Fluid ejectors are used to selectively dispense relatively small volumes of fluid. Many fluid ejectors utilize a fluid actuator that displaces fluid through a nozzle orifice. In some applications, the fluid is supplied from the cartridge. In other applications, the fluid is supplied from a remote source.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements. The figures are not necessarily to scale, and the size of some parts may be exaggerated to more clearly illustrate the example shown. Moreover, the drawings provide examples and/or implementations consistent with the description; however, the description is not limited to the examples and/or implementations provided in the drawings.
Many fluids dispensed by fluid ejectors contain particles or pigments that have the tendency to settle. The settling of such particles or pigments may lead to reduced fluid ejector performance. For example, pigment settling and decap are challenges for the printing of high solid inks such as water-based UV ink.
Disclosed herein are example fluid circulation and ejection systems that circulate the fluid through and across a drive chamber of a fluid ejector to reduce settling of the particles or pigments. The example fluid circulation and ejection systems circulate the fluid across individual or single orifice fluid ejectors. The single orifice fluid ejectors have a single nozzle opening or orifice extending from the drive chamber, reducing stagnant areas where particles or pigments may settle. The example fluid circulation and ejection systems circulate the fluid across the single orifice fluid ejectors by creating a pressure gradient across the single orifice and across the drive chamber using a source of pressurized fluid that is remote from the microfluidic die or die supporting the fluid ejector. With respect to the source of pressurized fluid and the microfluidic die, the term “remote” means that the pump or other driving mechanism of the source of pressurized fluid is not carried or located on the microfluidic die 22 itself such that any heat produced by the pump is isolated from microfluidic die 22. The pressurized fluid produced by the remote pressurized fluid source is directed via a tube or other channel to the microfluidic die. Because the source of pressurized fluid is remote from the microfluidic die supporting the fluid ejector, the source of pressurized fluid does not heat the microfluidic die and the fluid being ejected, reducing ejection or printing defects that might otherwise result from the heat.
Disclosed herein are example fluid circulation and ejection systems that circulate the fluid from a fluid supply channel, across the single orifice fluid ejector, to a fluid discharge channel. The fluid discharge channel directs fluid that has been circulated across the drive chamber away from the drive chamber. The fluid supply channel and the fluid discharge channel are isolated from one another in regions of the microfluidic die adjacent the drive chamber. In implementations where the fluid ejectors utilize fluid actuators in the form of thermal resistors that generate heat to eject fluid, the fluid that is not ejected but that is heated by the thermal resistors is not allowed to substantially mix with freshly supplied fluid. The fresh unheated fluid being supplied to the drive chamber and the fluid ejector assists in transferring excess heat from the fluid ejector to maintain a more uniform temperature adjacent the fluid ejector to reduce heat induced printing or fluid ejection defects.
Some example systems have microfluidic dies comprising microfluidic channels. Microfluidic channels may be formed by performing etching, microfabrication (e.g., photolithography), micromachining processes, or any combination thereof in a microfluidic die of the fluidic die. Some example microfluidic dies may include silicon based microfluidic dies, glass based microfluidic dies, gallium arsenide based microfluidic dies, and/or other such suitable types of microfluidic dies for microfabricated devices and structures. Accordingly, microfluidic channels, chambers, orifices, and/or other such features may be defined by surfaces fabricated in the microfluidic die of a fluidic die. Furthermore, as used herein a microfluidic channel may correspond to a channel of sufficiently small size (e.g., of nanometer sized scale, micrometer sized scale, millimeter sized scale, etc.) to facilitate conveyance of small volumes of fluid (e.g., picoliter scale, nanoliter scale, microliter scale, milliliter scale, etc.).
Disclosed herein is an example fluid circulation and ejection system that comprises a microfluidic die, a single orifice fluid ejector having a drive chamber in the microfluidic die and a pressurized fluid source remote from the microfluidic die to create a pressure gradient across the drive chamber to circulate fluid across the drive chamber.
