Fluid collection apparatus

Information

  • Patent Grant
  • 12161792
  • Patent Number
    12,161,792
  • Date Filed
    Friday, November 16, 2018
    6 years ago
  • Date Issued
    Tuesday, December 10, 2024
    24 days ago
Abstract
Fluid collection apparatuses and methods of use in negative pressure therapies are provided.
Description
CROSS-REFERENCE

This patent application is a U.S. national phase entry of international application no. PCT/IB2018/001417 filed Nov. 16, 2018; claims the benefit of GB1719014.1 filed Nov. 16, 2017; and GB1719027.3 filed Nov. 16, 2017; each of which is incorporated herein by reference in their entirety.


BACKGROUND

Exudating wounds may be treated by providing negative pressure to the space above the wound to promote healing in a process often referred to as negative pressure wound therapy (NPWT). During NPWT, effluent such as exudate is removed from the wound and collected. In some therapies, the effluent is stored in a fluid collection apparatus positioned between the source of negative pressure and a the wound site. Typically the apparatus has a specific orientation to prevent exudate drawn into the apparatus from reaching the air outlet of the collection apparatus or otherwise prevent excess exudate from being drawn into the collection apparatus and/or fluid or other undesirable material being drawn into the negative pressure supply. As a consequence of this specific orientation, the patient may be restricted in mobility. In addition, care must be taken so that the specific orientation is not disrupted, which can interrupt the NPWT process.


BRIEF SUMMARY OF THE INVENTION

In one aspect, disclosed herein is an apparatus configured to allow for orientation independence during negative pressure wound therapy (NPWT). For instance, an apparatus comprising multiple sides (e.g., six sides), may be positioned in such a way that any of the multiple sides may be laid against a horizontal or substantially horizontal surface in use. As a non-limiting example, the apparatus may be capable of operating upside down such as may occur if carried in a bag when mobile or otherwise supported or placed in that orientation. The apparatus may additionally or alternatively be hung to a drip stand or other suitable device or affixed to a wall by an attachment point located on any of the multiple sides. This orientation independence may be achieved, for example, by arranging a first impeding element at a first end of a first fluid pathway defined by a first fluid defining element, such as a chamber or tube, in fluid communication with a source of negative pressure, and a second impeding element at a second end of the first fluid pathway, such that during NPWT, air may be preferentially drawn through the impeding element and into the first fluid pathway while liquid flow is impeded. Preferably, the first end of the first fluid defining element and a first side of the apparatus are in substantially fluid tight communication. Preferably, the second side of the apparatus opposes the first side of the apparatus. In an exemplary embodiment, as the apparatus fills with liquid, liquid may be drawn through the impeding elements and into the fluid pathway. As a non-limiting example, the liquid is drawn through the impeding elements and into the fluid pathway when the apparatus reaches a full or nearly-full state. To hinder liquid from being drawn from the fluid pathway into the source of negative pressure, the fluid pathway may comprise an air permeable member positioned within the fluid pathway to separate liquid drawn into the fluid pathway from the source of negative pressure. In some embodiments, the air permeable member is a filter that impedes liquid and solid material from passing through the member. In some instances, liquid drawn into the fluid pathway may saturate the air permeable member or the air permeable member may reach a predefined saturation level, which may cause an undesired change to the intended negative pressure level. In some cases, this pressure change may be used to detect or sense that the apparatus may be in a full or nearly-full state, and cause generation of negative pressure to halt. Accordingly, liquid may be prevented from entering into the source of negative pressure through the chamber once the air permeable member is saturated or reaches a pre-defined saturation level. In other instances, undesirable material such as wound tissue or absorbent material within the apparatus may block or clog the air permeable member which may cause an undesired change to the intended negative pressure level. In some cases, this pressure change may be used to detect or sense that the apparatus may not be functioning properly, and cause generation of negative pressure to halt. In some cases, this negative pressure change may be due to both of the aforesaid conditions. In some instances, the apparatus comprises an optional aromatic cartridge that may prevent external release of noxious odors drawn into the apparatus. The apparatus may further include one or more optional supports, such as a web or anchor to further retain the impeding element or elements in the chamber.


In some embodiments, disclosed herein are devices for negative pressure wound therapy comprising a collection vessel, a first fluid defining member configured to be in fluid communication with a source of negative pressure, a first impeding element positioned at a first end of the first fluid defining member, a second impeding element positioned at a second end of the first fluid defining member, and a second fluid defining member defining a pathway for dispensing fluid drawn from a wound site of a patient during negative pressure wound therapy into a collection region of the collection vessel; and wherein the first impeding element impedes fluid dispensed within the collection region from entering a first end of the first fluid defining member and the source of negative pressure, and the second impeding element impedes fluid dispensed within the collection region from entering a second end of the first fluid defining member and the source of negative pressure.


In some embodiments, the first and/or second impeding element of the devices disclosed herein comprise foam, in some instances open cell foam, and in further instances the impeding elements comprise polyurethane, polyether, polyvinyl alcohol (PVA), or a combination thereof. In some embodiments, the foam is a reticulated polyurethane foam. In some embodiments, the first fluid defining member is configured to hold the first and the second impeding elements in place within the fluid collection apparatus. In some embodiments, the first fluid defining member has a circular cross-section and/or may comprise a polycarbonate material. In yet other embodiments, the inner diameter of the first fluid defining member is between about 13 and about 23 mm, and the outer diameter of the first fluid defining member is between about 17 mm and about 27 mm.


In yet other embodiments, the devices disclosed herein further comprises a filter positioned within the first fluid defining member. In some embodiments, the filter is a hydrophobic filter; alternatively the filter comprises a pore size of between about 0.2 micron to about 0.8 micron. In other embodiments, the filter comprises polyethersulfone (PES), polytetrafluorethylene (PTFE), cellulose acetate, or a cellulose nitrate membrane.


In yet other embodiments, the devices disclosed herein further comprises a carbon filter. In yet other embodiments, the carbon filter comprises from about 25 g/m2 to about 200 g/m2 of activated carbon.


In some embodiments, the second fluid defining member comprises an elastomer, plastic, polyvinyl chloride (PVC), silicone, ethylene propylene diene monomer (EPDM), Viton, or a combination thereof. In some embodiments, the devices disclosed herein further comprises an absorbent material; in other embodiments, the absorbent material comprises a superabsorbent material, a fibrous structure impregnated with the superabsorbent material, sodium polyacrylate and cellulose pulp in the form of a sheet material, or combinations thereof. In other embodiments, the absorbent material comprises one or more layers of absorbent material within the fluid collection apparatus. In other embodiments, the absorbent material is provided within a sachet. In yet other embodiments, the sachet is dissolvable. In yet other embodiments, the devices disclosed herein further comprises a first wicking layer. In still other embodiments, the first wicking layer is positioned between the first impeding element and the absorbent material. In still other embodiments, the second fluid defining member extends through the first impeding element and comprises an outlet end positioned adjacent to the first wicking layer to wick the dispensed fluid into the absorbent material. In yet other embodiments, the outlet end of the second fluid defining member is positioned within about 10-60 mm of the first wicking layer. In yet other embodiments, the devices disclosed herein further comprises a second wicking layer. In still other embodiments, the second wicking layer is positioned between the absorbent material and the second impeding element. In yet other embodiments, the devices disclosed herein are configured to hold up to about 900 ml of fluid, up to about 600 ml of fluid or up to 300 ml of fluid. In still other embodiments, the devices disclosed herein further comprises an extension element extending the second fluid defining member to an area adjacent to or within the collection region of the collection vessel. In still other embodiments, the devices disclosed herein further comprise a cover. In still other embodiments, the first impeding element and the second impeding element are configured such that when the collection region of the collection vessel is filled with liquid to at least about 25% capacity by volume and sealed, in all orientations of the apparatus at least one of the first and second ends of the first fluid defining member is not submerged in liquid. In still other embodiments, the first impeding element and the second impeding element are configured such that when the collection region of the collection vessel is filled with fluid to at least about 50% capacity by volume and sealed, in all orientations of the apparatus at least one of the first and second ends of the first fluid defining member is not submerged in liquid. In some cases, the liquid is water. In some cases, the liquid is a physiological saline solution. As a non-limiting example, the physiological saline solution is defined in EN13726-1 as Test solution A.


Also included herein are methods for performing negative pressure wound therapy with the fluid collection apparatus devices disclosed herein. In some embodiments, the fluid collection apparatus devices disclosed herein comprises six sides, and the fluid collection apparatus in use is configured to be: (a) positioned with any of the six sides against a horizontal surface, and/or (b) hung from an attachment point on any of the six sides.


Also disclosed herein are methods of collecting fluid from a wound site of a subject, the method comprising: a) providing: i) a wound dressing positioned over the wound site, ii) a source of negative pressure, and iii) a fluid collection apparatus comprising a first fluid defining member in fluid communication with the source of negative pressure, a first impeding element positioned at a first end of the first fluid defining member, a second impeding element positioned at a second end of the first fluid defining member, and a second fluid defining member in fluid communication with the wound dressing; wherein the second fluid defining member defines a pathway for dispensing fluid drawn from the wound site into a fluid collection region of the fluid collection apparatus; and b) applying a negative pressure from the source of negative pressure to the wound site via the fluid collection apparatus to draw fluid from the wound site, through the second fluid defining member, and into the fluid collection region of the fluid collection apparatus; wherein the fluid comprises liquid and air, and fluid is retained in the fluid collection region and air is drawn through the first impeding element and/or the second impeding element, into the interior of first fluid defining member, and towards the source of negative pressure.


In some embodiments, the the fluid collection apparatus of the methods disclosed herein comprises multiple sides, and the fluid collection apparatus in use is: (a) positionable with any of the sides against a horizontal surface and/or (b) hung from an attachment point on any of the sides. In some embodiments, the fluid collection apparatus is suspended from one or more attachment points on the fluid collection apparatus. In some embodiments, when the fluid collection region is full or nearly full of fluid and/or other material than air, and the fluid saturates the filter or the filter reaches a pre-defined saturation level, a pressure drop is generated or sensed to stop application of negative pressure. In some embodiments, up to about 900 ml of fluid, up to about 600 ml of fluid, or up to about 300 ml of fluid is retained in the fluid collection region.


Also disclosed herein are multi-orientation fluid collection apparatus devices for negative pressure wound therapy comprising: a) a collection vessel comprising a first side and a second opposing side, b) optionally, a cover connected to the first side of the collection vessel, c) a first fluid pathway in fluid communication with a source of negative pressure, the first fluid pathway positioned between: (i) a first impeding element positioned at an interior of the cover or interior of the first side of the collection vessel and a (ii) second impeding element positioned at an interior of the second side of the collection vessel, wherein the first impeding element and the cover or first side of the collection vessel are in substantially fluid tight communication, d) a filter positioned within the first fluid pathway and between the first impeding element and the second impeding element, and e) a second fluid pathway for introducing exudate into the collection vessel.


In some embodiments, the collection vessel of the devices disclosed herein comprises additional sides positioned between the first and second opposing sides, and the multi-orientation fluid collection apparatus in use is capable of being: (a) positioned with the first side, the second opposing side, or any of the additional sides against a horizontal surface, and/or (b) hung from an attachment point on the first side, the second opposing side, or any of the additional sides.


Also disclosed herein are multi-orientation fluid collection apparatus devices connected to a source of negative pressure for collecting wound exudate, the apparatus comprising a collection vessel; a first fluid pathway comprising a first and a second end with impeding elements at the first and second ends, said first fluid pathway and a first side of the apparatus in fluid tight or substantially fluid tight communication with the source of negative pressure; and a second fluid pathway for drawing fluid from a wound site into the apparatus. In some embodiments, in use said second fluid pathway and said wound site are in fluid tight or substantially fluid tight communication. In some embodiments, the devices comprise an air permeable member situated within the first fluid pathway. In some embodiments, the devices comprise a third fluid pathway situated within the first fluid pathway and in fluid communication with the air permeable member for receiving air from the air permeable member; said third fluid pathway within said first fluid pathway and a first side of the apparatus in fluid tight or substantially fluid tight communication and the third fluid pathway in fluid communication with the source of negative pressure. In some embodiments, the first fluid pathway is defined by a first fluid defining member. In some embodiments, the first fluid defining member is a chamber. In some embodiments, the second fluid defining member is a fluid inlet for receiving fluid from the wound site under negative pressure. In some embodiments, the air permeable member comprises one or more filters. In some embodiments, the filter comprises a hydrophobic filter. In some embodiments, the impeding elements comprise foam.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A depicts a front view of a first embodiment of a fluid collection apparatus.



FIG. 1B depicts a front view of a second embodiment of a fluid collection apparatus.



FIG. 2A depicts a cross-section view of the first embodiment of the fluid collection apparatus.



FIG. 2B depicts a cross-section view of the second embodiment of the fluid collection apparatus.



FIG. 3A depicts a detailed cross-section view of the first embodiment of the fluid collection apparatus.



FIG. 3B depicts a detailed cross-section view of the second embodiment of the fluid collection apparatus.



FIG. 4 depicts an exploded view of the first embodiment of the fluid collection apparatus.



FIG. 5 depicts a filter assembly of various embodiments of a fluid collection apparatus.



FIG. 6A depicts a bottom view of the first embodiment of the fluid collection apparatus.



FIG. 6B depicts a bottom view of the second embodiment of the fluid collection apparatus.



FIG. 7A depicts a front view of a third embodiment of a fluid collection apparatus.



