Each rotor disk 26 includes a disk rim 32. The disk rim 32 secures the rotor blades 28. A fluid seal 34 is located between the rotor disk 26 and a stationary part of the turbine, such as a stator vane, a support or a tangential on-board injector (TOBI) 36. The fluid seal 34 defines a cavity 38 located axially above the fluid seal 34 and further defined by the stator vane 30 and the rotor blade 28. Air within the cavity 38 is flowing circumferentially about the axis A of rotation for the rotor disk 26. An interior cavity 40 is located axially below the fluid seal 34 and defined by the rotor disk 26 and the stationary component 36. A nozzle 42 leading from the TOBI 36 allows high pressure cooling air to reach the interior cavity 40 to cool the rotor disk 26.
The seal land 44 is in contact with the brush seal 46 extending from the stationary component 36. The seal land 44 is illustrated as extending axially toward the stationary component 36 along the axis A of the turbine engine 10. However, the seal land 44 can extend toward any stationary component of the turbine engine 10. The brush seal 46 includes an axial locking feature 48 to retain the brush seal 46 to the stationary component 36 and to prevent axial movement of the brush seal 46 along the axis A of the turbine engine 10. The brush seal 46 extends in a radially inward direction from the stationary component 36 and has bristles 50 which contact a radial face 52 of the seal land 44. The bristles 50 are wire bristles or the like to provide radial resilience and reduce wear on the seal land 44.
Referring to
The blade land segments 56 are integrally formed with the rotor blades 28. The rotor blade 28 has a root 57 contoured to fit into a complimentary contoured blade slot 58 in the disk rim 32. Walls 59 in the disk rim 32 define the individual blade slots 58. The rotor blade 28 is loaded in the blade slot 58, and each disk land segment 54 and blade land segment 56 mate with a circumferentially adjacent land segment 54 or 56 to provide a rigid structure. When the blade land segments 56 are worn, the individual rotor blades 28 and blade land segments 56 can be repaired or replaced. Also, use of the brush seal 46 reduces wear on the seal land 44, extending the life of the fluid seal 34 compared to the prior art abradable material.
After the rotor blade 28 is assembled in the blade slot 58, the disk land segments 54 and the blade land segments 56 fit together to form a segmented, ring-like fluid seal 34 around the circumference of the rotor disk 26. Each disk land segment 54 has a first interlocking feature 60, and each blade land segment 56 has a second interlocking feature 62. The first interlocking feature 60 and the second interlocking feature 62 interfit to align the disk land segments 54, with the blade land segments 56. In the example shown, the first interlocking feature 60 is a protrusion extending from the disk land segment 54, and the second interlocking feature 62 is a protrusion extending from the blade land segment 56. The protrusions overlap one another to create a shiplap joint and reduce circumferential and radial fluid leaks between the disk land segments 54 and the blade land segments 56. Alternatively, the first interlocking feature 60 and the second interlocking feature can be tongue and groove or other interfitting elements.
The seal land 104 is in contact with the brush seal 106 extending axially from the stationary component 36. The seal land 104 is illustrated as extending axially toward the stationary component 36 along the axis A of the turbine engine 10. The brush seal 106 includes an axial locking feature 108 to retain the brush seal 106 to the stationary component 36 and to prevent axial movement of the brush seal 106 along the axis A of the turbine engine 10. The brush seal 106 extends in an axial direction from the stationary component 36 and has bristles 110 which contact a radial face 112 of the seal land 104. The bristles 110 are wire bristles or the like to provide radial resilience and to reduce wear on the seal land 104.
Referring to
The blade land segments 116 are integrally formed in the rotor blades 28. The rotor blade 28 is loaded into a blade slot 58 in the disk rim 32. Walls 59 in the disk rim 32 define the individual blade slots 58. When the rotor blade 28 is loaded in the blade slot 58, each disk land segment 114 and blade land segment 116 mate with a circumferentially adjacent land segment 114 or 116 to provide a rigid structure. When the blade land segments 116 are worn, the individual rotor blades 28 and blade land segments 116 can be repaired or replaced. The brush seal 106 reduces wear on the seal land 104 extending the life of the fluid seal 102.
After the rotor blade 28 is assembled in the blade slot 58, the disk land segments 114 and the blade land segments 116 fit together to form a segmented, ring-like fluid seal 34 around the circumference of the rotor disk 26. Each disk land segment 114 can have a first interlocking feature 60, and each blade land segment 116 can have a second interlocking feature 62 as illustrated in
Although the example embodiment discloses an arrangement of assembling fluid seal segments onto a rotor disk for a turbine, the arrangement may be used for any rotor and seal assembly.
Although a preferred embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.
This application discloses subject matter related to co-pending US patent applications “HAMMERHEAD FLUID SEAL” (U.S. patent application Ser. No. 11/146,801), “COMBINED BLADE ATTACHMENT AND DISK LUG FLUID SEAL” (U.S. patent application Ser. No. 11/146,798) and “BLADE NECK FLUID SEAL” (U.S. patent application No. 11/146,660), each filed on Jul. 7, 2005, and “INTEGRATED BLADED FLUID SEAL” (U.S. patent application Ser. No. 11/260,357) filed on Oct. 27, 2005.