Fluid collection assemblies including at least one inflation device and methods and systems of using the same

Information

  • Patent Grant
  • 12251333
  • Patent Number
    12,251,333
  • Date Filed
    Friday, May 13, 2022
    3 years ago
  • Date Issued
    Tuesday, March 18, 2025
    4 months ago
Abstract
An example fluid collection assembly includes a fluid impermeable barrier defining at least one opening, a chamber, and at least one fluid outlet. The fluid collection assembly also includes at least one porous material disposed in the chamber. The fluid collection assembly further includes at least one inflation device. The inflation device includes bladder having one or more walls defining an interior region. The inflation device also includes at least one valve configured to selectively permit fluid flow into and out of the interior region to switch the bladder between a first state and a second state. The inflation device may at least one of controllably change the length of the fluid collection assembly or controllably change a width of at least a portion of the fluid collection assembly to more comfortably fit the fluid collection assembly within the labia folds of an individual using the fluid collection assembly.
Description
BACKGROUND

A person or animal may have limited or impaired mobility so typical urination processes are challenging or impossible. For example, a person may experience or have a disability that impairs mobility. A person may have restricted travel conditions such as those experienced by pilots, drivers, and workers in hazardous areas. Additionally, sometimes bodily fluids collection is needed for monitoring purposes or clinical testing.


Urinary catheters, such as a Foley catheter, can address some of these circumstances, such as incontinence. Unfortunately, urinary catheters can be uncomfortable, painful, and can lead to complications, such as infections. Additionally, bed pans, which are receptacles used for the toileting of bedridden individuals are sometimes used. However, bedpans can be prone to discomfort, spills, and other hygiene issues.


SUMMARY

Embodiments disclosed herein are directed to fluid collection assemblies that include at least one inflation device, methods for using the same, and systems including the same. In an embodiment, a fluid collection assembly is disclosed. The fluid collection assembly includes a fluid impermeable barrier defining a chamber, at least one opening, and at least one fluid outlet. The fluid collection assembly also includes at least one porous material disposed in the chamber. The fluid collection assembly also includes at least one inflation device including a bladder and at least one valve. The bladder includes one or more walls defining at least one interior region. The at least one valve is configured to selectively permit at least one inflation fluid to flow into and out of the at least one interior region to switch the bladder between a first state and at least a second state. An amount of the at least one inflation fluid present in the at least one interior region is greater when the bladder is in the second state than when the bladder is in the first state. The fluid impermeable barrier exhibits a first length when the bladder exhibits the first state and a second length measure when the bladder exhibits the second state, wherein the first length is less than the second length. The first length and second length measured parallel to a longitudinal axis of the fluid collection assembly.


In an embodiment, a fluid collection assembly is disclosed. The fluid collection assembly includes a fluid impermeable barrier. The fluid impermeable barrier defines a chamber, at least one opening, and at least one fluid outlet. The fluid collection assembly also includes at least one porous material disposed in the chamber. The fluid collection assembly further includes at least one inflation device including a bladder and at least one valve. The bladder includes one or more walls defining at least one interior region. The at least one valve is configured to selectively permit at least one inflation fluid to flow into and out of the at least one interior region to switch the bladder between a first state and at least a second state. An amount of the at least one inflation fluid present in the at least one interior region is greater when the bladder is in the second state than when the bladder is in the first state. The fluid impermeable barrier exhibits a first width measured when the bladder exhibits the first state and a second width when the bladder exhibits the second state. The first width is less than the second width by about 1 cm or less. The first width and the second width measured perpendicular to a longitudinal axis of the fluid collection assembly.


In an embodiment, a fluid collection system is disclosed. The fluid collection system includes a fluid collection assembly. The fluid collection assembly includes a fluid impermeable barrier defining a chamber, at least one opening, and at least one fluid outlet. The fluid collection assembly also includes at least one porous material disposed in the chamber. The fluid collection assembly also includes at least one inflation device including a bladder and at least one valve. The bladder includes one or more walls defining at least one interior region. The at least one valve is configured to selectively permit at least one inflation fluid to flow into and out of the at least one interior region to switch the bladder between a first state and at least a second state. An amount of the at least one inflation fluid present in the at least one interior region is greater when the bladder is in the second state than when the bladder is in the first state. The fluid impermeable barrier exhibits at least one of a first length when the bladder exhibits the first state and a second length measure when the bladder exhibits the second state or a first width measured when the bladder exhibits the first state and a second width when the bladder exhibits the second state. The first length is less than the second length and the first width is less than the second width by about 1 cm or less. The first length and second length measured parallel to a longitudinal axis of the fluid collection assembly and first width and the second width measured perpendicular to a longitudinal axis of the fluid collection assembly. The fluid collection assembly also includes a fluid storage container and a vacuum source. The at least one fluid outlet of the fluid collection assembly, the fluid storage container, and the vacuum source are in fluid communication with each other.