FIG. 7B depicts a front view of a fourth embodiment of a fluid collection apparatus.



FIG. 8 depicts a perspective view of a fifth embodiment of a fluid collection apparatus.



FIG. 9 depicts a detailed cross-section view of the fifth embodiment of the fluid collection apparatus.



FIG. 10 is a photograph showing the front view of the fifth embodiment of the fluid collection apparatus.



FIG. 11 is a photograph showing the bottom view of the fifth embodiment of the fluid collection apparatus.



FIG. 12A shows the top, bottom, back, front, and left sides of the second embodiment of the fluid collection apparatus, as viewed from the left side of the apparatus.



FIG. 12B shows the top, bottom, left, right, and front sides of the second embodiment of the fluid collection apparatus, as viewed from the front side of the apparatus.





DETAILED DESCRIPTION OF THE INVENTION

In one aspect, provided herein are fluid collection apparatuses for collecting fluid from a patient during negative pressure wound therapy (NPWT). A first exemplary embodiment 100 of a fluid collection apparatus is shown in a front side view in FIG. 1A and cross-section view in FIG. 2A. An exploded view of apparatus 100 is shown in FIG. 4. Apparatus 100 comprises a first fluid pathway, such as chamber 122, defined by a fluid defining member, such as chamber tube 102, configured to be in fluid communication with a source of negative pressure through a first pathway within the chamber. Apparatus 100 further comprises a second fluid pathway defined by a second fluid defining member, such as a fluid inlet tube 115, configured to be in fluid communication with a wound site such that during NPWT, negative pressure exerted on the wound site allows fluid, such as air and exudate, from the wound to travel to the apparatus. Fluid drawn from the wound site travels via the second fluid pathway to a collection region 123 of the apparatus where fluid can be stored, while air drawn from the wound site can be preferentially drawn into the chamber 122 and toward the source of negative pressure. In some embodiments, the pathway defining member 115 is a fluid inlet tube. In some embodiments, the second fluid defining member is part of a cover 110 of the apparatus. In some embodiments, negative pressure is applied to draw fluid from the wound via the following pathway: the source of negative pressure draws air through a first opening 124, from a fluid pathway within tube 106 and filter assembly 101 within chamber 122, and from impeding element 103 from the second fluid path way defined by the fluid defining member 115 (and extension tube 107, if present), such that fluid comprising air and liquid is drawn to the apparatus from the wound via 125. From the perspective of the negative pressure from the wound site to the source of negative pressure, the pathway would be the reverse (e.g., negative pressure draws air from the wound site through second fluid defining pathway 125 defined by second fluid defining member 115, through impeding element 103, to first fluid pathway 122 defined by first fluid defining member 102, through filter assembly 101 within the first fluid pathway 122, through a third fluid pathway defined by a third fluid defining member 106 and out of the first opening 124 to the source of negative pressure. Fluid flow into the apparatus from the wound site is shown in FIG. 1A by the hatched arrows. Air flow into the source of negative pressure is shown in FIG. 1B by the white arrows.


Apparatus 100 houses chamber 122 and collection region 123 within an interior region formed by a cover 110 and collection vessel 111. Cover 110 comprises a first opening 124 configured to connect the apparatus to a source of negative pressure and to provide a first pathway in fluid communication between the chamber of the apparatus and the source of negative pressure. Cover 110 further comprises a second opening 125 configured to connect the apparatus to a wound dressing and to provide a second pathway in fluid communication between the wound site and the apparatus. As shown in FIG. 4, a sealing member 109 is optionally provided at the first opening 124 and second opening 125 to connect with the source of negative pressure and wound dressing, respectively. In some cases, the sealing member 109 comprises an O-ring. In some cases, the sealing member comprises a flat gasket, a Luer fitting, conical fit, or push fit mechanism or the like. However, other features may be provided to establish and maintain fluid communication between the apparatus and the wound dressing, as well as the apparatus and source of negative pressure. For example, collection vessel 111 may further comprise a non-detachable top with couplings or connections between the collection vessel and wound dressing, as well as the collection vessel and source of negative pressure.


In an exemplary embodiment, air is preferentially drawn into the chamber 122 from the collection region 123 through a first impeding element 103 positioned at the top of the apparatus or a second impeding element 103 positioned at the bottom of the apparatus. Impeding elements 103 are shown in FIGS. 1-3. The first impeding element 103 is positioned at a first end of the chamber tube 102, and the second impeding element 103 is positioned at the second end of the chamber tube 102. In an exemplary embodiment, the first and second impeding elements are configured such that the pressure drop to draw liquid through the first and second impeding elements is higher than that to draw air through the first and second impeding elements. Accordingly, air may be preferentially drawn through the first or second impeding elements, through the chamber, and towards the source of negative pressure. The chamber tube 102 may be configured to hold the first and second impeding elements in place within the collection vessel 111. In some cases, the first impeding member may be pushed against cover 110 by the top of chamber tube 102 and the second impeding member may be pushed against the bottom of collection vessel 111 by the bottom of chamber tube 102, which compresses the first and second impeding members at the top and bottom sides of the chamber tube 102. In some cases, the impeding member may be compressed by about 100% to about 1000%. For instance, the impeding member is compressed from a thickness of about 3-10 mm to a thickness of about 0.5-5 mm. As a non-limiting example, the impeding member is compressed from a thickness of about 5 mm to a thickness of about 1 mm. For impeding members comprising a first uncompressed pore size, the compression of the first and/or second impeding members may reduce the uncompressed pore size by about 20% to about 80%. In some embodiments, the uncompressed pore size of the impeding element is from about 0.3 mm to about 0.5 mm. In some cases, the compressed pore size of the impeding element is from about 0.1 mm to about 0.2 mm. In some embodiments, the compressed pore size provides further preferential passage of air into the chamber as compared with liquid. The compressed pore size may also inhibit passage of particulates from wound fluid and/or absorbent material, if present, from entering into the chamber.


In some embodiments, the first and/or second impeding elements are configured to prevent the passage of particulates of about 100 microns to about 850 microns in size, e.g., about 400 microns in size. For a porous impeding element, the impeding element may comprise a tortuous path that hinders particulates smaller than the pore size from passing through the impeding element.


The impeding element may comprise an open-cell foam. In some cases, the foam comprises polyurethane, polyether, polyvinyl alcohol (PVA), or a combination thereof. For example, the impeding element comprises polyurethane foam. In some cases, the open-cell is compressed within the apparatus by the chamber tube 102, as described above. In some embodiments, the impeding element comprises a polypropylene, polyester, or rayon felt filter media such as supplied by Superior Felt and Filtration. In some cases, the impeding element comprises a polypropylene filter material, such as supplied by Pall Inc. In some embodiments, the impeding element comprises a fibrous material, for example, a polyester material. In some embodiments, the impeding element comprises a nonwoven material. Additional exemplary impeding elements are envisioned that comprise multiple small holes or capillaries through which air may preferentially pass during NPWT over liquid and/or particulate materials.


In some embodiments, the apparatus comprises an impeding element that is not positioned at either end of a chamber tube 102. As a non-limiting example, the impeding element is a series of small holes in a rigid structure e.g., radially holes or castellation slots through the wall of chamber tube 102 that may provide a fluid pathway that would provide resistance to liquid and preferential movement to air. In some such embodiments, chamber tube 102 may seal to the inside surface of the cover 110 and collection vessel 111. In some cases, the holes or slots are small enough to provide the appropriate flow resistance to liquid.


During NPWT, fluid is drawn into the collection region 123 through the pathway defining member 115 and optional fluid extension tube 107. Second fluid defining member 115 may extend to a desired length without the need for fluid extension tube 107, or may be connected to fluid extension tube 107 to establish an overall desired length of the two elements together. In a preferred embodiment, second fluid defining member 115 (with our without fluid extension tube 107) extends to a central region of collection region 123 to direct exudate and air to the central region. In some embodiments, the second fluid defining member 115 extends through the first impeding element. In other embodiments, the second fluid defining member 115 does not extend through the first impeding element. As a non-limiting example, the first impeding member may be formed such that wound fluid may pass into the collection region 123 without passing through the first impeding element. Collection region 123 may include an absorbent region comprising an absorbent material. Such absorbent material may be arranged as layers of absorbent material 105, and optionally wicking layers 104. If present, the wicking layers 104 are configured to transport liquid via capillary action through the wicking layers and into the layers of absorbent material to distribute fluid throughout the collection region 123. In some cases, the first and second impeding elements prevent the absorbent material from entering chamber 122.


Apparatus 100 further comprises a filter assembly 101, which is shown in an exemplary embodiment in FIG. 5. For example, filter assembly 101 comprises a filter housing 114, an air permeable filter 116, for example a hydrophobic filter or other suitable filter that traps or prevents liquid passage, and optionally an aromatic filter 120, e.g., an activated carbon filter or other suitable aromatic filter. The filter assembly 101 is positioned within chamber 122 by, for example, filter tube 106. In some embodiments, the filter tube 106 is sealed against the cover 110 to create the first air pathway between the chamber of the apparatus and the source of negative pressure. In some embodiments, the filter tube 106 is moulded to the cover 110. In some embodiments, the filter tube 106 is connected to a spigot, hole, or other portion of the cover 110 by, e.g., a push-fit or other suitable mechanism. In some cases, the filter assembly 101 and 106 may be connected to or part of cover 110. In some embodiments, where apparatus 100 does not include a cover 110, filter tube 106 may be connected (directly or indirectly) to a side of the apparatus such that air under negative pressure may be drawn through filter tube 106 to the source of negative pressure through an opening in the apparatus. As air is drawn into the chamber 122 through the first and second impeding elements during NPWT, air may flow through the air permeable filter 116 and the aromatic filter 120, into filter tube 106, and toward the source of negative pressure through opening 124. Filter assembly 101 may be supported within chamber 122 by a support 113. FIG. 6A shows a bottom view of an exemplary apparatus 100 showing support 113 within chamber 122, surrounded by the second impeding element 103.


During NPWT, a negative pressure source and wound dressing are connected to the apparatus such that fluid (including air and liquid exudate) is drawn from the wound into the apparatus by exerted negative pressure. Wound fluid enters the collection region 123 through opening 125, passing through second fluid defining member 115 and optional extension tube 107, following a path as generally depicted by the hashed arrows in FIG. 1A. The fluid may then be drawn into absorbent layers 105, e.g., by the optional wicking layers 104 where the fluid is retained. Air enters the apparatus with fluid from the wound through second fluid defining member 115 and optional extension tube 107. Air may be further drawn through the path generally shown by the white arrows in FIG. 1A. Air drawn into the first impeding element and/or second impeding element 103 into chamber 122, can travel through filters 116 and 120, through filter tube 106, and out of the apparatus toward the negative pressure source through opening 124, while the wicking and/or absorbent material are configured to retain exudate in the collection region 123. Air permeable filter 116 may hinder liquid from exiting the apparatus through filter tube 106 and proceeding to the source of negative pressure. To restrict undesired materials, such as absorbent/wicking material and non-liquid exudate, from reaching filter 116, filter assembly 101 may be protected from direct contact with such material. In this example, chamber tube 102 surrounds filter assembly 101 to restrict such undesired material from reaching the filter 116.


A second embodiment 200 of a fluid collection apparatus is shown from a front side in FIG. 1B and as a cross-section in FIG. 2B. FIG. 3B shows a detailed cross-section view of the second embodiment as shown in FIG. 2B. Apparatus 200 comprises the general features of apparatus 100, except the impeding element 103 positioned at the bottom of the apparatus comprises a hole 117 similar to the hole in the impeding element 103 positioned at the top of the apparatus through which second fluid defining member 115 is passed. FIG. 6B shows the bottom side of the apparatus 200, showing the hole 117 in the impeding element 103, while FIG. 6A shows the bottom of the apparatus 100, where the impeding element does not comprise the hole 117. The figures show first and second impeding elements 103, the filter tube 106, and the optional fluid extension tube 107. As shown in the figures, filter tube 106 may be connected to cover 110 to create the first fluid pathway in fluid connection with the negative pressure source. The features of FIG. 2B correspond to the features of FIG. 2A, except the embodiment shown in FIG. 2A is lacking a hole 117 in the second impeding element 103.


A third embodiment of a fluid collection apparatus is shown in FIG. 7A as apparatus 300. Apparatus 300 comprises the general features of apparatus 100, except the absorbent region of apparatus 300 may, for example, comprise an absorbent material within a bag, pouch, or other container, for example, a sachet 112, as opposed to layers of absorbent material. In some cases, the superabsorbent container, for example, a sachet, is dissolvable. While the drawing depicts an exemplary embodiment of a single sachet, the apparatuses and devices as disclosed herein may comprise a plurality of containers comprising superabsorbent, including at least one superabsorbent container, at least two superabsorbent containers, at least three superabsorbent containers, at least four superabsorbent containers, at least five superabsorbent containers or more, depending in part, for example, on the volume and dimensions of the apparatus.