Disclosed herein is an example fluid circulation and ejection system that may comprise a microfluidic die comprising a fluid supply passage and a fluid discharge passage, a fluid supply channel extending from the fluid supply passage perpendicular to the fluid supply passage, a fluid discharge channel extending from the fluid discharge passage perpendicular to the fluid discharge passage and parallel to the fluid supply channel and fluid ejectors between the fluid supply channel and the fluid discharge channel. Each of the fluid ejectors may comprise a fluid actuator and a drive chamber adjacent the fluid actuator. The drive chamber may comprise a single orifice through which fluid is ejected by the fluid actuator, a fluid inlet connected to the fluid supply passage and a fluid outlet connected to the fluid discharge passage. The system may further comprise a fluid source remote from the microfluidic die to supply pressurized fluid to the fluid supply passage to create a pressure differential across the drive chamber to circulate fluid across the drive chamber.
Disclosed herein is an example method for supplying fluid to a fluid ejector. The method may comprise supplying fluid under pressure to a single orifice fluid ejector on a microfluidic die with a source of pressurized fluid remote from the microfluidic die. The method may further comprise maintaining a pressure differential across a drive chamber of the single orifice fluid ejector with the fluid supplied by the source of pressurized fluid to circulate fluid across the drive chamber.
Microfluidic die 22 supports ejector 40. Microfluidic die 22 includes microfluidic channels or passages by which fluid is directed to single orifice fluid ejector 40. Microfluidic die 22 may further support electrically conductive wires or traces by which power and control signals are transmitted to ejector 40. In one implementation, microfluidic die 22 comprises a substrate which supports additional layers that form the firing chamber and nozzle opening of the fluid ejector. In one implementation, the substrate may be formed from silicon while the other layers are formed from other materials, such as photo resists and the like. In other implementations, the substrate and the other layers may be formed from other materials, such as polymers, ceramics, glass and the like.
Single orifice fluid ejector 40 ejects controlled volumes of fluid, such as droplets as indicated by arrow 53. Single orifice fluid ejector 40 has a firing chamber and a single orifice or opening extending from the firing chamber and through which fluid droplets are ejected. Because the firing chamber supplies fluid to a single orifice or nozzle, the dimensions of the firing chamber may be reduced to provide enhanced fluid flow velocity across the drive chamber to reduce particle settling.
The single orifice fluid ejector 40 may comprise a fluid actuator that displaces fluid. In one implementation, fluid actuator may comprise a thermal resistor based actuator, wherein electrical current flowing through the resistor produces sufficient heat to vaporize adjacent fluid so as to create an expanding bubble that displaces fluid through the orifice. In other implementations, the fluid actuator may include a piezoelectric membrane based actuator, an electrostatic membrane actuator, a mechanical/impact driven membrane actuator, a magneto-strictive drive actuator, or other such elements that may cause displacement of fluid responsive to electrical actuation.
Pressurized fluid source 50 comprises a source of pressurized fluid fluidly coupled to ejector 40, but remote from microfluidic die 22. The term “fluidly coupled” shall mean that two or more fluid transmitting volumes are connected directly to one another or are connected to one another by intermediate volumes or spaces such that fluid may flow from one volume into the other volume. Pressurized fluid source 50 creates a pressure gradient across the drive chamber of fluid ejector 40 such that the fluid supplied by pressurized fluid source 50 is circulated through and across the drive chamber (as indicated by arrows 55 and 57), reducing particle settling and transferring excess heat away from fluid ejector 40. The fluid discharged away from fluid ejector 40 is not permitted to remix with the fluid entering fluid ejector 40 proximate to fluid ejector 40. As a result, any heat introduced by fluid ejector 40 is transferred away from fluid ejector 40. In addition, because pressurized fluid source 50 is remote from microfluidic die 22, pressurized fluid source 50 does not introduce additional heat to microfluidic die 22 or fluid ejector 40. As a result, fluid ejection errors caused by non-uniform or excessive temperature of the fluid within the drive chamber of ejector 40 may be reduced.
As indicated by block 104, fluid under pressure is supplied to a single orifice fluid ejector on a die, such as die 22, with a source of pressurized fluid, such as pressurized fluid source 50, remote from the die. As indicated by block 108, a pressure differential is maintained across a drive chamber of the single orifice fluid ejector with the fluid supplied by the source of pressurized fluid. The pressure differential causes fluid to circulate across the drive chamber to inhibit particle settling and to transfer heat away from the drive chamber. In one implementation, the pressure differential created across the drive chamber is at least 0.1 inch we (inches water column).
