The present invention relates to a fluid or hydraulic circuit. Fluid or hydraulic circuits are employed to activate or control functions of a power machine. Hydraulic fluid is supplied by a pump to power various machine functions, such as lift, tilt or powered attachment. Fluid flow to various machine functions is controlled by valves or a valve stack. Different functions can have different application or system parameters, such as different flow parameters, making it difficult to energize or operate different functions using a single pump or a multifunction valve stack. The present invention addresses these and other problems and provides advantages not previously recognized nor appreciated.
The present invention relates to a fluid or hydraulic circuit having application for a power machine. As shown, the circuit includes a first valve, a second valve connected in series with the first valve and a supplemental line connected in parallel with the second valve to provide fluid to a supplemental circuit in parallel with the second valve.
In one embodiment described, fluid is supplied from a pump to the first or primary valve to power primary machine functions. Fluid is supplied to an auxiliary valve in series with the primary valve to power auxiliary functions or a powered attachment. A supplemental line is connected in parallel with the auxiliary valve to provide an additional flow path to a supplemental or charging circuit.
Other features and benefits that characterize embodiments of the present invention will be apparent upon reading the following detailed description and review of the associated drawings.
The present invention relates to a fluid or hydraulic circuit to operate functions or an attachment of a power machine or vehicle of the types illustrated in
In the embodiment illustrated in
In the embodiment illustrated in
The bucket 114 is rotationally coupled to the lift arms 120 so that an orientation of the bucket 114 can be adjusted relative to the lift arms 120. Bucket 114 is rotationally adjusted or tilted via a tilt cylinder 130 or cylinders. The tilt cylinder 130 is coupled to the lift arms 120 via attachment 132 and is coupled to the bucket 114 through an attachment interface 134 and bucket interface 136. The tilt cylinder 130 is extended and retracted to adjust the orientation or tilt of the bucket 114.
In the illustrated embodiment attachment interface 134 is rotationally coupled to the lift arms 120. Bucket interface 136 and cylinder 130 are coupled to attachment interface 134 to adjust the orientation of the bucket interface 136 relative to the lift arms 120 to thereby adjust tilt of the bucket 114.
The lift and tilt cylinders 124, 130 of the power machine described are powered by a fluid circuit or system 150, (e.g. hydraulic circuit) illustrated diagrammatically, through a user interface 152. The user interface 152 activates fluid circuit 150, for example using hand levers, foot pedals or electronically through electronic spools.
Different attachments or tools can be connected to lift arms to interchange different tools or implements. For example, a spade implement 158 of
Cylinders 166, 168, 170 of the attached implement or tool are powered by the fluid circuit or system 150 of the machine through an auxiliary connection or interface 180. The auxiliary connection 180 includes fluid line connectors 184 and an electrical harness connector 185 to provide a fluid and an electrical interface to an auxiliary circuit.
The fluid line connectors 184 are connected by suitable conduits to an auxiliary valve or valve stack which in the illustrated embodiment includes a plurality of electrically controllable valves 186 to operate the spade implement 158. Valve or valves 186 provide fluid to the cylinders 166, 168, 170 to operate the powered attachment or spade. Valves 186 are controlled through the electrical interface with an auxiliary controller 190.
In the illustrated embodiment, the primary circuit 202 supplies fluid from pump 206 to cylinders 124, 130 to operate to a primary function or functions of a power machine. Fluid is supplied to cylinders 124, 130 based input from the user interface 152 through operation of machine controller 207. Fluid from pump 206 is also supplied to the secondary or auxiliary circuit 204 in series with the primary circuit 202.
The circuit 200 also includes a supplemental line 212 connected in parallel with the auxiliary circuit 204 to supply fluid to a supplemental function or charging circuit 214. The supplemental charging circuit 214 is thus powered using fluid from pump 206 which also supplies fluid to the primary and auxiliary functions 202, 204.
As shown, hydraulic fluid is pumped from pump 206 to fluid line 215 of the hydraulic circuit to drive cylinders 124, 130. Flow is provided to auxiliary circuit 204 or valve to power auxiliary function 205 via auxiliary controller 190 through an interface with the machine controller 207. The supplemental line 212 is connected to the fluid line in parallel with the auxiliary circuit 204 downstream of the primary circuit 202 to provide multiple flows to power the auxiliary function or functions 205 and supplemental line 212 concurrently.
Additionally, the illustrated embodiment includes a supplemental feed line 218 to provide fluid flow to the supplemental circuit 214 downstream of the primary and auxiliary circuits 202, 204, and upstream of a flow restrictor 220 as shown. Flow restrictor 220 restricts fluid flow to tank to maintain line or operating pressure to the supplemental charge circuit 214. Excess fluid from supplemental lines 212 and 218 is discharged to tank as illustrated by line 222.
The system as described can accommodate different flow rates for the primary circuit 202 and the secondary or auxiliary circuit 204. For example, the system can support a 25 gpm flow rate for the primary circuit 202 (e.g. for lift and tilt functions) to enhance cycle or response time and provide a lower flow rate e.g. 20 gpm (gallons-per-minute) for an auxiliary or hydraulic powered attachment. As shown, the differential flow is used to power the supplemental or charge circuit 214. In the illustrated embodiment the system includes a single pump 206—although in alternate embodiments, additional pumps can be added or used before and after the auxiliary valve or circuit 204 for different operating functions.