In an embodiment, a method of using a fluid collection assembly is disclosed. The method includes positioning at least one opening of the fluid collection assembly adjacent to a female urethral opening. The fluid collection assembly includes a fluid impermeable barrier including a proximal end region, a distal end region opposite the proximal end region, and two lateral sides extending between the proximal end region and the distal end region. The fluid impermeable barrier defines a chamber, at least one opening between the two lateral sides, and at least one fluid outlet at the proximal end region. The fluid collection assembly also includes at least one porous material disposed in the chamber. The fluid collection assembly further includes at least one inflation device including a bladder and at least one valve. The bladder includes one or more walls defining at least one interior region. The method also includes flowing at least one inflation fluid through the at least one valve and into the at least one interior region of the at least one inflation element to increase at least one of a length of the fluid collection assembly or increase a width of the fluid collection assembly by at most about 1 cm.


Features from any of the disclosed embodiments may be used in combination with one another, without limitation. In addition, other features and advantages of the present disclosure will become apparent to those of ordinary skill in the art through consideration of the following detailed description and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate several embodiments of the present disclosure, wherein identical reference numerals refer to identical or similar elements or features in different views or embodiments shown in the drawings.



FIG. 1A is an isometric view of a fluid collection assembly configured to be used to collect bodily fluids from a female urethral opening, according to an embodiment.



FIGS. 1B and 1C are schematic cross-sectional views of the fluid collection assembly taken along plane 1B-1B when a bladder of the fluid collection assembly is in a first state and in a second state, respectively.



FIG. 2A is an isometric view of a fluid collection assembly that includes at least one inflation device adjacent to at least one lateral side of the fluid impermeable barrier, according to an embodiment.



FIGS. 2B and 2C are cross-sectional schematics of the fluid collection assembly taken along plane 2B-2B when the bladder of the inflation device is in the first and second states, respectively.



FIG. 3 is a cross-sectional schematic of a fluid collection assembly that is configured to change a length and a width thereof, according to an embodiment.



FIG. 4 is a cross-sectional schematic of a fluid collection assembly that includes two or more inflation devices in fluid communication with each other, according to an embodiment.



FIG. 5 is a cross-sectional schematic of a fluid collection assembly including a single inflation device that is configured to controllably change the length and width of the fluid collection assembly, according to an embodiment.



FIG. 6 is a block diagram of a system for fluid collection, according to an embodiment.





DETAILED DESCRIPTION

Embodiments disclosed herein are directed to fluid collection assemblies that include at least one inflation device, methods for using the same, and systems including the same. An example fluid collection assembly includes a fluid impermeable barrier defining at least one opening, a chamber, and at least one fluid outlet. The fluid collection assembly also includes at least one porous material disposed in the chamber. As previously discussed, the fluid collection assembly further includes at least one inflation device. The inflation device includes bladder having one or more walls defining an interior region. The inflation device also includes at least one valve configured to selectively permit fluid flow into and out of the interior region to switch the bladder between a first state (e.g., a deflated and/or initial state) and a second state (e.g., an at least partially inflated state). The inflation device may at least one of controllably change the length of the fluid collection assembly to accommodate different sized vulvas or controllably change the width (e.g., maximum width) of at least a portion of the fluid collection assembly to more comfortably fit the fluid collection assembly within the labia folds of an individual using the fluid collection assembly.


The fluid collection assembly is configured to be positioned about, around, or at least partially within the vulva (e.g., labia majora, labia minora, clitoris, urethral opening, vaginal opening, etc.) of an individual. For example, the fluid collection assembly may be at least partially positioned within or between the labia folds. The fluid collection assembly may also be positioned adjacent to the mons pubis, the perineum, buttocks, and the inner thighs of the individual.


The inflation devices of the fluid collection assemblies disclosed herein allows the fluid collection assemblies to change a size thereof. The ability of the fluid collection assemblies to change a size thereof allows such fluid collection assemblies to be used with a variety of individuals exhibiting different sized anatomy. In particular, the fluid collection assemblies including the at least one inflation device may be used with individuals exhibiting different lengths of vulvas and/or different sizes of labia folds. As used herein, the sizes of the labia folds may refer to the length of one or all of the labia folds, the width of one or all of the labia folds, the thickness of one or all of the labia folds, or, more preferably, the space between two or more of the labia folds in which the fluid collection assembly may be disposed.


Some conventional fluid collection assemblies are unable to change a size thereof which restricts the ability of such conventional fluid collection assemblies to be used effectively with individuals exhibiting different sized anatomies. For example, such conventional fluid collection assemblies may only be used with individuals exhibiting certain sized anatomy. Using such conventional fluid collection assemblies with anatomy that is bigger or smaller than the conventional fluid collection assembly is configured to be used with may result in gaps between the conventional fluid collection assemblies and the vulva. The gaps may allow bodily fluids to leak from the conventional fluid collection assemblies and allow air to enter the chamber of such conventional fluid collection assemblies thereby decreasing the ability of a vacuum pressure to remove bodily fluids from the chamber. Further, such conventional fluid collection assemblies may be uncomfortable to use.


