The present disclosure relates generally to fluid cartridges, and more particularly to a fluid cartridge for a printing device.
Inkjet printers often use replaceable fluid cartridges as a source of ink for printing. Such fluid cartridges include a housing often separated into one or more zones or chambers. For example, some fluid cartridges may be configured with a free ink chamber and at least one other chamber housing a capillary media. The free ink chamber and the other chamber(s) are configured to store an ink therein. During printing, the ink is selectively taken (or wicked) from one or more of the chambers via, e.g., a wick operatively connected to one or more nozzles of a printhead. The wick delivers the ink to the nozzles, and the ink is ejected through the nozzles onto a printing surface.
Features and advantages of embodiment(s) of the present disclosure will become apparent by reference to the following detailed description and drawings, in which like reference numerals correspond to the same or similar, though perhaps not identical components. For the sake of brevity, reference numerals having a previously described function may or may not be described in connection with subsequent drawings in which they appear.
An embodiment of a fluid cartridge for a printing device (such as, e.g., inkjet printers selected from thermal inkjet printers, piezoelectric inkjet printers, continuous inkjet printers, and/or combinations thereof) is generally depicted in
The housing 12 includes an interior space defined by a floor 14 and a continuous side wall 17 extending about the periphery of the floor 14. In an example, the interior space includes a free ink chamber 16 configured to store a volume of free ink therein, a chamber 18 housing a low capillary media (LCM), and a chamber 20 housing a high capillary media (HCM). The HCM 20 and LCM 18 chambers are in fluid communication with the free ink chamber 16 and are configured to store the ink therein.
The floor 14 includes an opening 22 defined therein. In an example, the opening 22 is defined in the floor 14 adjacent to the HCM chamber 20. The opening 22 couples with a manifold of a printhead (not shown) including a plurality of ink nozzles (also not shown). The opening 22 also couples at least with the HCM chamber 20, thereby providing fluid communication at least between the HCM in the chamber 20 and the opening 22.
The fluid cartridge 10A further includes a wick 24 disposed at least partially in the opening 22. In an embodiment, the wick 24 includes a portion extending a predetermined distance into the housing 12 such that the wick 24 portion contacts the capillary media of the chamber 20. Contact between the wick 24 and the capillary media of the chamber 20 enables fluid communication between the two. In an example, the wick 24 takes ink from the capillary media of the chamber 20 and delivers the ink to the printhead during printing.
The ink supplied by the fluid cartridge 10A includes a pigment-based ink. In an embodiment, the ink includes pigment particles suspended in a fluidic ink vehicle. In an example, the pigment-based ink may include a mixture of pigment particles having different particle sizes (in terms of effective radius, since not all of the particles may be spherically shaped). Without being bound to any theory, it is believed that the pigment particles having larger particle sizes tend to move in the suspension fluid toward a lowest gravitational point of the fluid cartridge 10A faster than pigment particles having smaller particle sizes. Such a theory may be referred to herein as the Stokes settling effect. The portion of the ink including the pigment particles that moved to the lowest gravitational point of the fluid cartridge 10A, as well as the ink remaining (i.e., the ink including the particles that did not move to the lowest gravitational point of the fluid cartridge 10A) generally includes larger pigment particles and smaller pigment particles. In an example, the ink including the pigment particles that settled has a higher mass fraction of total pigment particles than the ink prior to settling, and is referred to herein as a “concentrated ink” or “enriched ink”. The remaining ink (i.e., the ink that gave up the pigment particles that settled) is referred to herein as a “non-concentrated ink”. The non-concentrated ink generally includes a lower mass fraction of total pigment particles than the ink prior to settling. In an example, an amount of the pigment particles present in the enriched ink ranges from about 10 wt % to about 30 wt %, while the amount of pigment particles present in the non-concentrated ink ranges from about 2 wt % to about 5 wt %. In still another non-limiting example, the density of the non-concentrated ink ranges from about 1.01 g/cc to about 1.07 g/cc, while the density of the enriched ink ranges from about 1.08 g/cc to about 1.20 g/cc. In an embodiment, the enriched ink has a density of about 1.12 g/cc and includes about 20 wt % of pigment particles, while the non-concentrated ink has a density of about 1.04 g/cc and includes about 4 wt % of pigment particles.
The ink prior to the settling of the pigment particles to the lowest gravitational point of the fluid cartridge 10A generally includes pigment particles having a distribution of particle sizes. In an example, the median diameter of the pigment particles in the ink prior to the settling ranges from about 90 nm to about 150 nm. In another embodiment, the median diameter of the pigment particles of the ink prior to settling ranges from about 100 nm to about 140 nm. In still another embodiment, the median diameter of the pigment particles is about 120 nm. The enriched ink and the non-concentrated ink individually include pigment particles also having a distribution of particle sizes. In an example, the enriched ink has a median particle diameter that is larger than the median diameter of the ink prior to settling, whereas the non-concentrated ink has a median particle diameter that is lower than the median diameter of the ink prior to the settling.