Lift and tilt valves 302, 304 include multi-directional valve spools 340, 342 operated via machine controller 207 based upon control input at user interface 152 as schematically illustrated. The machine controller 207 moves the valve spools 340, 342 relative to multiple valve positions to supply fluid to opposed cylinder chambers for lift or tilt functions which power primary functions of the machine.
Valve spool 340 as shown in
In a second alternate spool 340 position, valve channel 364 is aligned with inlet port 354 to supply fluid to actuator line 362 to actuate the cylinders 124 in an opposed direction from the first spool position. Fluid is released from cylinder through connection of actuator line 356 to valve channel 366. Fluid from channels 360, 366 flows to fluid line 215 to supply fluid to valve spool 342 in series with valve spool 340.
A pressure valve 372 is upstream of the valve spool 340 to divert fluid flow to relief line 380. The pressure valve 372 opens in response to high pressure or stall event to divert fluid flow. Actuator line 356 includes flow restrictor 382 to control or restrict flow to/from the first chamber and a check valve 384. Also as shown, actuator line 356 includes a pressure relief valve 386 between actuator line 356 and relief line 380 to release fluid or pressure.
Valve spool 340 also includes a float position. In the float position, a float channel 388 is aligned with actuator lines 356, 362 to provide fluid flow therebetween. Float channel 388 also includes a portion which is opened to an outlet port 390 coupled to relief line 380 to control pressure in the circuit. As shown, actuator line 362 is coupled to relief line 380 through check valve 391. Check valve 391 restricts flow to relief line 380 but allows flow from relief line 380 to the valve spool 342 and fluid line 356 (e.g. via channel 360).
As previously described, valve spool 342 is connected in series with valve spool 340. In the illustrated embodiment, valve spool 342 forms a tilt valve spool. In a neutral position, fluid flows through bypass channel 392 of the valve spool 342 to bypass the tilt cylinders 130. In a first active valve position, channel 394 is aligned with inlet port 396 to supply fluid flow to actuator line 398 to actuate cylinders 130. Fluid is released from an opposed chamber of cylinders 130 through channel 400 aligned with actuator line 402.
In a second valve position, channel 404 is aligned with inlet port 396 to supply fluid flow to an opposed cylinder chamber and fluid is released via alignment of spool channel 406 with actuator line 398. Actuator lines 398, 402 of the tilt valve are connected to relief line 380 via pressure relief valve assemblies 410, 412. The circuit includes check valve 414 to divert flow from relief line 380 to fluid line 398 through valve spool 304. Thus in the embodiment described, valve spools 340, 342 form the primary circuit 202, although application is not limited to the specific embodiment shown. For example, the lift valve can alternatively be connected in series with the tilt valve.
As previously described, auxiliary valve 301 is connected to the fluid line 215 in series with valves 302, 304. Although in the embodiment shown, the auxiliary circuit includes one valve, application is not limited to one valve as shown and multiple valves or valve stack could be included to operate a power attachment such as the spade implement 158 illustrated in
Valve spool 420 is operable between a neutral position as shown in
Fluid is released from auxiliary line 422 through channel 436 to line 215. Auxiliary pressure is controlled via pressure relief valve assembly 372 or 438. The position of auxiliary valve spool 420 is controlled via pilot activated cartridges 440 which are operated by the auxiliary controller 190 to operate a power attachment or other auxiliary function as previously described.
The circuit 300 as described includes supplemental line 212 in parallel with valve spool 420 downstream of valve spools 340, 342 to provide parallel flow as described. In the illustrated embodiment, fluid flow through supplemental line 212 is restricted by flow gate or restrictor 445. As shown the circuit includes a pilot valve assembly 446, which is energizable to dump fluid to tank 217 via a drain line 448 based upon fluid pressure of the auxiliary circuit or system.
As shown, the pilot valve assembly 446 includes a pilot valve 450 operable via a pilot line 452 connected to inlet line 432 to the auxiliary valve spool 420. The valve assembly 446 operates between a closed position shown and an opened position (not shown in
Valve 450 is shifted to the opened position above a threshold pressure so that the primary systems can operate in the event the auxiliary system stalls. Valve 450 is biased in the closed position and is opened to provide pressure relief in a stall event to allow other circuit components to operate upstream of the auxiliary circuit or valve 301. As shown in
In the illustrated embodiment, the relief line 380 is connected to the fluid line 215 downstream of the valves 301, 302, 304. As shown, supplemental feed line 460 is disposed downstream of valves 301, 302, 304 and relief line 380 to provide flow to the supplemental or charge circuit 214 in the event of a stall to provide continuous charge flow. Line 460 is upstream of flow restrictor 220 and fluid flow through line 460 is controlled via pilot valve assembly 464. The pilot valve assembly 464 includes valve 466 which is operated via pilot line 468 coupled to line 212 to shift the valve 466 from a closed position to an opened position (not shown in
Thus as described, a supplemental line 212 is connected in parallel with a second valve, such as an auxiliary valve connected in series with a first valve. In illustrated embodiments, the first valve is a primary valve and the second valve is an auxiliary valve.
As described with reference to
Although application of the present invention is illustrated with respect to a loader, application is not limited to the particular embodiments shown, and the present invention can be used for other power machines such as excavators having attachments or implements controlled via operation of a fluid or hydraulic circuit. Further, application is not limited to a power machine having a particular design or function. Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.