Single orifice fluid ejectors 140 are each similar to single orifice fluid ejector 40 described above. Each fluid ejector 140 ejects controlled volumes of fluid, such as droplets. Each single orifice fluid ejector 140 has a firing chamber and a single orifice or opening extending from the firing chamber and through which fluid droplets are ejected. Because the firing chamber supplies fluid to a single orifice or nozzle, the dimensions of the firing chamber may be reduced to provide enhanced fluid flow velocity across the drive chamber to reduce particle settling.
Each single orifice fluid ejector 140 may comprise a fluid actuator that displaces fluid. In one implementation, fluid actuator may comprise a thermal resistor based actuator, wherein electrical current flowing through the resistor produces sufficient heat to vaporize adjacent fluid so as to create an expanding bubble that displaces fluid through the orifice. In other implementations, the fluid actuator may include a piezoelectric membrane based actuator, an electrostatic membrane actuator, a mechanical/impact driven membrane actuator, a magneto-strictive drive actuator, or other such elements that may cause displacement of fluid responsive to electrical actuation.
Pressurized fluid source 150 is similar to pressurized fluid source 50 described above. Pressurized fluid source 150 comprises a source of pressurized fluid fluidly coupled to each ejector 140, but remote from microfluidic die 122. Pressurized fluid source 150 creates a pressure gradient across the drive chamber of each individual fluid ejector 140 such that the fluid supplied by pressurized fluid source 150 is circulated through and across the drive chamber (as indicated by arrows 155 and 157), reducing particle settling and transferring excess heat away from fluid ejector 40. The fluid discharged away from each fluid ejector 140 is not permitted to remix with the fluid entering fluid ejector 140 proximate to fluid ejector 140. As a result, any heat introduced by fluid ejector 140 is transferred away from fluid ejector 140. In addition, because pressurized fluid source 150 is remote from microfluidic die 122, pressurized fluid source 150 does not introduce additional heat to microfluidic die 122 or fluid ejectors 140. As a result, fluid ejection errors caused by non-uniform temperature of the fluid within the drive chamber of ejector 140 may be reduced.
In the example illustrated, pressurized fluid source 150 supplies fluid under pressure to each of fluid ejectors 140 through a single fluid supply channel 130 which is connected to an inlet 132 of each of the fluid ejectors 140. Each fluid ejector 140 has an outlet 134 connected to a shared fluid discharge channel 136 which transfers the fluid away from fluid ejectors 140. In the example illustrated, fluid ejector 140 are arranged in a column, wherein fluid supply channel 130 and fluid discharge channel 136 extend on opposite sides of the column providing for a compact arrangement on microfluidic die 122. In other implementations, each of fluid ejectors 140 or groups of fluid ejectors 140 may have dedicated fluid supply passages and/or fluid discharge passages.
Microfluidic die 222 comprises substrate 224, adhesive layer 226, interposer layer 228, chamber layer 230 and orifice layer 232 which form fluid supply slot 234 fluid supply channel 236, drive chambers 238 of fluid ejectors 240, fluid discharge channel 242, fluid discharge slot 244 and bypass channel 256. Substrate 224 comprises a layer of material in which fluid supply slot 234 and fluid discharge slot 236 are formed. In one implementation, substrate 224 comprises a layer of silicon. In other implementations, substrate 224 maybe form from other materials such as polymers, ceramics, glass and the like.
Adhesive layer 228 comprise a layer of adhesive material joining interposer layer 228 to substrate 224. In the example illustrated, adhesive layer 226 spaces interposer layer 228 from substrate 224 so as to form bypass channel 256. In one implementation, adhesive layer 228 comprises Epoxy adhesive. in other implementations, adhesive layer 228 may be formed from other materials or may be omitted.
Interposer layer 230 comprise a layer of material extending between adhesive layer 226 and chamber layer 230. Interposer layer 228 forms an inlet 252 of fluid supply channel 236 connected to slot 234. Interposer layer 230 further forms an outlet 254 of fluid discharge channel 242 connected to discharge slot 244. Interposer layer 228 facilitates fabrication of channels 236 and 242, facilitating the formation of channel 236 and 242 with grooves formed in chamber layer 230, wherein layer 228 forms a floor of channels 236 and 242 (as seen in
Chamber layer 230 comprises a layer of material forming fluid supply channel 236, fluid discharge channel 242 and a ceiling or top of drive chamber 238 (when system 220 is ejecting fluid in a downward direction).