As previously discussed, the inflation devices of the fluid collection assemblies disclosed herein allow the fluid collection assemblies to change a size thereof such that the fluid collection assemblies may be used with different sized anatomy. In an example, the inflation device of the fluid collection assembly may be configured to change a length of the fluid collection assembly. In such an example, the inflation device may be inflated (e.g., at least one inflation fluid may be provided to the inflation device) or deflated (e.g., the inflation fluid may be removed from the inflation device) when the length of the vulva of an individual is greater or less than, respectively, than the length of vulva that the fluid collection assembly is configured to be used with. The ability of the inflation device to increase or decrease the overall length of the fluid collection assembly depending on the length of the vulva of the individual prevents the formation of gaps between the fluid collection assembly and the vulva through which bodily fluids and air may flow. The ability of the inflation device to increase or decrease the overall length of the fluid collection assembly depending on the length of the vulva of the individual may also make the fluid collection assembly more comfortable to use. In an example, the inflation device of the fluid collection assembly may be configured to change a maximum width of the fluid collection assembly. In such an example, the inflation device may be inflated or deflated when the size of the labia folds in which the fluid collection assembly is positioned is greater than or less than the size the labia folds in which the fluid collection assembly is configured to be used with. As such, changing the maximum width of the fluid collection assembly may decrease gaps between the fluid collection assembly and the labia folds and may allow the fluid collection assembly to be positioned closer to the urethral opening of the individual. Further, changing the maximum width of the fluid collection assembly depending on the size of the labia folds allows the fluid collection assembly to be at least partially positioned between the labia folds while maximizing comfort.


It is noted that some conventional fluid collection assemblies may include inflation devices that are configured to be increase the overall width of such conventional fluid collection assemblies such that the conventional fluid collection assemblies contact the thighs of the individual. However, unlike the fluid collection assemblies disclosed herein, such inflation device are not configured to predominately contact and be positioned between the labia folds of the individual since the increase in the width of the fluid collection assemblies required to contact the thighs would make it impossible or uncomfortable to position such a fluid collection assembly between the labia folds.



FIG. 1A is an isometric view of a fluid collection assembly 100 configured to be used to collect bodily fluids from a female urethral opening, according to an embodiment. FIGS. 1B and 1C are schematic cross-sectional views of the fluid collection assembly 100 taken along plane 1B-1B when a bladder 114 of the fluid collection assembly 100 is in a first state and in a second state, respectively. The fluid collection assembly 100 includes a fluid impermeable barrier 102 includes a proximal region end 103 and a distal end region 105 opposite the proximal end region 103. The fluid impermeable barrier defines at least one opening 104, a chamber 106, and at least one fluid outlet 108. The fluid outlet 108 may be located at the proximal region end 103. The fluid collection assembly 100 also includes at least one porous material 110 disposed chamber 106. The fluid collection assembly 100 further includes at least one inflation device 112 configured to change a length of the fluid collection assembly 100. The length of the fluid collection assembly 100 is measured parallel to a longitudinal axis 111 of the fluid collection assembly 100.


The inflation device 112 includes a bladder 114. The bladder 114 includes one or more walls 116 defining an interior region 118. The inflation device 112 also includes at least one valve 120 in fluid communication with the interior region 118. The valve 120 is configured to selectively permit flow of at least one inflation fluid into and/or out the interior region 118. For example, the valve 120 may allow the inflation fluid to enter the interior region 118 when it is desirable to at least one of increase the length of the bladder 114 which, in turn, increases the length of the fluid collection assembly 100. The valve 120 may also enable removing the inflation fluid from the interior region 118 when it is desirable to decrease the length (e.g., return to the initial length) of the of the fluid collection assembly 100.


Disposing or removing the inflation fluid into and from the interior region 118 changes the state of the bladder 114. The bladder 114 may exhibit at least a first state and a second state. The amount (volume or weight) of inflation fluid present in the interior region 118 is greater when the bladder 114 is in the second state than when the bladder 114 is in the first state. In an example, as shown in FIG. 1B, the bladder 114 is in the first state when the bladder 114 is in a deflated state (e.g., there are no or substantially no fluids in the interior region 118). However, it is noted that the bladder 114 may be in the first state when some inflation fluid is present in the interior region 118. It is noted that the bladder 114 is illustrated in FIG. 1B as being slightly inflated to facilitate labeling of the interior region 118. The first state of the bladder 114 also generally corresponds to an initial state of the bladder 114 (i.e., generally, the bladder 114 is not provided with the inflation fluid) though, in some examples, the first state of the bladder 114 may not correspond to the initial state of the bladder 114 (e.g., the bladder 114 is provided with fluids). In an example, as shown in FIG. 1C, the bladder 114 is in the second state when the bladder 114 is in an at least partially inflated state. The bladder 114 is generally not in the initial state when the bladder 114 is in the second state though, in some examples, the initial state and the second state of the bladder 114 are the same (e.g., the bladder 114 is provided with fluids).


