Sep 2006 A1
20060217700 Garito et al. Sep 2006 A1
20060217701 Young et al. Sep 2006 A1
20060217707 Daniel et al. Sep 2006 A1
20060224154 Shadduck et al. Oct 2006 A1
20060235286 Stone et al. Oct 2006 A1
20060235377 Earley et al. Oct 2006 A1
20060235379 McClurken et al. Oct 2006 A1
20060241577 Balbierz et al. Oct 2006 A1
20060241587 Heim et al. Oct 2006 A1
20060241588 Heim et al. Oct 2006 A1
20060241589 Heim et al. Oct 2006 A1
20060247614 Sampson et al. Nov 2006 A1
20060259025 Dahla Nov 2006 A1
20060259031 Carmel et al. Nov 2006 A1
20060259070 Livneh Nov 2006 A1
20060264927 Ryan Nov 2006 A1
20060264929 Goble et al. Nov 2006 A1
20060264931 Chapman et al. Nov 2006 A1
20060271033 Ein-Gal Nov 2006 A1
20060271036 Garabedian et al. Nov 2006 A1
20060271042 Latterell et al. Nov 2006 A1
20060276783 Cosmescu Dec 2006 A1
20060276785 Asahara et al. Dec 2006 A1
20070000501 Wert et al. Jan 2007 A1
20070010812 Mittelstein et al. Jan 2007 A1
20070016182 Lipson et al. Jan 2007 A1
20070049920 McClurken et al. Mar 2007 A1
20070093808 Mulier et al. Apr 2007 A1
20070118114 Miller et al. May 2007 A1
20070208332 Mulier et al. Sep 2007 A1
20080015563 Hoey et al. Jan 2008 A1
20080071270 Desinger et al. Mar 2008 A1
Foreign Referenced Citations (17)
Number Date Country
1 007 960 May 1957 DE
0 175 595 Mar 1986 EP
0 853 922 Jul 1998 EP
1 095 627 May 2001 EP
2 235 669 Jan 1975 FR
57-117843 Jul 1982 JP
5-092009 Apr 1993 JP
7-124245 May 1995 JP
WO 9705829 Feb 1997 WO
WO 9838932 Sep 1998 WO
WO 9966850 Dec 1999 WO
WO 0078240 Dec 2000 WO
WO 0128444 Apr 2001 WO
WO 0180757 Nov 2001 WO
WO 2005122938 Dec 2005 WO
WO 2006062916 Jun 2006 WO
WO 2006062939 Jun 2006 WO
Non-Patent Literature Citations (1)
Entry
Supplemental European Search Report dated Mar. 21, 2006 issued in related European Patent Application No. 03781437.3-2305.
Related Publications (1)
Number Date Country
20060235379 A1 Oct 2006 US
Provisional Applications (1)
Number Date Country
60422190 Oct 2002 US