It is to be understood that the median diameter of the pigment particles of the enriched ink and the non-concentrated ink depends, at least in part, on a length of time that the ink cartridge 10A is sitting in a position sufficient to enable such settling of the pigment particles. In a non-limiting example, if the fluid cartridge 10A is resting for a time period of about 3 months, and the median particle diameter of the ink prior to settling is about 120 nm, the median diameter of the enriched ink ranges from about 120 nm to about 160 nm, and the median particle diameter of the non-concentrated ink ranges from about 85 nm to about 120 nm. It is to be understood that the median diameter of the pigment particles present in the enriched ink generally increases over time as more and more of the larger pigment particles settle out of the original ink. As the fluid cartridge 10A sits for an amount of time sufficient for most of the smaller pigment particles to settle out with the larger pigment particles, the median diameter of the enriched ink actually reduces. It is further to be understood that although the median diameter of the pigment particles of the enriched ink reduces over time, the mass fraction of the pigment particles in the enriched ink is in fact larger than when the median diameter of the pigment particles was larger. Accordingly, in a non-limiting example, if the fluid cartridge 10A is resting for a time period of about 1 year and the median diameter of the ink prior to settling is about 120 nm, the median particle diameter of the enriched ink ranges from about 120 nm to about 140 nm, and the median particle diameter of the non-concentrated ink ranges from about 55 nm to about 120 nm.
Typically, the pigment particles included in the non-concentrated portion of the ink remain in the suspension over time when the cartridge 10A is sitting or in an idle state. The larger pigment particles, on the other hand, tend to settle toward the lowest gravitational point of the fluid cartridge 10A over time (as provided above). The lowest gravitational point of the fluid cartridge 10A is determined, at least in part, from the orientation of the fluid cartridge 10A. If, for example, the cartridge 10A is sitting in an upright position (e.g., an operating position), then the lowest gravitational point may be a surface adjacent to the printhead (i.e., the floor 14). If, on the other hand, the cartridge 10A is lying on its side, the lowest gravitational point may be the lowest corresponding side surface of the cartridge 10A.
To reiterate from above, when the fluid cartridge 10A sits for a period of time, the enriched ink (which has a density that is higher than that of the rest of the ink) settles to the lowest gravitational point of the cartridge 10A. Without being bound to any theory, it is believed that the settling results from gravitational forces pulling on the larger and heavier pigment particles over time, causing the particles to fall faster than other smaller particles. The amount of time that it takes for the particles to settle out of the ink depends, at least in part, on the size of the particles, the density of the particles, and the absolute viscosity of the non-concentrated ink. For example, particles having a diameter of about 120 nm and a density of about 1.8 g/cc may take about 90 days to fall 1.5 cm in an ink having an absolute viscosity of about 3 cP.
In some instances, the fluid cartridge 10A may sit on its side for a period of time before the cartridge 10A is turned to its upright, operating position (such as, e.g., when the fluid cartridge 10A is sitting in a desk drawer, on a shelf in a warehouse, etc.). The
The amount of time that it takes for the collected pigment particles to move through the capillary media to the floor 14 when the cartridge is reoriented may be based, at least in part, on, for example, the permeability of the capillary media, the viscosity of the collected enriched ink, and the density of the collected enriched ink relative to the non-concentrated ink.
As the collected enriched pigment ink 27 flows toward the floor 14 when the cartridge is placed in its upright position (as shown in
Without being bound to any theory, it is believed that an enriched pigment-confining member (referred to hereinbelow as “the confining member” and identified by reference numeral 26) established inside the fluid cartridge 10A may i) block the enriched ink 27 from the wick 24, and/or ii) dilute the enriched ink 27 prior to flowing through the wick 24. Such blocking generally occurs during the migration/flow of the enriched ink 27 to the lowest gravitational point of the fluid cartridge 10A-J. It is believed that the confining member 26 blocks the enriched ink 27 from the wick 24 by creating, for example, a physical barrier around at least a portion of the periphery of the wick 24 or, in some cases, the entire periphery of the wick 24. In any event, the physical barrier is created at locations where a direct flow path of the enriched ink 27 to the wick 24 may be present, thereby blocking the flow path of the enriched ink 27 to the wick 24.