The bladder 114 may exhibit one or more additional states (e.g., third state, fourth state, and so forth) besides the first and second states discussed above. In an embodiment, the one or more additional states may include less of the inflation fluid in the interior region 118 (e.g., is more deflated) than the first state (e.g., the first state is a partially inflated state). In such an embodiment, the one or more additional states may include a deflated or partially deflated state and may be formed by removing the inflation fluid from the interior region 118 when the bladder 114 is in the first or second state. In an embodiment, the one or more additional states may include more of the inflation fluid in the interior region 118 (e.g., is more inflated) than the first state (e.g., the first state is a deflated or partially inflated state) and include less of the inflation fluid in the interior region 118 than the second state. In such an embodiment, the one or more additional states include a partially inflated state and may be formed by adding the inflation fluid to or removing the inflation fluid from the interior region 118 when the bladder 114 is in the first state or second state, respectively. In an embodiment, the one or more additional states may include more of the inflation fluid in the interior region 118 than the second state (e.g., the second state is a partially inflated state). In such an embodiment, the one or more additional states may be an at least partially inflated state and may be formed by adding the inflation fluid to the interior region 118 when the bladder 114 is in the first state or second state. It is noted that, in some embodiments, the bladder 114 may only include the first and second states.


As shown in FIGS. 1B and 1C, switching the bladder 114 from the first state to the second state (or any of the other states thereof) changes the shape of the bladder 114 and/or increases a distance that a portion of the bladder 114 extends from the fluid impermeable barrier 102 thereby changing the length of the fluid collection assembly 100. For example, referring to FIG. 1B, the fluid collection assembly 100 may exhibit a shape that generally conforms to the shape of the portion of the fluid impermeable barrier 102 to which the bladder 114 is attached when the bladder 114 is in the first state. The fluid collection assembly 100 may exhibit a first length L1 when the bladder 114 is in the first state. Switching the bladder 114 to the second state changes the shape of the fluid collection assembly 100, as shown in FIG. 1C, to a shape that does not conform to the shape of the fluid impermeable barrier 102 to which the bladder 114 is attached. Further, switching the bladder 114 from the first state to the second state increases the distance that a portion of the bladder 114 extends from the fluid impermeable barrier 102 thereby increasing the length of the fluid collection assembly 100. For instance, switching the bladder 114 from the first state to the second state increases the length of the fluid collection assembly 100 to the second length L2 which is greater than the first length L1. The increased length of the fluid collection assembly 100 may allow the fluid collection assembly 100 to be used with longer vulvas without forming gaps between the fluid collection assembly 100 and the vulva through which bodily fluids and air may flow. It is noted that the inflation fluid may be removed from the interior region 118 using the valve 120, for example, when too much of the inflation fluid is added to the interior region 118 which may at least one of increase the risk that the bladder 114 ruptures, make the fluid collection assembly 100 more uncomfortable, or increase the likelihood that the fluid collection assembly 100 leaks bodily fluids since the fluid collection assembly 100 exhibits a length that is too great for the vulva.


The walls 116 are formed from a material is substantially impermeable to the inflation fluid (e.g., substantially impermeable to a gas and/or a liquid) which allows the bladder 114 to retain the inflation fluid without embarrassing leaks. The walls 116 may also be formed from a flexible material. The flexible material of the walls 116 allows the bladder 114 and, by extension, the fluid collection assembly 100 to at least one of increase in size or change a shape thereof. For example, the flexible material of the walls 116 allow the interior region 118 to increase a volume thereof when the interior region 118 receives an inflation fluid and decrease a volume thereof when the inflation fluid is removed from the interior region 118. Examples of materials that may form the walls 116 of the bladder 114 include silicone, rubber, latex, polychloroprene, nylon fabric, polypropylene, polyvinyl chloride, nitrile rubber, other suitable polymers, a metal foil, a composite, or combinations thereof. In an embodiment, the walls 116 are configured to stretch (e.g., elastically or plastically stretch) so the walls 116 remain taut when the bladder 114 is at least partially inflated. In an embodiment, the wall 116 forms a plurality of wrinkles when the bladder 114 is at least partially deflated and adding inflation fluid into the interior region 118 decreases the wrinkles, similar to an accordion.


The bladder 114 of the inflation device 112 and, in particular, the walls 116 of the bladder 114 may exhibit any suitable shape. In an embodiment, as previously discussed, the bladder 114 may exhibit a shape that generally corresponds to the shape of the region of the fluid impermeable barrier 102 that the bladder 114 is adjacent to when the bladder 114 is in the deflated state. In such an embodiment, the bladder 114 may exhibit a shape that is different than the region of the fluid impermeable barrier 102 that the bladder 114 is adjacent to when the bladder 114 is in at least partially inflated state. In an embodiment, the fluid collection assembly 100 may include a bladder 114 adjacent to the proximal region end 103 of the fluid impermeable barrier 102. In such an embodiment, the bladder 114 may exhibit a generally annular shape, a generally C-shape, or another suitable shape (e.g., a shape defining a hole) which allows the bladder 114 to not obstruct the fluid outlet 108.


The valve 120 may include any suitable valve configured to allow for the controllable addition and remove of the inflation fluid from the interior region 118. In an embodiment, the valve 120 is a luer valve and includes a male-tapper fitting or a female-taper fitting. In an embodiment, the valve 120 includes a fluid impermeable membrane with a slit or opening formed. The slit or opening of the fluid impermeable membrane remains substantially closed when no external load is applied thereto but opens when an external load is applied thereto (e.g., an external load caused by pressing a syringe against the fluid impermeable membrane). In an embodiment, the valve 120 may include a mechanical valve, such as a ball valve, a butterfly valve, or any other suitable mechanical valve. The mechanical valve may be manually operated or controlled using a computer. In an embodiment, the valve 120 may include a check valve to limit leaks from the bladder 114 and to make the fluid collection assembly 100 easier to use. In such an embodiment, the valve 120 may only add or remove (but not both) inflation fluid from the interior region 118 and, as such, the fluid collection assembly 100 is configured for single use.