In still other embodiments, the collection region 123 comprises an absorbent material, for example, superabsorbent material, such as superabsorbent granules, particles or other material capable of absorbing large amounts of liquid exudate relative to its own mass. Examples of superabsorbent polymers include, but are not limited to, cellulose or cellulose-derivative, for example, carboxymethyl cellulose, polyacrylate, including sodium polyacrylate, polyacrylamide and polyacrylamide co-polymers, ethylene maleic anhydride copolymers, crosslinked-carboxymethylcellulose, polyvinyl alcohol copolymers, cross-linked polyethylene oxide, polyacrylonitrile copolymers and combinations thereof. Absorbent material, for example superabsorbent polymers, may optionally include materials capable of absorbing odors or other noxious elements present in exudate and/or other excipients needed to, for example, increase particle size or surface area. In some cases, an odour absorbing material, such as activated carbon particles, may be included or added into to an impeding element, and/or wicking layer to provide an additional means to control odour such that air passing through the apparatus passes over odour absorbing material such as activated carbon.


A fourth embodiment of a fluid collection apparatus is shown in FIG. 7B as apparatus 400. Apparatus comprises the general features of apparatus 200, except the absorbent region of apparatus 400 comprises, for example, an absorbent material within a bag, pouch, or other container, for example, sachet 112.


A fifth embodiment of a fluid collection apparatus is shown in FIGS. 8-11 as apparatus 500. Apparatus 500 is configured to store a smaller volume than each of apparatuses 100, 200, 300 and 400. For example, apparatuses and devices disclosed herein may be configured to store from about 100 ml to about 500 ml, from about 100 ml to about 200 ml, or from about 100 ml to about 300 ml of liquid. As a non-limiting example, apparatus 500 is configured to store about 300 ml of liquid. In comparison, larger apparatuses 100, 200, 300, and/or 400 may be configured to hold from about 300 ml to about 1200 ml, from about 400 ml to about 1000 ml, from about 400 ml to about 900 ml, from about 500 ml to about 1200 ml, from about 500 ml to about 100 ml, from about 500 ml to about 900 ml, from about 600 ml to about 1200 ml, from about 600 ml to about 100 ml, or from about 600 ml to about 900 ml of liquid. As non-limiting examples, the larger apparatuses 100, 200, 300 and/or 400 may each hold about 600 ml or 900 ml of liquid. The smaller apparatus 500 further differs from larger apparatuses 100, 200, 300, and 400 by lacking an extension tube 107, as shown in FIG. 9. In FIG. 9, the impeding elements 103, the second fluid defining member 115 and cover 110, and the filter tube 106 are shown.


Each of the apparatuses shown may comprise attachment points 118 for hanging each apparatus in storage and/or during NPWT from one or more of its sides. The sides of apparatus 100 are depicted in FIGS. 12A and 12B. Apparatus 100 comprises six sides: a top side, a bottom side, a front side, a back side, a left side, and a right side. In some cases, the apparatus may be hung from a drip stand or other vertical pole by, for example, any of the six sides. In some cases, the apparatus may be positioned on a horizontal or substantially horizontal surface on any of the six sides. In some cases, the apparatus may be positioned such that the top of the cover 110 is facing downward, e.g., either resting at least partially against a horizontal surface or hanging. For the first, second, and fifth embodiments, the absorbent layers 105 may shift when the apparatus is positioned on its cover 110. For example, the absorbent layers may move adjacent to the cover and collect liquid in this orientation. For the third and fourth embodiments, absorbent material 112 positioned within the bag, sachet, pouch or other housing may also shift when the orientation of the apparatus is changed. For example, absorbent material 112 may be positioned adjacent to any of the six sides that are facing downward during use.


The apparatus and features thereof shown in FIGS. 1-12 are for illustrative purposes only and it is intended that a fluid collection apparatus may comprise additional components and/or lack one or more components shown. For example, an absorbent material and/or wicking layer may not be necessary for the fluid collection apparatus to function as described. As another example, an extension tube may be optional.


As used herein, a fluid is inclusive of a liquid and/or gas. As a non-limiting example, fluid drawn into an apparatus during a negative pressure therapy may comprise a mixture of liquid and gas, and the liquid may be retained within a collection region of the apparatus. In some cases, a fluid comprising a mixture of liquid and gas may be retained within the collection region. In some cases, the collection region comprises an absorbent material configured to absorb and retain liquid from a fluid drawn into the collection region, where the fluid drawn into the collection region comprises the liquid or a mixture of the liquid and a gas. In further cases, at least some of a gas drawn into the collection region may be retained within that region. In other cases, while there may be no net increase of gas in the collection region during a negative pressure therapy, there may instead be a net decrease of gas in the collection region during negative pressure therapy.


Fluid Collection Apparatus


In one aspect, a fluid collection apparatus comprises a cover, a collection vessel, a chamber tube configured to be in fluid communication with a source of negative pressure, a first impeding element positioned at a first end of a first tube, a second impeding element positioned at a second end of the first tube, and a fluid inlet tube extending through the first impeding element. In some embodiments, the fluid inlet tube optionally comprises an extension such that the outlet end dispenses fluid drawn from a wound site of a patient during NPWT into a collection region of the collection vessel. In some instances, the first impeding element impedes fluid dispensed within the collection region from entering the first end of the first tube and the source of negative pressure. In some instances, the second impeding element impedes fluid dispensed within the collection region from entering the second end of the first tube and the source of negative pressure. The chamber tube may, for example, be configured to hold the first and the second impeding elements in place within the fluid collection apparatus. In some embodiments, the first and/or second impeding elements may comprise a material that allows air to flow freely within the material, while absorbing liquid exudate and/or restricting entry or movement of larger particles. In some embodiments, the impending element comprises foam, preferably an open cell foam. Exemplary foams include polyurethane, polyether, and polyvinyl alcohol (PVA). In some cases, the polyurethane foam is a reticulated polyurethane foam.


In one aspect, a fluid collection apparatus comprises a cover, a collection vessel, and an interior region comprising a chamber tube, a first impeding element positioned at a first end of the tube, a second impeding element positioned at a second end of the tube, and an absorbent material. In some instances, the absorbent material may be positioned external to the tube. In some embodiments, the first and second impeding elements may inhibit or prevent transfer of the absorbent material to the interior of the tube. In some embodiments, the first and/or second impeding elements may comprise foam; in other embodiments, the first and/or second impeding elements may comprise an open cell foam. Exemplary foams include polyurethane, polyether, and polyvinyl alcohol (PVA). In some cases, the polyurethane foam is a reticulated polyurethane foam.


In another aspect, a fluid collection apparatus comprises a cover, a collection vessel, a chamber tube, a first impeding element positioned at a first end of the tube, a second impeding element positioned at a second end of the tube, and a collection region external to the tube. In some embodiments, the first impeding element provides a first air path from the collection region to the interior of the tube, and the second impeding element provides a second air path from the collection region to the interior of the tube. In some embodiments, the first and/or second impeding elements may comprise foam; in other embodiments, the first and/or second impeding elements may comprise open cell foam. Exemplary foams include polyurethane, polyether, and polyvinyl alcohol (PVA). In some cases, the polyurethane foam is a reticulated polyurethane foam.


In another aspect, a fluid collection apparatus comprises a cover, a collection vessel, a fluid inlet tube, a fluid collection region, and at least one impeding element; wherein the fluid inlet tube optionally comprises an extension of an outlet end for dispensing fluid collected during negative pressure wound therapy into a fluid collection region of the collection vessel/In some embodiments, the fluid inlet tube extends through the impeding element such that the outlet end of the tube is positioned within the fluid collection region, and the outlet end of the tube is positioned adjacent to the absorbent region. In some instance, an optional extension may be provided to extend the outlet end of the fluid inlet tube such that the outlet end in larger apparatus configurations may be positioned adjacent to the absorbent region. In some embodiments, the first and/or second impeding elements may comprise foam; in other embodiments, the first and/or second impeding elements may comprise open cell foam. Exemplary foams include polyurethane, polyether, and polyvinyl alcohol (PVA). In some cases, the polyurethane foam is a reticulated polyurethane foam.


In one aspect, a fluid collection apparatus comprises a collection vessel, a fluid inlet tube, a fluid collection region, and at least one impeding element. In some instances, the fluid inlet tube optionally comprises an extension such that the outlet end of the fluid inlet tube is capable of dispensing fluid collected during negative pressure wound therapy into a fluid collection region of the collection vessel such that the outlet end of the fluid inlet tube may be positioned adjacent to or within the fluid collection region. In some instances, the outlet end of the fluid inlet tube may be positioned adjacent to an optional absorbent region. In yet other embodiments, the outlet end of the fluid inlet tube may be positioned within a region comprising, for example, superabsorbent material. In some instances, the superabsorbent may be contained within a bag, pouch or container, for example a sachet. In other instances, the bag, pouch or container may be dissolvable, for example, a dissolvable sachet. In some embodiments, the first and/or second impeding elements may comprise foam; in other embodiments, the first and/or second impeding elements may comprise open cell foam. Exemplary foams include polyurethane, polyether, and polyvinyl alcohol (PVA). In some cases, the polyurethane foam is a reticulated polyurethane foam.


In one aspect, a fluid collection apparatus comprises a collection vessel, a chamber tube configured to be in fluid communication with a source of negative pressure, a first impeding element positioned at a first end of a first tube, a second impeding element positioned at a second end of the first tube, and a fluid inlet tube extending through the first impeding element. In some embodiments, the fluid inlet tube optionally comprises an extension such that the outlet end dispenses fluid drawn from a wound site of a patient during NPWT into a collection region of the collection vessel. In some instances, the first impeding element impedes fluid dispensed within the collection region from entering the first end of the first tube and the source of negative pressure. In some instances, the second impeding element impedes fluid dispensed within the collection region from entering the second end of the first tube and the source of negative pressure. The chamber tube may, for example, be configured to hold the first and the second impeding elements in place within the fluid collection apparatus. In some embodiments, the first and/or second impeding elements may comprise a material that allows air to flow freely within the material, while absorbing liquid exudate and/or restricting entry or movement of larger particles. In some embodiments, the impending element comprises foam, preferably an open cell foam. Exemplary foams include polyurethane, polyether, and polyvinyl alcohol (PVA). In some cases, the polyurethane foam is a reticulated polyurethane foam. In some cases, the apparatus further comprises a cover configured to connect to the collection vessel.


In one aspect, a fluid collection apparatus comprises a collection vessel, and an interior region comprising a chamber tube, a first impeding element positioned at a first end of the tube, a second impeding element positioned at a second end of the tube, and an absorbent material. In some instances, the absorbent material may be positioned external to the tube. In some embodiments, the first and second impeding elements may inhibit or prevent transfer of the absorbent material to the interior of the tube. In some embodiments, the first and/or second impeding elements may comprise foam; in other embodiments, the first and/or second impeding elements may comprise an open cell foam. Exemplary foams include polyurethane, polyether, and polyvinyl alcohol (PVA). In some cases, the polyurethane foam is a reticulated polyurethane foam. In some cases, the apparatus further comprises a cover configured to connect to the collection vessel.


In another aspect, a fluid collection apparatus comprises a collection vessel, a chamber tube, a first impeding element positioned at a first end of the tube, a second impeding element positioned at a second end of the tube, and a collection region external to the tube. In some embodiments, the first impeding element provides a first air path from the collection region to the interior of the tube, and the second impeding element provides a second air path from the collection region to the interior of the tube. In some embodiments, the first and/or second impeding elements may comprise foam; in other embodiments, the first and/or second impeding elements may comprise open cell foam. Exemplary foams include polyurethane, polyether, and polyvinyl alcohol (PVA). In some cases, the polyurethane foam is a reticulated polyurethane foam. In some cases, the apparatus further comprises a cover configured to connect to the collection vessel.


In another aspect, a fluid collection apparatus comprises a collection vessel, a fluid inlet tube, a fluid collection region, and at least one impeding element; wherein the fluid inlet tube optionally comprises an extension of an outlet end for dispensing fluid collected during negative pressure wound therapy into a fluid collection region of the collection vessel/In some embodiments, the fluid inlet tube extends through the impeding element such that the outlet end of the tube is positioned within the fluid collection region, and the outlet end of the tube is positioned adjacent to the absorbent region. In some instance, an optional extension may be provided to extend the outlet end of the fluid inlet tube such that the outlet end in larger apparatus configurations may be positioned adjacent to the absorbent region. In some embodiments, the first and/or second impeding elements may comprise foam; in other embodiments, the first and/or second impeding elements may comprise open cell foam. Exemplary foams include polyurethane, polyether, and polyvinyl alcohol (PVA). In some cases, the foam is a reticulated polyurethane foam. In some cases, the apparatus further comprises a cover configured to connect to the collection vessel.


In another aspect, a fluid collection apparatus comprises a collection vessel; optionally, a cover connected to a first side of the collection vessel; a first fluid pathway in fluid communication with a source of negative pressure, the first fluid pathway positioned between: (i) a first impeding element positioned at an interior of the cover or interior of the first side of the collection vessel and a (ii) second impeding element positioned at an interior of a second side of the collection vessel opposing the first side, wherein the first impeding element and the cover or first side of the collection vessel are in substantially fluid tight communication; a filter positioned within the first fluid defining member and between the first impeding element and the second impeding element; and a second fluid pathway for introducing exudate into the collection vessel. In some embodiments, the first and second impeding elements serve as, for example, a pre-filter to inhibit liquid from reaching the filter positioned within the first fluid defining member. In some embodiments, the first and the second impeding elements are not hydrophobic filters. In some embodiments, the filter and the impeding elements do not comprise the same material. In some embodiments, the first and the second impeding elements preferentially allow passage of air to enter into the first fluid defining member, but as the collection vessel fills, some liquid may pass into the first fluid defining member. When sufficient liquid has entered into the first fluid defining member and covers the filter, a signal may be received indicating that the collection vessel could be full or at least about 50% full.