As shown by
As shown by
In one implementation, fluid supply channel 236 and fluid discharge channel 242 each have a width of between 100 um and 400 um, and nominally 275 μm and a height of between 200 um and 600 um, and nominally 300 μm. Each fluid feed hole inlet 260 and fluid discharge hole outlet 262 has a diameter of between 10 um and 50 um, and nominally 30 μm. Each inlet 260 and each outlet 262 has a height of between 10 um and 120 um, and nominally 50 μm. Each drive chamber 238, in the form of a microfluidic channel, has a height of between 10 um and 40 um, and nominally 17 μm, a width of between 10 um and 50 um, and nominally 20 μm and a length (from inlet 160 to outlet 162) of between 50 um and 500 um, and nominally micrometers. In the example illustrated, the drive chambers 238 and their respective nozzle orifices 266 have a pitch or are spaced apart from one another by at least 100 um and nominally 169 μm. Such dimensions provide a compact layout and arrangement of fluid ejectors 240 while providing adequate fluid flow velocities through and across drive chambers 238 to inhibit particle settling and transfer heat out of and away from each of the individual fluid ejectors 240.
As further shown by
Although the present disclosure has been described with reference to example implementations, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the claimed subject matter. For example, although different example implementations may have been described as including one or more features providing one or more benefits, it is contemplated that the described features may be interchanged with one another or alternatively be combined with one another in the described example implementations or in other alternative implementations. Because the technology of the present disclosure is relatively complex, not all changes in the technology are foreseeable. The present disclosure described with reference to the example implementations and set forth in the following claims is manifestly intended to be as broad as possible. For example, unless specifically otherwise noted, the claims reciting a single particular element also encompass a plurality of such particular elements. The terms “first”, “second”, “third” and so on in the claims merely distinguish different elements and, unless otherwise stated, are not to be specifically associated with a particular order or particular numbering of elements in the disclosure.
The present application is a continuation of co-pending U.S. application Ser. No. 16/761,273, filed May 4, 2020, which itself is a 371 patent application from PCT/US2017/064380 filed on Dec. 2, 2017, the full disclosures of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5818485 | Rezanka | Oct 1998 | A |
8157365 | Wouters et al. | Apr 2012 | B2 |
8182073 | Xie | May 2012 | B2 |
8292385 | Bracke et al. | Oct 2012 | B2 |
8439481 | Xie et al. | May 2013 | B2 |
8444259 | Bennett | May 2013 | B2 |
8517518 | Sasagawa et al. | Aug 2013 | B2 |
8608300 | Igawa et al. | Dec 2013 | B2 |
8820904 | Aldrich | Sep 2014 | B2 |
8851639 | Arimoto | Oct 2014 | B2 |
8926077 | LaCaze et al. | Jan 2015 | B2 |
9694582 | Stephens et al. | Jul 2017 | B1 |
9724926 | Keefe et al. | Aug 2017 | B2 |
20120160925 | Hoisington et al. | Jun 2012 | A1 |
20150124019 | Cruz-Uribe | May 2015 | A1 |
20160001568 | Kamei | Jan 2016 | A1 |
Number | Date | Country |
---|---|---|
1052099 | Nov 2000 | EP |
2414162 | Feb 2012 | EP |
2738007 | Jun 2014 | EP |
3196027 | Jul 2017 | EP |
2009143168 | Jul 2009 | JP |
2014510649 | May 2014 | JP |
2014522755 | Sep 2014 | JP |
2017124620 | Jul 2017 | JP |
WO-2003052428 | Jun 2003 | WO |
WO-2013032471 | Mar 2013 | WO |
WO-2014098855 | Jun 2014 | WO |
Entry |
---|
The Sample Delivery of New 600 Dpi Ink Recirculating Inkjet Printhead “cf3” Has Started, Jul. 15, 2016, https://www.toshibatec.com/information/20160715_01.html. |
Number | Date | Country | |
---|---|---|---|
20220203696 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16761273 | US | |
Child | 17699050 | US |