It is to be understood that, in some cases, the enriched ink 27 may still contact the wick 24 when the ink is drawn or extracted from the chambers 16, 18, and 20 by the printhead during printing, even in the presence of the physical barrier. In these instances, the enriched ink 27 may also be drawn or extracted out of the cartridge 10 by the printhead along with (or parallel with) the ink. When the enriched ink 27 contacts the non-concentrated ink, the enriched ink 27 and the non-concentrated ink mix, thereby diluting the enriched ink 27. In an embodiment, complete/substantially complete diluting of the enriched ink 27 may occur prior to the enriched ink 27 (now re-mixed with the non-concentrated ink) contacting the wick 24. In another embodiment, complete/substantially complete diluting of the enriched ink 27 may occur after the enriched ink 27 contacts the wick 24. In this embodiment, the enriched ink 27 re-mixes with the non-concentrated ink while the inks flow into the wick 24. In any event, it is believed that the settled particles, once re-mixed with the non-concentrated ink, may be suitably ejected by the printhead during printing without clogging or otherwise hindering ejection performance of the nozzles.
The blocking and/or diluting of the enriched ink 27 in the fluid cartridge 10A advantageously reduce clogging of the nozzles and/or reduce other possible deleterious effects to ejection performance of the nozzles during printing. Furthermore, the blocking and/or diluting may: reduce priming of the ink prior to printing; and reduce i) the overall time associated with ejection of the ink onto the printing surface, and ii) waste with respect to ink that may not be used as a result of clogging the nozzles with the enriched ink 27. Additionally, the blocking and/or diluting increases the number and types of inks that may be used inside the ink cartridge 10A. Yet further, use of the confining member 26 eliminates recirculation mechanisms or designs in the cartridge 10A, such as for re-mixing of the ink and/or re-suspending of the enriched ink in the non-concentrated ink.
Some embodiments of the fluid cartridge are depicted in
In the embodiments of the fluid cartridge 10A through 10E depicted in
In the embodiment of the fluid cartridge 10F depicted in
As provided above, the confining member 26 may, in some instances, be configured to surround a portion of the periphery of the wick 24 (such as the straight dam D3 and the angled dam D4 shown in
In an embodiment, the enriched pigment-confining member 26 includes an absorption layer A, shown in embodiments of the fluid cartridge 10G, 10H, 10I, 10J depicted in
In an example, the absorption layer A is configured to impede a flow of the enriched ink 27 by, e.g., allowing the enriched ink to flow into its capillaries. Without being bound to any theory, it is believed that the absorption layer A holds the enriched ink insides its capillaries and substantially disallows the enriched ink from be extracted by the wick 24 during printing and/or priming. In a non-limiting example, the thickness of the absorption layer A ranges from about 1 mm to about 3 mm, and the volume of the absorption layer A ranges from about 0.9 cc to about 2.7 cc.
The absorption layer A is also disposed inside the housing 12 adjacent to the floor 14 and surrounding at least a portion of the periphery of the wick 24. As shown in the embodiment of the fluid cartridge 10G depicted in
In yet another embodiment, the confining member 26 may include a dam selected from a ring dam D1 and an absorption layer A (as shown in the fluid cartridge 10H of
In still a further embodiment, the confining member 26 may include a dam selected from a molded ring dam D6, an absorption layer A, and a washer W (as shown in the fluid cartridge 10J of
It is to be understood that other combinations including one or more of the dams D1-D6 may be used, non-limiting examples of which include an angled dam D4 and/or a ring dam D1, with or without an absorption layer A, and with or without a washer W.
The embodiments of the fluid cartridge 10 shown in the figures may be made by, e.g., molding the cartridge 10 as a single piece and disposing the confining member 26 therein. In an example, the confining member 26 is chemically and/or mechanically attached to the floor 14 and/or to the wick 24 in a manner sufficient to sealingly engage the confining member 26 with the floor 24. In other embodiments of the fluid cartridge 10 (such as the cartridge 10F shown in
It is to be understood that the term “connect/connected” or “couple/coupled” are broadly defined herein to encompass a variety of divergent connection or coupling arrangements and assembly techniques. These arrangements and techniques include, but are not limited to (1) the direct connection or coupling between one component and another component with no intervening components therebetween; and (2) the connection or coupling of one component and another component with one or more components therebetween, provided that the one component being “connect to” or “coupled to” the other component is somehow operatively connected to the other component (notwithstanding the presence of one or more additional components therebetween).
While several embodiments have been described in detail, it will be apparent to those skilled in the art that the disclosed embodiments may be modified. Therefore, the foregoing description is to be considered exemplary rather than limiting.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US09/35583 | 2/27/2009 | WO | 00 | 8/25/2011 |