In some embodiments, any fluid collection apparatus described herein comprising an air permeable filter positioned within the chamber. In some cases, the air permeable filter comprises a hydrophobic filter. The air permeable filter may have a pore size of about 0.2 microns to 0.8 microns, or about 0.2 microns, 0.45 microns, or 0.8 microns. The air permeable filter may comprise polyethersulfone (PES), polytetrafluorethylene (PTFE) (e.g., as manufactured by Dow Corning), cellulose acetate, cellulose nitrate membranes, or a combination thereof. In some embodiments, the apparatus further comprises a carbon filter.


In some embodiments, any fluid collection apparatus described herein may comprise an absorbent material. The absorbent material may comprise a superabsorbent material. For example, the absorbent material may comprise a fibrous structure impregnated with the superabsorbent material. The superabsorbent material may, for example, also comprise cellulose or a cellulose-derivative. In some cases, the absorbent material comprises one or more layers of absorbent material. In some cases, the absorbent material may be provided within a sachet. The absorbent material may also be adjacent to a wicking layer.


In some embodiments any fluid collection apparatus described herein comprises six sides, and the fluid collection apparatus in use is configured to be: (a) positioned with any of the six sides against a horizontal surface, and/or (b) hung from an attachment point on any of the six sides.


Fluid Collection Apparatus Components


In some embodiments, a fluid collection apparatus comprises a collection vessel and a cover. In some embodiments, the collection vessel may not include a separate cover but instead form all sides or walls of the vessel itself. The collection vessel may comprise a rigid plastic, e.g., a gamma sterilisable polycarbonate. An exemplary polycarbonate is Makrolon 2458. The cover may also comprise a rigid plastic such as a gamma sterilisable polycarbonate. Exemplary polycarbonates are Makrolon 2458 and RAL 9016. The cover may also comprise an O-ring for connecting the apparatus to a source of negative pressure and/or wound dressing. The O-ring may comprise nitrile, silicone, ethylene propylene diene monomer (EPDM), Viton, or a combination thereof. In some cases, the O-ring is black EPDM 70 Shore A.


The collection vessel may be configured to hold from about 100 ml to about 1200 ml of liquid in a collection region, e.g., a region comprising an absorbing material. In some cases, the collection vessel may hold about 100 ml, about 200 ml, about 300 ml, about 400 ml, about 500 ml, about 600 ml, about 700 ml, about 800 ml, about 900 ml, about 1000 ml, about 1100 ml, and about 1200 ml. In some embodiments, apparatus 100 is configured to hold about 600 ml of liquid. In some embodiments, apparatus 100 is configured to hold about 900 ml of liquid. In some embodiments, apparatus 200 is configured to hold about 600 ml of liquid. In some embodiments, apparatus 200 is configured to hold about 900 ml of liquid. In some embodiments, apparatus 300 is configured to hold about 300 ml of liquid.


In some embodiments, the first and second impeding elements of the apparatus comprise foam. The foam may be in the form of a layer that provides an air path from the collection region of the canister to the chamber and on to the negative pressure source. The foam may also prevent transfer of absorbing material to the filter assembly. In some cases, the foam is an open cell foam. In some cases, foam comprises polyurethane, polyether, polyvinyl alcohol (PVA), or a combination thereof. In an exemplary embodiment, the foam comprises polyurethane, e.g., a reticulated polyurethane foam. An exemplary reticulated polyurethane foam is Blue RAL 5017.


In some embodiments, a fluid collection apparatus comprises an absorbent region comprising an absorbent material. In some cases, the absorbent material comprises one or more layers of absorbent material. In some cases, the absorbent material has about 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 layers of absorbent material. As an exemplary embodiment, the absorbent material has 6 layers of absorbent material. In some cases, the absorbent material is provided within a sachet. The sachet may be dissolvable.


In some aspects, an absorbent material comprises a super absorbent material. Non-limiting examples of super absorbent materials include a material or combination of materials that absorb about or at least about 10-, 20-, 30-, 40-, 50-, 60-, 70-, 80-, 90-, 100-, 120-, 140-, 160-, 180-, 200-, 250-, 300-, 400-, or 500-times the super absorbent material's weight in water. In some cases, a super absorbent material absorbs about 20-500 times its weight in water, or absorbs about 50-500 times its weight in water. When the super absorbent is used in a bag or sachet for retaining biological fluids having salinity such as exudates, the super absorbent fluid may absorb between about 4 and about 10 times its weight in a saline liquid.


In some aspects, an absorbent material expands from a first thickness to a second thickness upon absorption of fluid, wherein the second thickness is less than or equal to the maximum thickness of the absorbent material. In some embodiments, the first thickness refers to the thickness of the absorbent material prior to absorption of fluid during a negative pressure therapy. For example, the first thickness is the thickness of the expandable absorbent material supplied and/or stored with a fluid collection apparatus for use in negative pressure therapy. In some embodiments, the absorbent material is a super absorbent material that expands during absorption of fluid. In some cases, the first thickness of the expandable absorbent material is between about 3 mm and 15 mm, or between about 5 mm and 10 mm. In some cases, the maximum thickness is between about 15 mm and 50 mm, or between about 20 mm and 35 mm. In some cases, the maximum thickness of the expandable absorbent material is about 1.2-, 1.4-, 1.6-, 1.8-, 2-, 2.5-, 3-, 3.5-, 4-, 4.5- or 5-times the first thickness. In some cases, the maximum thickness of the expandable absorbent material is about 1.5-5, 1.5-4, 1.5-3, 1.5-2.5, or 1.5-2 times the first thickness.


Non-limiting examples of absorbent materials include polyacrylate, non-woven material, cellulose fibres, tissue paper, polyacrylamide copolymer, and combinations thereof. A non-woven material includes a polyester staple fibre. In a non-limiting example, an apparatus comprises the superabsorbent polymer polyacrylate. As another non-limiting example, an apparatus comprises the superabsorbent polymer Needlefelt type 0570N700400 (Technical Absorbents). In some cases, an apparatus comprises two or more materials with absorbing properties. In some cases, an apparatus comprises a mixture of super absorbent polymer and cellulose fibers. In some embodiments, an absorbent material comprises a base fibrous structure impregnated with super absorbing polymer particles. For example, Specificall cellulose Absorbent Pad 113.


In some embodiments, an absorbent material is in a powder or granular form within a bag or sachet. In some embodiments, the absorbent material is enclosed within a casing within the apparatus. In some embodiments, the absorbent material comprises a superabsorbent polymer. The casing is sometimes referred to as a transmissive material or layer which allows fluid to flow into the casing to the absorbent material, while retaining the absorbent material within the casing. In some cases, the transmissive material has a wicking property, where fluid transfer into the casing is facilitated by the wicking property of the transmissive material, for example, via capillary action. In other or additional cases, a separate and/or additional wicking layer is provided on an exterior of the casing to draw liquid into the casing to the absorbing material. In some cases, a layer of the transmissive material enclosing the absorbent material is between about 0.02 mm and 0.2 mm thick or between about 0.08 mm and 0.15 mm thick. Non-limiting examples of transmissive materials include non-woven polypropylene, cellulose fibres, non-woven HDPE and a combination thereof.


In some embodiments, an absorbent material is provided in the collection region of the apparatus as loose particles, e.g., superabsorbent particles that are not contained in a bag or casing and are not formed as layers.


In some aspects of the disclosure, a fluid collection apparatus comprises a wicking material. Wicking materials include materials configured to receive liquid and then rapidly transport the liquid, for example, via capillary action, to another material adjacent the wicking material. For instance, the wicking material receives liquid drawn into the collection region of the apparatus and then transfers the liquid to the absorbent material, where the absorbent material absorbs and retains the liquid. In some embodiments, a wicking material wicks more than 15 mm of water vertically over a time period of 24 hours. In some cases, the absorbent material is a superabsorbent polymer. In exemplary embodiments, the apparatus comprises a wicking material positioned adjacent an absorbent material described herein. Non-limiting examples of wicking materials include cellulose pulp, cotton, tissue paper, non-woven polyester, and a combination thereof. In some configurations, about a 0.05-10 mm, or about a 0.2-2 mm layer of wicking material is positioned adjacent to an absorbent material.


For an apparatus comprising an absorbent region comprising an absorbent material and optionally a wicking material, the distance between the fluid inlet tube or extension tube and the absorbent region may be from about 10 mm to about 60 mm. As a non-limiting example, for an apparatus configured to hold about 300 ml of liquid, the distance is about 15 mm. As another example, for an apparatus configured to hold about 600 ml of liquid, the distance is about 30 mm. As a further example, for an apparatus configured to hold about 900 ml of liquid, the distance is about 40 mm.


The first fluid defining member, or chamber tube, that provides space for the filter assembly may be rigid. This member may be cut from an extruded tube or moulded to suit a particular apparatus. As a non-limiting example, a first fluid defining member comprises clear polycarbonate, such as Makrolon 2458. In some embodiments, the first fluid defining member has a circular, square, rectangular, or other cross section. For an apparatus comprising a circular cross section, the filter assembly may be positioned within the chamber such that the face of the filter is held away from a wall to allow for free passage of air. In some cases, the inner diameter of the chamber tube is from about 10 mm to about 24 mm, from about 12 mm to about 24 mm, from about 14 mm to about 24 mm, from about 16 mm to about 24 mm, from about 18 mm to about 24 mm, from about 12 mm to about 22 mm, from about 12 mm to about 20 mm, or from about 12 mm to about 18 mm. As a non-limiting example, the inner diameter is about 18 mm. In some cases, the outer diameter of the chamber tube is from about 16 mm to about 28 mm, from about 18 mm to about 28 mm, from about 20 mm to about 28 mm, from about 22 mm to about 28 mm, from about 16 mm to about 26 mm, from about 16 mm to about 24 mm, or from about 16 mm to about 22 mm. As a non-limiting example, the outer diameter is about 22 mm. In some embodiments, the first fluid defining member may be permanently affixed or part of the cover or collection vessel.


The filter assembly may comprise an air permeable filter, an aromatic filter, and a filter housing. As a non-limiting example, the air permeable filter comprises a hydrophobic filter. In some cases, the filter housing is moulded in Natural ABS, e.g., as provided by Novodur FID M203FC. In some cases, the aromatic filter comprises carbon for reducing odors during NPWT. In some cases, the aromatic filter comprises from about 25 g/m2 to about 200 g/m2, from about 25 g/m2 to about 175 g/m2, from about 25 g/m2 to about 150 g/m2, from about 25 g/m2 to about 125 g/m2, from about 25 g/m2 to about 100 g/m2, from about 50 g/m2 to about 200 g/m2, or from about 75 g/m2 to about 200 g/m2 activated carbon. For example, the aromatic filter comprises about 80 g/m2, about 90 g/m2, or about 100 g/m2 activated carbon. An exemplary aromatic filter comprises activated carbon and a non-woven material with an enhanced binder. For instance, the non-woven blend comprises polyester, polyolefin, and activated carbon. As a non-limiting example, the non-woven blend comprises about 88% polyester and about 12% polyolefin, with about 90 g/m2 activated carbon (e.g., as provided by Sterling non-wovens, material number 3351).


In some embodiments, the air permeable filter has a pore size from about 0.2 microns and about 0.8 microns, or about 0.2 microns, about 0.45 microns, or about 0.8 microns. A first exemplary air permeable filter comprises polyethersulfone (PES). For example, a PES filter membrane on polyester nonwoven support, e.g., as provided by Pall, having material number S80535 (0.45 micron pore size, 0.76 mm to 0.162 mm thickness). The air permeable filter may alternatively or additional comprises polytetrafluorethylene (PTFE), cellulose acetate, cellulose nitrate membranes, or a combination thereof.


In some embodiments, the filter tube is elastomeric. In some embodiments, the filter tube is plastic. As non-limiting examples, the filter tube comprises gamma sterilisable materials such as polyvinyl chloride (PVC), silicone, ethylene propylene diene monomer (EPDM), Viton. In some cases, the filter tube comprises PVC 60 Shore A.


The apparatus may comprise a fluid inlet tube, and optionally, an extension tube. The extension tube, and/or fluid inlet tube, may comprise gamma sterilisable PVC, silicone, EPDM, Vitron, or a combination thereof. For example, the extension tube comprises PVC 60 Shore A. In some cases the extension tube attaches to the apparatus cover. In some cases, the extension tube is included in the cover moulding.


Systems and Kits


In one aspect of the disclosure, provided herein are systems comprising a fluid collection apparatus described herein and one or more accessory elements. Accessory elements include materials useful for performing a negative pressure therapy such as NPWT. In some embodiments, an accessory comprises a wound dressing. A wound dressing includes, without limitation, a dressing having a cover for sealing around a wound site and maintaining a negative pressure environment at the wound site, where the cover further comprises an adhesive for the sealing and an opening for the transfer of negative pressure. Non-limiting examples of wound dressing covers include polyurethane films having, for example, a polyurethane adhesive. In some embodiments, an accessory comprises a source of negative pressure. In some embodiments, “negative pressure” refers to pressure below atmospheric pressure. Sources of negative pressure include pumps configured to maintain a negative pressure between about 60 mmHg and about 145 mmHg below atmospheric pressure. For example, the pump may be configured to maintain a negative pressure of about 80, 100 or 125 mmHg below atmospheric pressure, ±20 mmHg. Sources of negative pressure include pumps configured to exert a maximum negative pressure of at least 200 mmHg, at least 330 mmHg or at least 400 mmHg. In exemplary embodiments, a pump is a diaphragm pump. In exemplary embodiments, a pump may be an electric pump, either mains or battery powered. The pump may be configured to operate continuously. In further exemplary embodiments, the pump may be a medical pump, such as a pump complying with Directive 93/42/EEC: IIA, IEC 60601-1 and/or IEC 60601-1-2. Additional accessory items include one or more conduits or tubings configured to connect the fluid collection apparatus to a source of negative pressure and/or wound dressing; and a connector configured to connect the outlet of the apparatus to a source of negative pressure, and connect the inlet of the apparatus to the wound dressing.


