The invention relates to the mixing or blending of two or more fluids at a desired ratio.
Presently, fluid mixing in the contemplated fields where the invention would be useful is mainly accomplished by injecting a secondary fluid into a main fluid using an electrical pump. This means of mixing works as long as the flow remains constant and the pump speed is adjusted to supply the desired ratio of secondary fluid to main fluid. Pump mixing is not practical in many applications because electricity may not be available and/or the complexity of the design and components needed make it impractical.
Another method of mixing fluids is using siphon injectors. Siphon injectors work on the fluid dynamics principle of the venturi meter. This method has many limitations because the vacuum effect relies on atmospheric pressure to push siphon fluid into the venturi. Once the vacuum pressure approaches atmospheric pressure, the maximum siphon rate is reached regardless of additional pressure drop across the venture and no further fluid can be brought into the mixture.
What is needed is a mixer that makes it possible to provide accurate mixing of two or more fluids without using external power and to automatically adjust to changing flow rates maintaining precise ratio mixture during continuous changing flow rates.
The present invention is a fluid blending and mixing apparatus that passes a main fluid through turbine blades. A small amount of energy is used from the main fluid flow to turn the turbine shaft. As the turbine shaft rotates, it causes a pump gear, located in a separate chamber, to rotate. The rotation of the pump gear, in turn, causes a pump shaft to turn. The pump shaft is preferably shaped as a screw style positive displacement pump, although other types of pumps could be used. The rotation of this pump causes the mixing fluid to enter the pump at a “mixing fluid inlet” at low pressure and exit the pump at a “mixing fluid outlet” at high pressure. The inlet and outlet orifice or opening sizes are determined based on the application for the invention. As the mixing fluid enters the main fluid flow, it passes the turbine blades and, due to the turbulence of the fluid at this stage, it mixes with the main fluid.
As mentioned above, there are several types of positive displacement pumps that can be used for the present invention. A positive displacement pump causes a fluid to move by trapping a fixed amount of it and then forcing (displacing) that trapped volume into the discharge pipe. A positive displacement pump can be further classified as either: a rotary-type (for example the rotary or vane), a lobe pump similar to oil pumps used in car engines, the Wendelkolben pump or the helical twisted Roots pump, the liquid ring vacuum pump, or an Archimedes screw pump. These are examples only.
As the main fluid changes velocity, so does the turbine rotation, thus, the pump speed will adjust automatically causing the mixing fluid pumped into the main fluid to maintain constant mixing ratio.
The mixing ratio can be controlled by the gear ratio of turbine to pump, or by the design of the pump shaft.
The mixing can be stopped by disengaging the turbine/pump gears, or by blocking the mixing fluid inlet. One can also rotate the mixing fluid inlet so that the inlet becomes part of the main fluid and thus main fluid flows through the pump instead of the mixing fluid.
Typical components that comprise the invention are:
The present invention mixer can vary in size from very small to large. The size is determined by volumetric flow of the main fluid, mixing ratio, and operating pressures.
The invention can be used in many different applications and mix many different fluids. Some applications include mixing soap into water for:
In the accompanying drawing:
Referring now to the drawing,
The fluid blending apparatus 10 comprises a source of a predetermined fluid which is dispensable either into a fluid chamber reservoir 12 or from its own container/reservoir as depicted in
The predetermined fluid flows through a fluid inlet 14A into a pump assembly comprising a pump cylinder 18 through which a pump rotating shaft 20A rotates. The pump rotating shaft 20A further has threads 20B and is configured to form a positive displacement screw pump where the screw pump forms a main pump drive for the predetermined fluid.
The predetermined fluid exits through a predetermined fluid outlet 22 in the pump assembly and enters a main fluid stream in a mixing chamber 26 in which the main fluid flows through from a mixing chamber inlet 40A and initial mixing with the predetermined fluid takes place.
The mixing or blending is further affected by a turbine blade assembly wherein blades 28 of the turbine blade assembly are located on a turning wheel 30 positioned in such an angle as to provide a maximum torque with a minimum pressure drop.
A turbine shaft 34 is in mechanical communication with a turbine gear 36 and is configured so as to transfer energy of the rotating turbine blade assembly to the turbine gear 36. The turbine gear/pulley 36 is in mechanical communication with a pump gear/pulley 38 and is configured so as to transfer a rotational energy to the pump gear/pulley 38 of the pump assembly. The pump gear/pulley 38 is in mechanical communication with the pump assembly shaft 20A.
There are several means known in the art to provide for the above described mechanical communication between the driven components of the turbine and pump, including pulley/gear combinations, toothed gears, magnetic couplers, direct drive, etc., all of which are a matter of design choice for providing the pump drive system or mechanism and the turbine drive system or mechanism.
A blended or mixed main fluid and predetermined fluid flows on demand from a mixing chamber outlet 40B.
As mentioned above, the fluid chamber reservoir may be an attached bottle as shown on
The invention 10 further comprises one or more turbine guides 32 to facilitate a positioning of the turbine blade assembly and ensure that all of the main fluid and the predetermined fluid in the mixing chamber 26 are flowing through the blades 28.
Using the above apparatus 10, a method of blending a predetermined fluid with a main fluid accordingly comprises providing a source of a predetermined fluid to be mixed with a main fluid; dispensing the predetermined fluid through an inlet 14A of a positive displacement pump assembly (cylinder 18, shaft 20A, threads 20B, outlet 22, pump gear 38); transferring the predetermined fluid from a predetermined fluid reservoir 12 to a mixing chamber 26 through the outlet 22 of the positive displacement pump assembly; and using a turbine blade assembly (blades 28, wheel 30, guides 32, turbine shaft 34, turbine gear 36) within the mixing chamber 26, mixing a main fluid flowing into the mixing chamber 26 with the predetermined fluid.
The various chambers discussed above along with the associated components may generally be housed within an enclosure or housing 50 through which the main flow is connected at 40A and the mixed fluid exits at 40B.
The invention 10 further includes means for stopping the mixing or blocking the mixing fluid from entering or exiting the pump assembly. One example of doing this to provide a mechanism for disengaging the turbine/pump gear assemblies. A preferred relatively simple method of controlling the mixing function of the invention is as conceptually depicted in corresponding
The flow of the main stream fluid is controlled by a separate means, for example, a valve in the main stream flow path (not shown), or other well know devices known in the art typical of the application in which the invention is being used.
It should be understood that the preceding is merely a detailed description of one or more embodiments of this invention and that numerous changes to the disclosed embodiments can be made in accordance with the disclosure herein without departing from the spirit and scope of the invention. The preceding description, therefore, is not meant to limit the scope of the invention. Rather, the scope of the invention is to be determined only by the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3339897 | Davis, Jr. | Sep 1967 | A |
4159880 | Herfeld | Jul 1979 | A |
4194843 | Martin | Mar 1980 | A |
4439042 | Bertoglio | Mar 1984 | A |
20050237853 | Martel et al. | Oct 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20100188927 A1 | Jul 2010 | US |