In an embodiment, the valve 120 extends from or near the proximal region end 103, the distal end region 105, or a back side 122 of the fluid impermeable barrier 102. The back side 122 of the fluid impermeable barrier 102 is the side of the fluid impermeable barrier 102 that is generally opposite the opening 104. The valve 120 at or near the proximal region end 103, the distal end region 105, or a back side 122 may allow a user of the fluid collection assembly 100 (e.g., medical practitioner, nurse, or the individual using the fluid collection assembly 100) to access the valve 120 when the fluid collection assembly 100 is adjacent to the vulva since, generally, the inner thighs of the individual may contact or obstruct the surfaces of the fluid impermeable barrier 102 except the proximal region end 103, the distal end region 105, or a back side 122. Further, the valve 120 at or near the proximal region end 103, the distal end region 105, or a back side 122 prevents the valve 120 from pressing against the inner thighs during use which may cause discomfort.


In an embodiment, the fluid collection assembly 100 may only include a single inflation device 112 (e.g., a single bladder 114 and/or a single valve 120). For example, the fluid collection assembly 100 may only include the inflation device 112 at the proximal region end 103 or distal end region 105. In an embodiment, the fluid collection assembly 100 may include a plurality of inflation device 112 (e.g., a plurality of bladders 114) and/or a plurality of valves 120. For example, as illustrated, the fluid collection assembly 100 may include two inflation devices 112. One of the inflation device 112 may be attached to or otherwise proximate to the proximal region end 103 of the fluid impermeable barrier 102 and the other inflation device 112 may be attached to or otherwise proximate to the distal end region 105 of the fluid impermeable barrier 102. The two inflation devices 112 attached to the proximal and distal end regions 103, 105 allow the length of the fluid collection assembly 100 to increase from either or both of the proximal or distal end regions 103, 105 thereof. Increasing the length of the fluid collection assembly 100 from one or both of the proximal or distal end regions 103, 105 allows better control over the position of the fluid collection assembly 100 such that the opening 104 is adjacent to the urethral opening of the individual and allows for the fluid collection assembly to better fit the vulva. Each inflation device 112 (e.g. each bladder 114) may include one or more valves 120 to allow for independent inflation of the bladders 114 which allows for better control of the shape and size of the fluid collection assembly 100. However, the fluid collection assembly 100 may only include a single valve 120 for two or more bladders 114 when the two or more bladders 114 are fluidly coupled together using one or more tubes extending therebetween. In some examples, a single bladder 114 may include a plurality of valves 120, for instance, to increase the likelihood that one valve 120 is easily accessible.


The inflation device 112 may include additional components other than the components discussed above. For example, the inflation device 112 may include less flexible material (e.g., rigid material or material that is less flexible than the walls 116) that are used to control the shape of the bladder 114 when the bladder 114 is inflated (e.g., switched from the first state to the second state). The less flexible material may form parts of the walls 116, wrap around the walls 116, or extend in the interior region 118 between opposing portions of the walls 116 which limits expansion of the walls 116 at and near the less flexible material.


The at least one inflation fluid added or removed from the interior region 118 may include any suitable fluid, such as any suitable liquid or any suitable gas. In an embodiment, the inflation fluid is formed from at least one generally regarded as safe (“GRAS”) material. Forming the inflation fluid from a GRAS material may decrease health risks caused by inadvertently exposing the individual to the inflation fluid. Examples of GRAS materials that may form the inflation fluid includes water, saline solution, alcohol solution, atmospheric air, nitrogen, or combinations thereof.


As previously discussed, the fluid collection assembly 100 includes a fluid impermeable barrier 102. In an embodiment, as shown, the fluid impermeable barrier 102 forms at least a portion of the inflation device 112 since the fluid impermeable barrier 102 defines a portion of the interior region 118. In such an embodiment, the walls 116 of the bladder 114 are attached to the fluid impermeable barrier 102 in a substantially fluid tight manner to prevent the inflation fluid leaking from the interior region 118. In an embodiment, the bladder 114 is distinct from the fluid impermeable barrier 102 (e.g., the fluid impermeable barrier 102 does not partially define the interior region 118). In such an embodiment, the wall 116 of the bladder 114 may be attached to the fluid impermeable barrier 102. In an embodiment, the bladder 114 is spaced from the fluid impermeable barrier 102, such as when the bladder 114 is disposed within the chamber 106. Examples of other locations of the bladder 114 relative to the fluid impermeable barrier 102 are disclosed in U.S. Provisional Patent Application No. 63/030,685 filed on May 27, 2020, the disclosure of which is incorporated herein, in its entirety, by this reference.