Methods


Provided herein are methods for collecting fluid using a fluid collection apparatus described herein. In some embodiments, the fluid collection apparatus utilized comprises a first fluid defining member, such as a chamber, in fluid communication with a source of negative pressure, a first impeding element positioned at a first end of the first fluid defining member, a second impeding element positioned at a second end of first fluid defining member, and a second fluid defining member, such as a fluid inlet tube, in fluid communication with a wound dressing; wherein the fluid inlet tube comprises an outlet end and the fluid inlet tube extends through the first impeding element such that the outlet of the fluid inlet tube is positioned within a fluid collection region of the fluid collection apparatus.


In one aspect, the method comprises applying a negative pressure from the source of negative pressure to the wound site via the fluid collection apparatus to draw fluid from the wound site, through the fluid inlet tube, and into the fluid collection region of the fluid collection apparatus; wherein the fluid comprises liquid and air, and the fluid is retained in the fluid collection region and the air is drawn through the first and/or the second impeding elements, into the interior of chamber tube, and towards the source of negative pressure. In some embodiments, the negative pressure applied from the negative pressure source is between about 75 mmHg and about 125 mmHg below atmospheric pressure.


In some methods, the fluid collection apparatus is positioned in an orientation-independent manner. In some cases, the fluid collection apparatus comprises multiple sides (e.g., six sides), and the fluid collection apparatus in use is: (a) positioned with any of the multiple sides against a horizontal surface and/or (b) hung or secured from an attachment point on any of the multiple sides. In some cases, the fluid collection apparatus is suspended, attached or otherwise secured from one or more attachment points on the fluid collection apparatus. In some cases, the orientation independence of an apparatus described herein is evaluated by filling the collection vessel with a liquid. In some cases, the liquid is water. In some cases, the liquid is a physiological saline solution. As a non-limiting example, the physiological saline solution is defined in EN13726-1 as Test solution A.


EXAMPLES
Example 1: Fluid Collection Apparatus

A fluid collection apparatus as generally depicted in FIG. 1 was manufactured. The components, canister header (110) and canister base (111) were injection moulded from suitable material. The chamber tube (102) was cut from extruded tube having a rigid material such as poly carbonate, or manufactured by injection moulding as a discrete component. The filter tube (106) and extension tube (107) were cut from a flexible tube material comprising PVC that had previously been extruded to shape. The filter assembly (101) was manufactured from three components: an outer housing (114), which was injection moulded from a plastic suitable for ultrasonic welding or thermally welding to the hydrophobic filter material (116), an activated carbon filter element (120) that is contained by the filter housing (114), and a hydrophobic filter (116) which is welded to the housing (114) to seal to the edges and retain the carbon filter.


The absorbent layers (105), foam (103) and wicking sheet (104) components were stamped from roll stock. The absorbent layers comprise superabsorbent polymers. A foam sheet (103), wicking sheet (104) and the absorbent layers (105) were loaded into the canister base (111) and the filter tube (106) was placed into the canister base so that it was located by alignment features in the base of the canister and trapped the foam sheet (103) and wicking sheet (104) against the base of the canister. The absorbent layers (105) were free to slide over the chamber tube (102). A foam sheet (103) and wicking sheet (104) were fitted to the canister header (110). The filter tube (106) was pressed onto the tube spigot of the filter housing of the filter sub assembly (101) and the opposite end of the filter tube (106) was pressed over the tube spigot of the header (110) so that the filter assembly (101) is connected to the header. Optionally the canister filling tube is fitted to the fluid inlet spigot on the canister header (110). The two partial assemblies (upper and lower) were brought together so that the filter assembly (101) fits within the canister tube (102) and the mating surfaces of the canister are brought together. In this example, the mating surfaces of the canister header (110) and canister base (111) have features to aid joining them together. In the case of ultrasonic welding being employed for the joining process, a weld concentrating feature is designed into one component and a receiving surface in the other. This feature pairing may be mating pair of a tongue and groove features on the mating surfaces with a small welding concentrator such as a small radius bump (0.2 to 1 mm diameter) on the end of the tongue feature to concentrate the welding energy. The assembly is typically placed in an ultrasonic welding feature and the two halves are welded together by application of ultrasonic energy to one component to forma seal with the other part. Optionally additional sealing can be provided by solvent or adhesive should this be necessary.


Example 2: Orientation Independence of a Fluid Collection Apparatus

To test the orientation independence of the apparatus, liquid representative of wound exudate was supplied to the apparatus at rate representative of anticipated use. This test was continued until the canister reached capacity and the hydrophobic filter was obscured by liquid. This test has been conducted with the apparatus in a typical orientation, with the canister resting on its base. This test has further been conducted with the canister placed on its side and on one end of the apparatus. The most challenging orientation is with the long axis at or close to vertical as this requires fluid to travel a greater vertical distance against gravity. However, the wicking layer assists performance under these conditions, ensuring that the majority of the absorbent layers were saturated before liquid reached the hydrophobic filter within the chamber tube.


While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the inventions described herein may be employed in practicing the inventions. It is intended that the following claims define a scope of the inventions and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A fluid collection apparatus for negative pressure wound therapy comprising a collection vessel,a first fluid defining member having a chamber therein and configured to be in fluid communication with a source of negative pressure,a first impeding element formed of a porous material and positioned at a first end of the first fluid defining member,a second impeding element formed of a porous material and positioned at a second end of the first fluid defining member, anda second fluid defining member defining a pathway for dispensing fluid drawn from a wound site of a patient during negative pressure wound therapy into a collection region of the collection vessel; andwherein the first impeding element impedes fluid dispensed within the collection region from entering the chamber from a first end of the first fluid defining member and the source of negative pressure, and the second impeding element impedes fluid dispensed within the collection region from entering the chamber from a second end of the first fluid defining member and the source of negative pressure;wherein the first fluid defining member is positioned between the first impeding element and the second impeding element, wherein the first fluid defining member at least partially compresses the first impeding element and the second impeding element, thereby configured to hold the first impeding element and the second impeding element in place within the collection vessel.
  • 2. The fluid collection apparatus of claim 1, wherein at least one of the first impeding element and the second impeding element comprises foam.
  • 3. The fluid collection apparatus of any of claim 1, wherein at least one of the first and second impeding elements comprise polyurethane, polyether, polyvinyl alcohol (PVA), or a combination thereof.
  • 4. The fluid collection apparatus of any of claim 1, further comprising a filter positioned within the chamber.
  • 5. The fluid collection apparatus of claim 4, wherein the filter is a hydrophobic filter.
  • 6. The fluid collection apparatus of claim 4, wherein the filter comprises a pore size of between about 0.2 micron to about 0.8 micron.
  • 7. The fluid collection apparatus of claim 4, wherein the filter comprises polyethersulfone (PES), polytetrafluorethylene (PTFE), cellulose acetate, or a cellulose nitrate membrane.
  • 8. The fluid collection apparatus of claim 1, further comprising a carbon filter that comprises from about 25 g/m2 to about 200 g/m2 of activated carbon.
  • 9. The fluid collection apparatus of claim 1, further comprising an extension element extending the second fluid defining member to an area adjacent to or within the collection region of the collection vessel.
  • 10. The fluid collection apparatus of claim 1, wherein the first impeding element and the second impeding element are configured such that when the collection region of the collection vessel is filled with fluid to at least about 50% capacity by volume and sealed, in all orientations of the apparatus at least one of the first and second ends of the first fluid defining member is not submerged in liquid.
  • 11. A multi-orientation fluid collection apparatus for negative pressure wound therapy comprising: a) a collection vessel comprising a first side and a second side,b) a cover connected to the first side of the collection vessel,c) a chamber tube defining a chamber having a first fluid pathway in fluid communication with a source of negative pressure, the chamber tube positioned between and in contact with: (i) a first impeding element formed of a porous material and positioned at an interior of the cover or interior of the first side of the collection vessel and a(ii) second impeding element formed of a porous material and positioned at an interior of the second side of the collection vessel, wherein the first impeding element and the cover or first side of the collection vessel are in substantially fluid tight communication, and wherein the second side is optionally opposing the first side;d) a filter positioned within the chamber of the chamber tube and between the first impeding element and the second impeding element, ande) a second fluid pathway for introducing exudate into the collection vesselwherein the chamber tube at least partially compresses the first impeding element and the second impeding element to at least partially hold the first impeding element and the second impeding element in place within the collection vessel.
  • 12. The multi-orientation fluid collection apparatus of claim 11, wherein the filter hinders liquid from reaching the source of negative pressure.
  • 13. The multi-orientation fluid collection apparatus of claim 11, wherein the filter is a hydrophobic filter that comprises a pore size of between about 0.2 micron to about 0.8 micron.
  • 14. The multi-orientation fluid collection apparatus of claim 11, wherein the filter comprises polyethersulfone (PES), polytetrafluorethylene (P TEE), cellulose acetate, cellulose nitrate membranes, or a combination thereof.
  • 15. The multi-orientation fluid collection apparatus of claim 11, wherein absorbent material is provided within a dissolvable sachet.
  • 16. The multi-orientation fluid collection apparatus of claim 11, further comprising: a first wicking layer positioned between the first impeding element and an absorbent material; anda second wicking layer positioned between the absorbent material and the second impeding element.
Priority Claims (2)
Number Date Country Kind
1719014 Nov 2017 GB national
1719027 Nov 2017 GB national
PCT Information
Filing Document Filing Date Country Kind
PCT/IB2018/001417 11/16/2018 WO
Publishing Document Publishing Date Country Kind
WO2019/097288 5/23/2019 WO A
US Referenced Citations (719)
Number Name Date Kind
10016537 Menon et al. Jul 2018 B2
10046096 Askem et al. Aug 2018 B2
10076447 Barta et al. Sep 2018 B2
10076587 Locke et al. Sep 2018 B2
10143784 Walton et al. Dec 2018 B2
10426670 von Blucher et al. Oct 2019 B2
10426747 Johnson Oct 2019 B2
10426874 Chien et al. Oct 2019 B2
10426875 Blott et al. Oct 2019 B2
10426938 Locke et al. Oct 2019 B2
10434015 Taylor et al. Oct 2019 B2
10434142 Niazi et al. Oct 2019 B2
10434210 Olson et al. Oct 2019 B2
10434284 Hanson et al. Oct 2019 B2
10449094 Donda et al. Oct 2019 B2
D866756 Allen et al. Nov 2019 S
10463760 Karthikeyan et al. Nov 2019 B2
10463773 Haggstrom et al. Nov 2019 B2
10470933 Riesinger Nov 2019 B2
10470936 Wohlgemuth et al. Nov 2019 B2
10471122 Shi et al. Nov 2019 B2
10471190 Locke et al. Nov 2019 B2
10478345 Barta et al. Nov 2019 B2
10478346 Knutson Nov 2019 B2
10478394 Yu Nov 2019 B2
10485707 Sexton Nov 2019 B2
10485891 Andrews et al. Nov 2019 B2
10485892 Hands et al. Nov 2019 B2
10485906 Freedman et al. Nov 2019 B2
10486135 Yang et al. Nov 2019 B2
10492956 Zamierowski Dec 2019 B2
10493178 Marchant et al. Dec 2019 B2
10493184 Collinson et al. Dec 2019 B2
10493185 Stokes et al. Dec 2019 B2
10500099 Hung et al. Dec 2019 B2
10500103 Croizat et al. Dec 2019 B2
10500104 Sookraj Dec 2019 B2
10500173 Yang et al. Dec 2019 B2
10500235 Wardell Dec 2019 B2
10500300 Dybe et al. Dec 2019 B2
10500301 Laurensou Dec 2019 B2
10500302 Holm et al. Dec 2019 B2
10501487 Andrews et al. Dec 2019 B2
10506928 Locke et al. Dec 2019 B2
10507141 Allen et al. Dec 2019 B2
10507259 Cree et al. Dec 2019 B2
10512707 Whalen, III et al. Dec 2019 B2
10525170 Havenstrite et al. Jan 2020 B2
10532137 Pratt et al. Jan 2020 B2
10532194 Locke et al. Jan 2020 B2
10537657 Phillips et al. Jan 2020 B2
10542936 Goldberg et al. Jan 2020 B2
10543133 Shaw et al. Jan 2020 B2
10543293 Suschek Jan 2020 B2
10548777 Locke et al. Feb 2020 B2
10549008 Yoo Feb 2020 B2
10549016 Bushko et al. Feb 2020 B2
10549017 Hsiao et al. Feb 2020 B2
10555838 Wu et al. Feb 2020 B2
10555839 Hartwell Feb 2020 B2
10556044 Robinson et al. Feb 2020 B2
10561533 Hoggarth et al. Feb 2020 B2
10561536 Holm et al. Feb 2020 B2
10568767 Addison et al. Feb 2020 B2
10568768 Long et al. Feb 2020 B2
10568770 Robinson et al. Feb 2020 B2
10568771 MacDonald et al. Feb 2020 B2
10568773 Tuck et al. Feb 2020 B2
10568983 Gerdes et al. Feb 2020 B2
10575991 Dunn Mar 2020 B2
10575992 Sarangapani et al. Mar 2020 B2
10576037 Harrell Mar 2020 B2
10576189 Locke et al. Mar 2020 B2
10583042 Sarangapani et al. Mar 2020 B2
10583228 Shuler et al. Mar 2020 B2
10589007 Coulthard et al. Mar 2020 B2
10590184 Kuo Mar 2020 B2
10610414 Hartwell et al. Apr 2020 B2
10610415 Griffey et al. Apr 2020 B2
10610623 Robinson et al. Apr 2020 B2
10617569 Bonn Apr 2020 B2
10617608 Shin et al. Apr 2020 B2
10617769 Huang Apr 2020 B2
10617784 Yu et al. Apr 2020 B2
10617786 Kluge et al. Apr 2020 B2
10618266 Wright et al. Apr 2020 B2
10624984 Courage et al. Apr 2020 B2
10625002 Locke et al. Apr 2020 B2
10632019 Vitaris Apr 2020 B2
10632224 Hardy et al. Apr 2020 B2
10639206 Hu et al. May 2020 B2
10639350 Arber et al. May 2020 B2
10639404 Lichtenstein May 2020 B2
10646614 Grinstaff et al. May 2020 B2
10653562 Robinson et al. May 2020 B2
10653782 Ameer et al. May 2020 B2
10653810 Datt et al. May 2020 B2
10653821 Nichols May 2020 B2
10653823 Bharti et al. May 2020 B2
10660799 Wu et al. May 2020 B2
10660851 Millis et al. May 2020 B2
10660992 Canner et al. May 2020 B2
10660994 Askem et al. May 2020 B2
10667955 Allen et al. Jun 2020 B2
10667956 Van Holten et al. Jun 2020 B2
10682257 Lu Jun 2020 B2
10682258 Manwaring et al. Jun 2020 B2
10682259 Hunt et al. Jun 2020 B2
10682318 Twomey et al. Jun 2020 B2
10682386 Ellis-Behnke et al. Jun 2020 B2
10682446 Askem et al. Jun 2020 B2
10687983 Dahlberg et al. Jun 2020 B2
10687985 Lee et al. Jun 2020 B2
10688215 Munro et al. Jun 2020 B2
10688217 Hanson et al. Jun 2020 B2
RE48117 Albert et al. Jul 2020 E
10702419 Locke et al. Jul 2020 B2
10702420 Hammond et al. Jul 2020 B2
10703942 Tunius Jul 2020 B2
10709760 Gronberg et al. Jul 2020 B2
10709807 Kshirsagar Jul 2020 B2
10709883 Spector Jul 2020 B2
10716711 Locke et al. Jul 2020 B2
10716874 Koyama et al. Jul 2020 B2
10729589 Dorian et al. Aug 2020 B2
10729590 Simmons et al. Aug 2020 B2
10729826 Lin Aug 2020 B2
10736787 Hannigan et al. Aug 2020 B2
10736788 Locke et al. Aug 2020 B2
10736985 Odermatt et al. Aug 2020 B2
10737003 Fujisaki Aug 2020 B2
10743900 Ingram et al. Aug 2020 B2
10744040 Kazala, Jr. et al. Aug 2020 B2
10744041 Hartwell Aug 2020 B2
10744225 Lindgren et al. Aug 2020 B2
10744237 Guidi et al. Aug 2020 B2
10744238 Guidi et al. Aug 2020 B2
10744239 Armstrong et al. Aug 2020 B2
10744240 Simmons et al. Aug 2020 B2
10751212 Raza et al. Aug 2020 B2
10751442 Bonnefin et al. Aug 2020 B2
10751452 Topaz Aug 2020 B2
10758423 Pigg et al. Sep 2020 B2
10758424 Blott et al. Sep 2020 B2
10758425 Blott et al. Sep 2020 B2
10758426 Eddy Sep 2020 B2
10758651 Blott et al. Sep 2020 B2
10765561 Lattimore et al. Sep 2020 B2
10765783 Locke et al. Sep 2020 B2
10772767 Bjork et al. Sep 2020 B2
10772999 Svensby Sep 2020 B2
10779993 Bishop et al. Sep 2020 B2
10780114 Udagawa et al. Sep 2020 B2
10780194 Flach et al. Sep 2020 B2
10780201 Lin Sep 2020 B2
10780202 Askem et al. Sep 2020 B2
10780203 Coulthard et al. Sep 2020 B2
10782238 Hicks et al. Sep 2020 B2
10792191 Robinson et al. Oct 2020 B2
10792192 Tout et al. Oct 2020 B2
10792337 Leung et al. Oct 2020 B2
10792404 Hu et al. Oct 2020 B2
10792482 Randolph et al. Oct 2020 B2
10800905 Delli-Santi et al. Oct 2020 B2
10806819 Shuler Oct 2020 B2
11026847 Piotrowski et al. Jun 2021 B2
11058587 Adie et al. Jul 2021 B2
11058588 Albert et al. Jul 2021 B2
11071652 Donda et al. Jul 2021 B2
11071653 Hunt Jul 2021 B2
11076997 Hunt et al. Aug 2021 B2
11083884 Robinson et al. Aug 2021 B2
11090195 Adie et al. Aug 2021 B2
11096829 Robinson et al. Aug 2021 B2