The fluid impermeable barrier 102 may be formed of any suitable fluid imporous material(s), such as a fluid impermeable polymer (e.g., silicone, polypropylene, polyethylene, polyethylene terephthalate, a polycarbonate, etc.), a metal film, natural rubber, another suitable material, or combinations thereof. The fluid impermeable barrier 102 substantially prevents the bodily fluids from passing through the fluid impermeable barrier 102. In an example, the fluid impermeable barrier 102 may be air permeable and fluid impermeable. In such an example, the fluid impermeable barrier 102 may be formed of a hydrophobic material that defines a plurality of pores. At least a surface of the fluid impermeable barrier 102 that may contact the individual may be formed from a soft and/or smooth material (e.g., silicone), thereby reducing chaffing. In an embodiment, the fluid impermeable barrier 102 may be formed from a flexible material, such as silicone, which allows the fluid impermeable barrier 102 to be bent into a shape that conforms the anatomy of the individual. Further, as shown in FIGS. 1B and 1C, forming the fluid impermeable barrier 102 from a flexible material allows the fluid impermeable barrier 102 to accommodate the shape and/or size changes by switching the fluid collection assembly 100 and the bladder 114 between states.


In some examples, the fluid impermeable barrier 102 may be tubular (ignoring the opening), such as substantially cylindrical (as shown), oblong, prismatic, or flattened tubes when the bladder 114 is in the first state and/or the second state. During use, the outer surface 124 of the fluid impermeable barrier 102 may contact the individual. The fluid impermeable barrier 102 may be sized and shaped to fit in the gluteal cleft between the legs of a female user when the bladder 114 are in at least the second state.


The opening 104 provides an ingress route for fluids to enter the chamber 106. The opening 104 may be defined by the fluid impermeable barrier 102 such as by an inner edge of the fluid impermeable barrier 102. For example, the opening 104 is formed in and extends through the fluid impermeable barrier 102, from the outer surface 124 to the inner surface 126, thereby enabling fluid(s) to enter the chamber 106 from outside of the fluid collection assembly 100. The opening 104 may be an elongated hole in the fluid impermeable barrier 102. For example, the opening 104 may be defined as a cut-out in the fluid impermeable barrier 102. The opening 104 may be located and shaped to be positioned adjacent to a female urethra.


The fluid collection assembly 100 may be positioned proximate to the female urethral opening and urine may enter the chamber of the fluid collection assembly 100 via the opening 104. The fluid collection assembly 100 is configured to receive the bodily fluids into the chamber 106 via the opening 104. When in use, the opening 104 may have an elongated shape that extends from a first location below the urethral opening (e.g., at or near the anus or the vaginal opening) to a second location above the urethral opening (e.g., at or near the top of the vaginal opening or the pubic hair).


The opening 104 may have an elongated shape because the space between the legs of a female is relatively small when the legs of the female are closed, thereby only permitting the flow of the fluid(s) along a path that corresponds to the elongated shape of the opening 104 (e.g., longitudinally extending opening). The opening 104 in the fluid impermeable barrier 102 may exhibit a length measured along the longitudinal axis 111 of the fluid collection assembly 100 that may be at least about 10% of the length of the fluid collection assembly 100, such as about 25% to about 50%, about 40% to about 60%, about 50% to about 75%, about 65% to about 85%, or about 75% to about 95% of the length of the fluid collection assembly 100.


The opening 104 in the fluid impermeable barrier 102 may exhibit a width measured transverse to the longitudinal axis 111 of the fluid collection assembly 100 that may be, when the fluid collection assembly 100 and the bladder 114 are in the first state, at least about 10% of the circumference of the fluid collection assembly 100, such as about 25% to about 50%, about 40% to about 60%, about 50% to about 75%, about 65% to about 85%, or about 75% to about 100% of the circumference of the fluid collection assembly 100. The opening 104 may exhibit a width that is greater than 50% of the circumference of the fluid collection assembly 100 since the vacuum (e.g., suction) through the conduit 128 pulls the fluid through the porous material 110 and into the conduit 128. As shown in FIGS. 1B and 1C, switching the bladder 114 from the first state to the second state increases the width of the opening 104. The increased width of the opening 104 may allow the opening 104 to receive more bodily fluids than if the opening 104 did not exhibit the increased width.


In some examples, the opening 104 may be vertically oriented (e.g., having a major axis parallel to the longitudinal axis 111 of the fluid collection assembly 100). In some examples (not shown), the opening 104 may be horizontally oriented (e.g., having a major axis perpendicular to the longitudinal axis 111 of the fluid collection assembly 100). In an example, the fluid impermeable barrier 102 may be configured to be attached to the individual, such as adhesively attached (e.g., with a hydrogel adhesive) to the individual. According to an example, a suitable adhesive is a hydrogel layer.


As previously discussed, the fluid impermeable barrier 102 may define fluid outlet 108 configured to remove bodily fluids from the chamber 106. The fluid outlet 108 is distinct from the opening 104 and the valve 120. In some examples, the fluid outlet 108 is sized to receive the conduit 128. The conduit 128 may be disposed in the chamber 106 via the fluid outlet 108. The fluid outlet 108 may be sized and shaped to form an at least substantially fluid tight seal against the conduit 128 or the at least one tube substantially preventing the bodily fluids from escaping the chamber 106.