11123476 Hunt et al. Sep 2021 B2
11123537 Luckemeyer et al. Sep 2021 B2
11135342 Pratt et al. Oct 2021 B2
11141521 Beadle et al. Oct 2021 B2
11154426 Riesinger Oct 2021 B2
11154649 Collinson et al. Oct 2021 B2
11179276 Hartwell Nov 2021 B2
11179512 Locke et al. Nov 2021 B2
11191887 Locke et al. Dec 2021 B2
11197953 Heaton et al. Dec 2021 B2
11207442 Locke et al. Dec 2021 B2
11207458 Locke et al. Dec 2021 B2
11246758 Hardman et al. Feb 2022 B2
11246975 Locke et al. Feb 2022 B2
11253400 Zochowski et al. Feb 2022 B2
11253401 Pratt et al. Feb 2022 B2
11266537 Robinson et al. Mar 2022 B2
11266774 Selby et al. Mar 2022 B2
11278454 Edwards et al. Mar 2022 B2
11298268 Jardret et al. Apr 2022 B2
11298454 Weston Apr 2022 B2
11318243 Robinson et al. May 2022 B2
11351063 Locke et al. Jun 2022 B2
11351064 Hartwell Jun 2022 B2
11364151 Hartwell Jun 2022 B2
11364334 Long et al. Jun 2022 B2
11864980 Locke et al. Jan 2024 B2
11864981 Allen et al. Jan 2024 B2
11878102 Cornet et al. Jan 2024 B2
11883261 Coulthard et al. Jan 2024 B2
11883262 Cole et al. Jan 2024 B2
11883577 Selby et al. Jan 2024 B2
11883578 Locke et al. Jan 2024 B2
11890437 Luckemeyer et al. Feb 2024 B2
11896465 Askem et al. Feb 2024 B2
11903798 Askem et al. Feb 2024 B2
11911556 Mercer et al. Feb 2024 B2
11925735 Gowans et al. Mar 2024 B2
11931165 Askem et al. Mar 2024 B2
11938002 Hunt et al. Mar 2024 B2
11944519 Zurovcik Apr 2024 B2
11944520 Locke et al. Apr 2024 B2
11957545 Hunt et al. Apr 2024 B2
11957829 Coulthard et al. Apr 2024 B2
11963850 Freedman et al. Apr 2024 B2
11964093 Greener Apr 2024 B2
11969541 Gordon et al. Apr 2024 B2
11974902 Greener May 2024 B2
11975134 Quintanar May 2024 B2
11992392 Earl et al. May 2024 B2
11992601 Vess et al. May 2024 B2
12004925 Hartwell Jun 2024 B2
12016991 Coulthard et al. Jun 2024 B2
20060155260 Blott et al. Jul 2006 A1
20060172000 Cullen et al. Aug 2006 A1
20070185426 Ambrosio et al. Aug 2007 A1
20070219512 Heaton et al. Sep 2007 A1
20070239078 Jaeb Oct 2007 A1
20080071214 Locke Mar 2008 A1
20090234307 Vitaris Sep 2009 A1
20090259203 Hu et al. Oct 2009 A1
20090292263 Hudspeth et al. Nov 2009 A1
20090293887 Wilkes et al. Dec 2009 A1
20090299303 Seegert Dec 2009 A1
20090306630 Locke et al. Dec 2009 A1
20100015208 Kershaw et al. Jan 2010 A1
20100030178 MacMeccan et al. Feb 2010 A1
20100125233 Edward S. et al. May 2010 A1
20100125258 Coulthard et al. May 2010 A1
20100137775 Hu et al. Jun 2010 A1
20100179493 Heagle Jul 2010 A1
20100185163 Heagle Jul 2010 A1
20100286638 Malhi Nov 2010 A1
20100298790 Guidi et al. Nov 2010 A1
20100318071 Wudyka Dec 2010 A1
20110015595 Robinson et al. Jan 2011 A1
20110028918 Hartwell Feb 2011 A1
20110112457 Holm et al. May 2011 A1
20110178451 Robinson et al. Jul 2011 A1
20110224593 Tunius Sep 2011 A1
20110224630 Simmons et al. Sep 2011 A1
20110230849 Coulthard et al. Sep 2011 A1
20110251566 Zimnitsky et al. Oct 2011 A1
20110257572 Locke et al. Oct 2011 A1
20110257573 Hong et al. Oct 2011 A1
20110275972 Rosenberg Nov 2011 A1
20120071845 Hu et al. Mar 2012 A1
20120130332 Cotton et al. May 2012 A1
20120136325 Allen et al. May 2012 A1
20120209226 Simmons et al. Aug 2012 A1
20130053795 Coulthard et al. Feb 2013 A1
20130053797 Locke Feb 2013 A1
20130066301 Locke Mar 2013 A1
20130123728 Pratt et al. May 2013 A1
20130226063 Taylor et al. Aug 2013 A1
20140005618 Locke et al. Jan 2014 A1
20140074053 Locke Mar 2014 A1
20140188060 Robinson et al. Jul 2014 A1
20140194838 Wibaux et al. Jul 2014 A1
20140200532 Robinson et al. Jul 2014 A1
20140236112 Von Wolff et al. Aug 2014 A1
20140256925 Catchmark et al. Sep 2014 A1
20140276497 Robinson Sep 2014 A1
20140276499 Locke et al. Sep 2014 A1
20140296804 Hicks et al. Oct 2014 A1
20140308338 Nierle et al. Oct 2014 A1
20140309574 Cotton Oct 2014 A1
20150018433 Leipzig et al. Jan 2015 A1
20150057624 Simmons et al. Feb 2015 A1
20150071985 Walker et al. Mar 2015 A1
20150079152 Wuollett et al. Mar 2015 A1
20150094674 Pratt et al. Apr 2015 A1
20150104486 Bonnefin et al. Apr 2015 A1
20150112311 Hammond et al. Apr 2015 A1
20150119831 Robinson et al. Apr 2015 A1
20150119834 Locke et al. Apr 2015 A1
20150141941 Allen et al. May 2015 A1
20150148785 Kleiner May 2015 A1
20150174304 Askem et al. Jun 2015 A1
20150245949 Locke et al. Sep 2015 A1
20150246164 Heaton et al. Sep 2015 A1
20150250979 Loske Sep 2015 A1
20150265741 Duncan et al. Sep 2015 A1
20150265743 Hanson et al. Sep 2015 A1
20150320901 Chandrashekhar-Bhat et al. Nov 2015 A1
20160008293 Shi et al. Jan 2016 A1
20160038626 Locke et al. Feb 2016 A1
20160051724 Sahin et al. Feb 2016 A1
20160067107 Cotton Mar 2016 A1
20160100987 Hartwell et al. Apr 2016 A1
20160106878 Yang et al. Apr 2016 A1
20160106892 Hartwell Apr 2016 A1
20160114281 Bonano Apr 2016 A1
20160166422 Karim et al. Jun 2016 A1
20160193244 Ota et al. Jul 2016 A1
20160222548 Agboh Aug 2016 A1
20160271178 Hauser et al. Sep 2016 A1
20160287743 Andrews Oct 2016 A1
20160339158 Collinson et al. Nov 2016 A1
20160374847 Lachenbruch et al. Dec 2016 A1
20170014275 Schneider Jan 2017 A1
20170049111 Patton et al. Feb 2017 A1
20170072669 Sekido et al. Mar 2017 A1
20170128269 Coulthard et al. May 2017 A1
20170189237 Locke et al. Jul 2017 A1
20170189575 Lee et al. Jul 2017 A1
20170209615 Tornero Garcia et al. Jul 2017 A1
20170232161 Fewkes et al. Aug 2017 A1
20170258956 Flach et al. Sep 2017 A1
20170367895 Holm et al. Dec 2017 A1
20170368239 Askem et al. Dec 2017 A1
20180008742 Hoggarth et al. Jan 2018 A1
20180014974 Hoggarth et al. Jan 2018 A1
20180023217 Patton et al. Jan 2018 A1
20180030321 Tunius Feb 2018 A1
20180042789 Bradford et al. Feb 2018 A1
20180078423 Magin et al. Mar 2018 A1
20180086903 Zhang et al. Mar 2018 A1
20180118809 Mearns Spragg May 2018 A1
20180133066 Ahsani et al. May 2018 A1
20180140467 Hunt May 2018 A1
20180140822 Robinson et al. May 2018 A1
20180200414 Askem et al. Jul 2018 A1
20180221531 Bender et al. Aug 2018 A1
20180236124 Young et al. Aug 2018 A1
20180243463 Chatterjee et al. Aug 2018 A1
20180243464 Hwang et al. Aug 2018 A1
20180244857 Lee et al. Aug 2018 A1
20180272052 Locke et al. Sep 2018 A1
20180296397 Askem et al. Oct 2018 A1
20180303873 Been et al. Oct 2018 A1
20180311419 Locke et al. Nov 2018 A1
20180333522 Pratt et al. Nov 2018 A1
20180344533 Rovaniemi Dec 2018 A1
20180353334 Locke et al. Dec 2018 A1
20180353337 Locke Dec 2018 A1
20180353339 Locke et al. Dec 2018 A1
20180353340 Robinson et al. Dec 2018 A1
20180353344 Locke et al. Dec 2018 A1
20180353662 Locke et al. Dec 2018 A1
20180353663 Locke et al. Dec 2018 A1
20180360667 Droche Dec 2018 A1
20190000677 Munro Jan 2019 A1
20190001030 Braga Jan 2019 A1
20190015258 Gowans et al. Jan 2019 A1
20190015468 Yadav et al. Jan 2019 A1
20190030223 Lin Jan 2019 A1
20190046682 Choi et al. Feb 2019 A1
20190060127 Locke et al. Feb 2019 A1
20190083752 Howell et al. Mar 2019 A1
20190117465 Osborne et al. Apr 2019 A1
20190117466 Kazala, Jr. et al. Apr 2019 A1
20190117861 Locke et al. Apr 2019 A1
20190125590 Rehbein et al. May 2019 A1
20190133830 Bishop et al. May 2019 A1
20190151155 Bonn May 2019 A1
20190151159 Gowans et al. May 2019 A1
20190151495 Helary et al. May 2019 A1
20190184052 Ilan et al. Jun 2019 A1
20190231600 Locke et al. Aug 2019 A1
20190231602 Locke et al. Aug 2019 A1
20190231943 Robinson et al. Aug 2019 A1
20190274889 Steward et al. Sep 2019 A1
20190282728 Kellar et al. Sep 2019 A1
20190290799 Arshi et al. Sep 2019 A1
20190298249 Bates et al. Oct 2019 A1
20190298577 Locke et al. Oct 2019 A1
20190298578 Shulman et al. Oct 2019 A1
20190298579 Moore et al. Oct 2019 A1
20190298580 Hall et al. Oct 2019 A1
20190298582 Addison et al. Oct 2019 A1
20190298881 Ramjit et al. Oct 2019 A1
20190298882 Nelson Oct 2019 A1
20190298895 Selby et al. Oct 2019 A1
20190307611 Askem et al. Oct 2019 A1
20190307612 Hartwell et al. Oct 2019 A1
20190307934 Allen et al. Oct 2019 A1
20190307935 Simmons et al. Oct 2019 A1
20190314187 Emslander et al. Oct 2019 A1
20190314209 Ha et al. Oct 2019 A1
20190314544 Filho et al. Oct 2019 A1
20190321232 Jardret et al. Oct 2019 A1
20190321509 Chakravarthy et al. Oct 2019 A1
20190321526 Robinson et al. Oct 2019 A1
20190322795 Kubo et al. Oct 2019 A1
20190328580 Emslander et al. Oct 2019 A1
20190336343 Etchells et al. Nov 2019 A1
20190336344 Locke Nov 2019 A1
20190336345 Bannwart Nov 2019 A1
20190336346 Locke et al. Nov 2019 A1
20190336640 Vismara et al. Nov 2019 A1
20190336641 Nisbet Nov 2019 A1
20190336643 Luukko et al. Nov 2019 A1
20190336658 Heaton et al. Nov 2019 A1
20190336739 Locke et al. Nov 2019 A1
20190343687 Locke et al. Nov 2019 A1
20190343889 Luukko et al. Nov 2019 A1
20190343979 Kearney et al. Nov 2019 A1
20190343993 Weston Nov 2019 A1
20190343994 Greener Nov 2019 A1
20190344242 Kim et al. Nov 2019 A1
20190350763 Pratt et al. Nov 2019 A1
20190350764 Zochowski et al. Nov 2019 A1
20190350765 Heagle et al. Nov 2019 A1
20190350775 Biasutti et al. Nov 2019 A1
20190350970 Saphier et al. Nov 2019 A1
20190351092 Silver et al. Nov 2019 A1
20190351093 Stein et al. Nov 2019 A1
20190351094 Maher et al. Nov 2019 A1
20190351095 Maher et al. Nov 2019 A1
20190351111 Locke et al. Nov 2019 A1
20190358088 Lavocah et al. Nov 2019 A1
20190358361 McInnes et al. Nov 2019 A1
20190358372 Askem et al. Nov 2019 A1
20190365948 Deegan et al. Dec 2019 A1
20190365962 Lee et al. Dec 2019 A1
20190374408 Robles et al. Dec 2019 A1
20190374673 Hoefinghoff et al. Dec 2019 A1
20190380878 Edwards et al. Dec 2019 A1
20190380881 Albert et al. Dec 2019 A1
20190380882 Taylor et al. Dec 2019 A1
20190380883 Macphee et al. Dec 2019 A1
20190381222 Locke et al. Dec 2019 A9
20190388577 Chandrashekhar-Bhat et al. Dec 2019 A1
20190388579 Macphee et al. Dec 2019 A1
20190388589 Macphee et al. Dec 2019 A1
20200000640 Mondal et al. Jan 2020 A1
20200000642 Waite Jan 2020 A1
20200000643 Locke Jan 2020 A1
20200000955 Andrews et al. Jan 2020 A1
20200000956 Huang et al. Jan 2020 A1
20200000960 Kellar et al. Jan 2020 A1
20200000985 Seddon et al. Jan 2020 A1
20200008981 Wheldrake Jan 2020 A1
20200009289 Torabinejad et al. Jan 2020 A1
20200009400 Ribeiro et al. Jan 2020 A1
20200017650 Young et al. Jan 2020 A1
20200022844 Blott et al. Jan 2020 A1
20200023102 Powell Jan 2020 A1
20200023103 Joshi et al. Jan 2020 A1
20200023104 Eriksson et al. Jan 2020 A1
20200023105 Long et al. Jan 2020 A1
20200023106 Carroll et al. Jan 2020 A1
20200030153 Johannison et al. Jan 2020 A1
20200030480 Choi Jan 2020 A1
20200030499 Menon et al. Jan 2020 A1
20200038023 Dunn Feb 2020 A1
20200038249 Pratt et al. Feb 2020 A1
20200038250 Edwards et al. Feb 2020 A1
20200038251 Locke et al. Feb 2020 A1
20200038252 Spiro Feb 2020 A1
20200038283 Hall et al. Feb 2020 A1
20200038470 Datt et al. Feb 2020 A1
20200038544 Grover et al. Feb 2020 A1
20200038546 Dizio et al. Feb 2020 A1
20200038639 Patel et al. Feb 2020 A1
20200046565 Barta et al. Feb 2020 A1
20200046566 Carey et al. Feb 2020 A1
20200046567 Carroll et al. Feb 2020 A1
20200046568 Sexton Feb 2020 A1
20200046663 Murdock et al. Feb 2020 A1
20200046876 Liu Feb 2020 A1
20200046887 Runquist et al. Feb 2020 A1
20200054491 Hentrich et al. Feb 2020 A1
20200054781 Weiser et al. Feb 2020 A1
20200060879 Edwards et al. Feb 2020 A1
20200061253 Long et al. Feb 2020 A1
20200061254 Joshi et al. Feb 2020 A1
20200061379 Bogie et al. Feb 2020 A1
20200069183 Rice et al. Mar 2020 A1
20200069476 Randolph et al. Mar 2020 A1
20200069477 Holm et al. Mar 2020 A1
20200069478 Jabbarzadeh et al. Mar 2020 A1
20200069479 Buan et al. Mar 2020 A1
20200069835 Hissink et al. Mar 2020 A1
20200069850 Beadle et al. Mar 2020 A1
20200069851 Blott et al. Mar 2020 A1
20200069853 Hall et al. Mar 2020 A1
20200078223 Locke et al. Mar 2020 A1
20200078224 Carroll et al. Mar 2020 A1
20200078225 Grillitsch et al. Mar 2020 A1
20200078305 Auvinen et al. Mar 2020 A1
20200078330 Gay Mar 2020 A1
20200078482 Yoon et al. Mar 2020 A1
20200078499 Gadde et al. Mar 2020 A1
20200085625 Bellini et al. Mar 2020 A1
20200085626 Braga et al. Mar 2020 A1
20200085629 Locke et al. Mar 2020 A1