The fluid impermeable barrier 102 may include markings thereon, such as one or more markings to aid a user in aligning the fluid collection assembly 100 on the individual. For example, a line on the fluid impermeable barrier 102 (e.g., opposite the opening 104) may allow a healthcare professional to align the opening 104 over the urethral opening of the individual. In examples, the markings may include one or more of alignment guide or an orientation indicator, such as a stripe or hashes. Such markings may be positioned to align the fluid collection assembly 100 to one or more anatomical features such as a pubic bone, etc.


As previously discussed, the fluid collection assembly 100 includes porous material 110 disposed in the chamber 106. The porous material 110 may cover at least a portion (e.g., all) of the opening 104. The porous material 110 is exposed to the environment outside of the chamber 106 through the opening 104. The permeable properties referred to herein may be wicking, capillary action, absorption, diffusion, or other similar properties or processes, and are referred to herein as “permeable” and/or “porous.” The porous material 110 may also wick the bodily fluids generally towards an interior of the chamber 106, as discussed in more detail below. The porous material 110 may include one or more of a fluid permeable membrane 130 or a fluid permeable support 132.


In an embodiment, at least a portion of the porous material 110 may be a wicking material configured to wick and/or allow flow of the bodily fluids away from the opening 104, thereby preventing bodily fluids from escaping the chamber 106. The wicking material may not include absorption of the bodily fluids into the wicking material. Put another way, substantially no absorption of the bodily fluids into the wicking material may take place after the wicking material is exposed to the bodily fluids. While no absorption is desired, the term “substantially no absorption” may allow for nominal amounts of absorption of the bodily fluids into the wicking material (e.g., absorbency), such as about 10 wt % of the dry weight of the wicking material, about 7 wt %, about 5 wt %, about 3 wt %, about 2 wt %, about 1 wt %, or about 0.5 wt % of the dry weight of the wicking material.


The fluid collection assembly 100 may include the fluid permeable membrane 130 disposed in the chamber 106. The fluid permeable membrane 130 may cover at least a portion (e.g., all) of the opening 104. The fluid permeable membrane 130 may be composed to pull/push the bodily fluids away from the opening 104, thereby promoting fluid flow into the chamber 106, prevent fluid remaining on the vulva of the individual, and preventing the bodily fluids from escaping the chamber 106.


The fluid permeable membrane 130 may include any material that may be permeable to the bodily fluids. For example, the fluid permeable membrane 130 may include fabric, such as a gauze (e.g., a silk, linen, or cotton gauze), another soft fabric, or another smooth fabric. Forming the fluid permeable membrane 130 from gauze, soft fabric, and/or smooth fabric may reduce chaffing caused by the fluid collection assembly 100 and makes wearing the fluid collection assembly more comfortable. In an embodiment, the fluid permeable membrane 130 is formed from a flexible material, such as gauze, since the shape and/or size of the fluid permeable membrane 130 may change when the fluid collection assembly 100 and the bladder 114 switch between states, as shown in FIGS. 1B and 1C. In an embodiment, the fluid permeable membrane 130 may define a plurality of perforations or may be continuous (e.g., does not define perforations). In an embodiment, the fluid permeable membrane 130 defines at least one hole that is configured to allow the valve 120 to extend through the fluid permeable membrane 130.


The fluid collection assembly 100 may include the fluid permeable support 132 disposed in the chamber 106. The fluid permeable support 132 is configured to support the fluid permeable membrane 130 and maintain the shape of the chamber 106 since the fluid impermeable barrier 102 and the fluid permeable membrane 130 may be formed from a relatively foldable, flimsy, or otherwise easily deformable material. For example, the fluid permeable support 132 may be positioned so the fluid permeable membrane 130 is disposed between the fluid permeable support 132 and the fluid impermeable barrier 102. The fluid permeable support 132 may support and maintain the position of the fluid permeable membrane 130 and the shape of the chamber 106. The fluid permeable support 132 may include any material that may be permeable to the bodily fluids, such as any of the fluid permeable membrane 130 materials disclosed above. For example, the fluid permeable membrane 130 material(s) may be utilized in a more dense or rigid form than in the fluid permeable membrane 130 when used as the fluid permeable support 132. The fluid permeable support 132 may be formed from any fluid porous material that is less deformable than the fluid permeable membrane 130. For example, the fluid permeable support 132 may include a porous polymer (e.g., nylon, polyester, polyurethane, polyethylene, polypropylene, etc.) structure (e.g., spun fibers such as spun nylon fibers) or a foam (e.g., an open cell foam). In some examples, the fluid permeable support 132 may be formed from a natural material, such as cotton, wool, silk, or combinations thereof. In such examples, the material may have a coating to prevent or limit absorption of the bodily fluids into the material, such as a water repellent coating. In some examples, the fluid permeable support 132 may be formed from fabric, felt, gauze, or combinations thereof.