20200085630 Robinson et al. Mar 2020 A1
20200085632 Locke et al. Mar 2020 A1
20200085991 Coomber Mar 2020 A1
20200085992 Locke et al. Mar 2020 A1
20200086014 Locke et al. Mar 2020 A1
20200086017 Jardret et al. Mar 2020 A1
20200086049 Park et al. Mar 2020 A1
20200093646 Locke et al. Mar 2020 A1
20200093756 Sabacinski Mar 2020 A1
20200093953 Kim et al. Mar 2020 A1
20200093954 Leise, III Mar 2020 A1
20200093970 Hunt et al. Mar 2020 A1
20200095421 Kettel Mar 2020 A1
20200100945 Albert et al. Apr 2020 A1
20200101192 Folwarzny Apr 2020 A1
20200107964 Locke et al. Apr 2020 A1
20200107965 Greener Apr 2020 A1
20200107966 Francis Apr 2020 A1
20200107967 Holm et al. Apr 2020 A1
20200108169 Hu et al. Apr 2020 A1
20200113741 Rehbein et al. Apr 2020 A1
20200114039 Wang et al. Apr 2020 A1
20200114040 Waite et al. Apr 2020 A1
20200114049 Wall Apr 2020 A1
20200121509 Locke et al. Apr 2020 A1
20200121510 Hartwell et al. Apr 2020 A1
20200121513 Townsend et al. Apr 2020 A1
20200121521 Daniel et al. Apr 2020 A1
20200121833 Askem et al. Apr 2020 A9
20200129338 Gardiner et al. Apr 2020 A1
20200129341 Coulthard et al. Apr 2020 A1
20200129648 Drury et al. Apr 2020 A1
20200129654 Bouvier et al. Apr 2020 A1
20200129655 Gardiner et al. Apr 2020 A1
20200129675 Robinson et al. Apr 2020 A1
20200138754 Johnson May 2020 A1
20200139002 Dudnyk et al. May 2020 A1
20200139023 Haggstrom et al. May 2020 A1
20200139025 Robinson et al. May 2020 A1
20200141031 Kosan et al. May 2020 A1
20200146894 Long et al. May 2020 A1
20200146896 Rice et al. May 2020 A1
20200146897 Locke et al. May 2020 A1
20200146899 Pratt et al. May 2020 A1
20200155355 Hill et al. May 2020 A1
20200155358 Wheldrake May 2020 A1
20200155359 Carroll et al. May 2020 A1
20200155361 Pigg et al. May 2020 A1
20200155379 Shaw et al. May 2020 A1
20200163802 Hunt et al. May 2020 A1
20200163803 Pigg et al. May 2020 A1
20200164112 Kato et al. May 2020 A1
20200164120 Jaecklein et al. May 2020 A1
20200170841 Waite et al. Jun 2020 A1
20200170842 Locke Jun 2020 A1
20200170843 Collinson et al. Jun 2020 A1
20200171197 Hubbell et al. Jun 2020 A1
20200179300 Urban et al. Jun 2020 A1
20200179558 Munro et al. Jun 2020 A1
20200179673 Wan Jun 2020 A1
20200188179 Bugedo-Albizuri et al. Jun 2020 A1
20200188180 Akbari et al. Jun 2020 A1
20200188182 Sanders et al. Jun 2020 A1
20200188183 Hamerslagh et al. Jun 2020 A1
20200188550 Dagger et al. Jun 2020 A1
20200188564 Dunn Jun 2020 A1
20200190310 Meyer Jun 2020 A1
20200197227 Locke et al. Jun 2020 A1
20200197228 Hartwell Jun 2020 A1
20200197559 Bourdillon et al. Jun 2020 A1
20200197580 Kilpadi et al. Jun 2020 A1
20200206035 Kantor et al. Jul 2020 A1
20200206036 Robinson et al. Jul 2020 A1
20200214637 Brownhill et al. Jul 2020 A1
20200214897 Long et al. Jul 2020 A1
20200214898 Waite et al. Jul 2020 A1
20200214899 Locke et al. Jul 2020 A1
20200215220 Schomburg et al. Jul 2020 A1
20200215226 Kitagawa et al. Jul 2020 A1
20200222469 Cotton Jul 2020 A1
20200229983 Robinson et al. Jul 2020 A1
20200230283 Yang et al. Jul 2020 A1
20200237562 Rice et al. Jul 2020 A1
20200237564 Hammond et al. Jul 2020 A1
20200237816 Lait Jul 2020 A1
20200246190 Luckemeyer et al. Aug 2020 A1
20200246191 Lu et al. Aug 2020 A1
20200246194 Gonzalez et al. Aug 2020 A1
20200246195 Robinson et al. Aug 2020 A1
20200253785 Bernet et al. Aug 2020 A1
20200253786 Harrison et al. Aug 2020 A1
20200253788 Rehbein et al. Aug 2020 A1
20200254139 Phillips et al. Aug 2020 A1
20200261275 Manwaring et al. Aug 2020 A1
20200261276 Lujan Hernandez et al. Aug 2020 A1
20200268560 Harrison et al. Aug 2020 A1
20200268561 Locke et al. Aug 2020 A1
20200269028 Hegg Aug 2020 A1
20200270484 Lipscomb et al. Aug 2020 A1
20200276055 Randolph et al. Sep 2020 A1
20200276058 Locke et al. Sep 2020 A1
20200277450 Silverstein et al. Sep 2020 A1
20200281519 Gowans et al. Sep 2020 A1
20200281529 Grubb et al. Sep 2020 A1
20200281678 Long et al. Sep 2020 A1
20200281775 Kushnir et al. Sep 2020 A1
20200282100 Gil et al. Sep 2020 A1
20200282114 Long et al. Sep 2020 A1
20200282115 Gardner et al. Sep 2020 A1
20200289326 Nielsen et al. Sep 2020 A1
20200289327 Hansen et al. Sep 2020 A1
20200289328 Luckemeyer et al. Sep 2020 A1
20200289346 Hansen et al. Sep 2020 A1
20200289347 Gowans et al. Sep 2020 A1
20200289701 Hall et al. Sep 2020 A1
20200289712 Jiang et al. Sep 2020 A1
20200289723 Gregory et al. Sep 2020 A1
20200289726 Locke et al. Sep 2020 A1
20200289727 Locke Sep 2020 A1
20200289806 Locke et al. Sep 2020 A1
20200297541 Hartwell et al. Sep 2020 A1
20200297543 Rodzewicz et al. Sep 2020 A1
20200297544 Moine et al. Sep 2020 A1
20200297892 Silcock Sep 2020 A1
20200297893 Ericson Sep 2020 A1
20200297894 Koyama et al. Sep 2020 A1
20200299865 Bonnefin et al. Sep 2020 A1
20200306089 Delury et al. Oct 2020 A1
20200306091 Lee et al. Oct 2020 A1
20200306092 Rehbein et al. Oct 2020 A1
20200306094 Kushnir et al. Oct 2020 A1
20200306426 Rice et al. Oct 2020 A1
20200306428 Ingram et al. Oct 2020 A1
20200306430 Rehbein et al. Oct 2020 A1
20200315853 Waite Oct 2020 A1
20200315854 Simmons et al. Oct 2020 A1
20200315894 Churilla et al. Oct 2020 A1
20200316271 Lin Oct 2020 A1
20200316272 Simpson Oct 2020 A1
20200316273 Hegg Oct 2020 A1
20200323692 Locke et al. Oct 2020 A1
20200324015 Kettel et al. Oct 2020 A1
20200330283 Locke et al. Oct 2020 A1
20200330284 Locke et al. Oct 2020 A1
20200330285 Rehbein et al. Oct 2020 A1
20200330658 Fujisaki Oct 2020 A1
20200330660 Patel et al. Oct 2020 A1
20200337719 Ingram et al. Oct 2020 A1
20200337904 Waite Oct 2020 A1
20200337905 Earl et al. Oct 2020 A1
20200337906 Long et al. Oct 2020 A1
20200337908 Long et al. Oct 2020 A1
20200338228 Kharkar et al. Oct 2020 A1
20200338243 Harrison et al. Oct 2020 A1
20210170066 Buan et al. Jun 2021 A1
20210187171 Collinson et al. Jun 2021 A1
20210187174 Locke Jun 2021 A1
20210196868 Robinson et al. Jul 2021 A1
20210236342 Long et al. Aug 2021 A1
20210252208 Childress et al. Aug 2021 A1
20210275736 Locke et al. Sep 2021 A1
20210290837 Brandolini et al. Sep 2021 A1
20210322666 Greener Oct 2021 A1
20210330956 Robinson et al. Oct 2021 A1
20210338486 Dagger et al. Nov 2021 A1
20210338487 Robinson et al. Nov 2021 A1
20210353470 Donda et al. Nov 2021 A1
20210361852 Locke et al. Nov 2021 A1
20210361854 Askem et al. Nov 2021 A1
20210370043 Luckemeyer et al. Dec 2021 A1
20210378876 Gowans Dec 2021 A1
20210379273 Locke et al. Dec 2021 A1
20220000670 Adie et al. Jan 2022 A1
20220000672 Hunt Jan 2022 A1
20220001094 Pratt et al. Jan 2022 A1
20220001095 Locke et al. Jan 2022 A1
20220001096 Locke et al. Jan 2022 A1
20220001101 Hunt et al. Jan 2022 A1
20220001212 Bass et al. Jan 2022 A1
20220002916 Wheldrake Jan 2022 A1
20220008642 Waite et al. Jan 2022 A1
20220016331 Robinson et al. Jan 2022 A1
20220016332 Joshi et al. Jan 2022 A1
20220023103 Locke et al. Jan 2022 A1
20220023527 Beadle et al. Jan 2022 A1
20220031231 Hunt et al. Feb 2022 A1
20220031934 Locke et al. Feb 2022 A1
20220047797 Locke et al. Feb 2022 A1
20220062060 Hu et al. Mar 2022 A1
20220062526 Heaton et al. Mar 2022 A1
20220080102 Locke et al. Mar 2022 A1
20220080103 Locke et al. Mar 2022 A1
20220096727 Collinson et al. Mar 2022 A1
20220117795 Adie et al. Apr 2022 A1
20220117796 Adie et al. Apr 2022 A1
20220117797 Adie et al. Apr 2022 A1
20220183894 Mumby et al. Jun 2022 A1
20220192887 Jardret et al. Jun 2022 A1
20220193324 Locke et al. Jun 2022 A1
20240001020 Walton et al. Jan 2024 A1
20240009372 Braga et al. Jan 2024 A1
20240024561 Locke et al. Jan 2024 A1
20240058176 Beadle et al. Feb 2024 A1
20240074907 Eriksson et al. Mar 2024 A1
20240074909 Rapp Mar 2024 A1
20240080969 Askem et al. Mar 2024 A1
20240099894 Hartwell et al. Mar 2024 A1
20240099897 Locke et al. Mar 2024 A1
20240100238 Gordon et al. Mar 2024 A1
20240115789 Locke et al. Apr 2024 A1
20240115797 Luckemeyer et al. Apr 2024 A1
20240122764 Hunt et al. Apr 2024 A1
20240148560 Coulthard et al. May 2024 A1
20240156645 Braga et al. May 2024 A1
20240189492 Gowans et al. Jun 2024 A1
20240197538 Cole et al. Jun 2024 A1
20240207102 Allen et al. Jun 2024 A1
Foreign Referenced Citations (175)
Number Date Country
3187204 Jul 2017 EP
3556407 Oct 2019 EP
3569260 Nov 2019 EP
3622975 Mar 2020 EP
3643328 Apr 2020 EP
3643330 Apr 2020 EP
3643331 Apr 2020 EP
3669838 Jun 2020 EP
3669843 Jun 2020 EP
3669844 Jun 2020 EP
3827795 Jun 2021 EP
3829515 Jun 2021 EP
3829667 Jun 2021 EP
3347068 Jul 2021 EP
3441051 Jul 2021 EP
3851134 Jul 2021 EP
3852827 Jul 2021 EP
3852829 Jul 2021 EP
3606573 Aug 2021 EP
3866737 Aug 2021 EP
3866920 Aug 2021 EP
3291849 Sep 2021 EP
3880143 Sep 2021 EP
3880267 Sep 2021 EP
3897489 Oct 2021 EP
3060181 Nov 2021 EP
3434237 Nov 2021 EP
3624741 Nov 2021 EP
3628289 Nov 2021 EP
3104816 Dec 2021 EP
3322455 Dec 2021 EP
3429521 Dec 2021 EP
3446665 Dec 2021 EP
3681452 Dec 2021 EP
3932442 Jan 2022 EP
3936163 Jan 2022 EP
3939554 Jan 2022 EP
3124062 Feb 2022 EP
3687467 Feb 2022 EP
3481360 Mar 2022 EP
3740179 Mar 2022 EP
3964185 Mar 2022 EP
3454807 Apr 2022 EP
3421020 May 2022 EP
3871645 May 2022 EP
3452132 Jan 2024 EP
3592312 Jan 2024 EP
3677291 Jan 2024 EP
3769791 Jan 2024 EP
3656408 Feb 2024 EP
3659409 Feb 2024 EP
3651815 Mar 2024 EP
2767305 Apr 2024 EP
3503857 Apr 2024 EP
3703632 Apr 2024 EP
3936163 Apr 2024 EP
4346340 Apr 2024 EP
4353271 Apr 2024 EP
3292878 May 2024 EP
3708197 May 2024 EP
2253353 Jun 2024 EP
3291849 Jun 2024 EP
3470030 Jun 2024 EP
3785744 Jun 2024 EP
2579211 Jun 2020 GB
2579368 Jun 2020 GB
2589503 Jun 2021 GB
2592804 Sep 2021 GB
2592805 Sep 2021 GB
2592806 Sep 2021 GB
2005018543 Mar 2005 WO
2011121394 Oct 2011 WO
2011135284 Nov 2011 WO
2011144888 Nov 2011 WO
2013015827 Jan 2013 WO
2013126049 Aug 2013 WO
2014014842 Jan 2014 WO
2015145117 Oct 2015 WO
2015173546 Nov 2015 WO
2016141450 Sep 2016 WO
2017016974 Feb 2017 WO
2017125250 Jul 2017 WO
2018029231 Feb 2018 WO
2018094061 May 2018 WO
2018162613 Sep 2018 WO
2018163093 Sep 2018 WO
2018189265 Oct 2018 WO
2018226667 Dec 2018 WO
2018227144 Dec 2018 WO
2018231825 Dec 2018 WO
2018236648 Dec 2018 WO
2019002085 Jan 2019 WO
2019012068 Jan 2019 WO
2019012069 Jan 2019 WO
2019022493 Jan 2019 WO
2019027933 Feb 2019 WO
2019038548 Feb 2019 WO
2019038549 Feb 2019 WO
2019040656 Feb 2019 WO
2019050855 Mar 2019 WO
2019058373 Mar 2019 WO
2019073326 Apr 2019 WO
2019083563 May 2019 WO
2019083868 May 2019 WO
2019086911 May 2019 WO
2019091150 May 2019 WO
2019094147 May 2019 WO
2019096828 May 2019 WO
2019113275 Jun 2019 WO
2019113623 Jun 2019 WO
2019191590 Oct 2019 WO
2019193141 Oct 2019 WO
2019193333 Oct 2019 WO
2019199389 Oct 2019 WO
2019199596 Oct 2019 WO
2019199687 Oct 2019 WO
2019199798 Oct 2019 WO
2019199849 Oct 2019 WO
2019200035 Oct 2019 WO
2019215572 Nov 2019 WO
2019219613 Nov 2019 WO
2019234365 Dec 2019 WO
2020005062 Jan 2020 WO
2020005344 Jan 2020 WO
2020005536 Jan 2020 WO
2020005546 Jan 2020 WO
2020005577 Jan 2020 WO
2020007429 Jan 2020 WO
2020011691 Jan 2020 WO
2020014178 Jan 2020 WO
2020014310 Jan 2020 WO
2020018300 Jan 2020 WO
2020026061 Feb 2020 WO
2020026144 Feb 2020 WO
2020033351 Feb 2020 WO
2020035811 Feb 2020 WO
2020043665 Mar 2020 WO
2020044237 Mar 2020 WO
2020046443 Mar 2020 WO
2020047255 Mar 2020 WO
2020049038 Mar 2020 WO
2020055945 Mar 2020 WO
2020056014 Mar 2020 WO
2020056182 Mar 2020 WO
2020065531 Apr 2020 WO
2020070231 Apr 2020 WO
2020074512 Apr 2020 WO
2020078993 Apr 2020 WO
2020079009 Apr 2020 WO
2020079330 Apr 2020 WO
2020081259 Apr 2020 WO
2020081391 Apr 2020 WO
2020092598 May 2020 WO
2020136555 Jul 2020 WO
2020141059 Jul 2020 WO
2020144347 Jul 2020 WO
2020150548 Jul 2020 WO
2020159675 Aug 2020 WO
2020159677 Aug 2020 WO
2020159678 Aug 2020 WO
2020159823 Aug 2020 WO
2020159859 Aug 2020 WO
2020159892 Aug 2020 WO
2020161086 Aug 2020 WO
2020173665 Sep 2020 WO
2020173760 Sep 2020 WO
2020174264 Sep 2020 WO
2020174510 Sep 2020 WO
2020182887 Sep 2020 WO
2020185810 Sep 2020 WO
2020197759 Oct 2020 WO
2020197760 Oct 2020 WO
2020198484 Oct 2020 WO
2020201879 Oct 2020 WO
2020213998 Oct 2020 WO
Related Publications (1)
Number Date Country
20200345903 A1 Nov 2020 US