In some examples, the fluid permeable membrane 130 may be optional. For example, the porous material 110 may include only the fluid permeable support 132. In such examples, the bladder 114 may be positioned within the fluid permeable support 132 since, for instance, at least some materials of the support 132 disclosed herein are flexible enough to accommodate the shape and/or size changes discussed herein. In some examples, the fluid permeable support 132 may be optionally omitted from the fluid collection assembly 100 and the porous material 110 may only include the fluid permeable membrane 130. In such examples, the bladder 114 may be positioned within the fluid permeable membrane 130.


In an embodiment, the fluid permeable membrane 130 and/or the fluid permeable support 132 are wicking materials. In such an embodiment, the fluid permeable support 132 may have a greater ability to wick the bodily fluids than the fluid permeable membrane 130, such as to move the bodily fluids inwardly from the 116 of the fluid collection assembly 100. In some examples, the wicking ability of the fluid permeable support 132 and the fluid permeable membrane 130 may be substantially the same. In an embodiment, the fluid permeable membrane 130 and/or the fluid permeable support 132 are non-wicking materials (e.g., absorbent materials).


In an embodiment, not shown, the fluid permeable membrane 130 and the fluid permeable support 132 may at least substantially completely fill the portions of the chamber 106 not occupied by the inflation device 112 and the conduit 128. In an embodiment, as shown in FIGS. 1B and 1C, the fluid permeable membrane 130 and the fluid permeable support 132 may not substantially completely fill the portions of the chamber 106 not occupied by the inflation device 112 or the conduit 128. In such an embodiment, the fluid collection assembly 100 includes the fluid reservoir 134 disposed in the chamber 106.


The fluid reservoir 134 is a substantially unoccupied portion of the chamber 106. The fluid reservoir 134 may be defined between the fluid impermeable barrier 102 and at least one of the inflation device 112, the fluid permeable membrane 130, or the fluid permeable support 132. The bodily fluids in the chamber 106 may flow through the fluid permeable membrane 130 and/or fluid permeable support 132 to the fluid reservoir 134. The fluid reservoir 134 may retain of the bodily fluids. The bodily fluids in the chamber 106 may flow through the fluid permeable membrane 130 and/or fluid permeable support 132 and, optionally, to the fluid reservoir 134. The fluid impermeable barrier 102 may retain the bodily fluids in the fluid reservoir 134. The fluid reservoir 134 may be in a portion of the chamber 106 designed to be in a gravimetrically low point of the fluid collection assembly 100 when the fluid collection assembly 100 is worn.


The inflation devices and, in particular, the bladders disclosed herein may be located adjacent to regions of the fluid collection assemblies other than or in addition to the proximal end region and the distal end region of the fluid impermeable barrier. For example, FIG. 2A is an isometric view of a fluid collection assembly 200 that includes at least one inflation device 212 adjacent to at least one lateral side 236 of the fluid impermeable barrier 202, according to an embodiment. FIGS. 2B and 2C are cross-sectional schematics of the fluid collection assembly 200 taken along plane 2B-2B when the bladder 214 of the inflation device 212 is in the first and second states, respectively. The inflation device 212 adjacent to the lateral side 236 of the fluid impermeable barrier 202 allows a width of the fluid collection assembly 200 to be selectively and controllably changed. The width of the fluid collection assembly 200 is measured perpendicular to a longitudinal axis 211 of the fluid collection assembly 200. Except as otherwise disclosed herein, the fluid collection assembly 200 is the same or substantially similar to any of the fluid collection assemblies disclosed herein. For example, the fluid collection assembly 200 may include a fluid impermeable barrier 202 defining at least one opening 204, a chamber 206, and a fluid outlet 208. As previously discussed, the fluid collection assembly 200 also includes at least one inflation device 212. The inflation device 212 includes a bladder 214 having one or more walls 216 defining an interior region 218 and at least one valve 220.


The fluid collection assembly 200 is configured to be at least partially positioned between the labia folds of an individual. Positioning the fluid collection assembly 200 at least partially between the labia folds may decrease the number and/or size of gaps formed between the fluid collection assembly 200 and the vulva thereby minimizing leakage of the bodily fluids and the suction pressure between the fluid collection assembly 200 and the vulva. Also, positioning the fluid collection assembly 200 at least a portion between the labia folds may decrease the distance between the urethral opening of the individual and the fluid collection assembly 200 which increases the quantity of bodily fluids that are discharged from the urethral opening that are received by the fluid collection assembly 200 (e.g., received through the opening 204 and into the porous material 210). As previously discussed, the size of the labia folds may vary from individual to individual. Fluid collection assemblies exhibiting a maximum width that is too large for the particular size of the labia folds may make positioning such a fluid collection assembly between the labia folds difficult, uncomfortable, and may limit the ability to position such a wide fluid collection assembly proximate to the urethral opening of the individual. Fluid collection assembly exhibiting a maximum width that is too small for the particular size of the labia folds may form gaps between the narrow fluid collection assembly and the labia folds through which the bodily fluids and the suction pressure may leak.


The fluid collection assembly 200 is configured to change a width of at least a portion thereof thereby allowing the fluid collection assembly 200 to be used effectively with individuals with differently sized labia folds. In particular, the inflation device 212 allows the width of the fluid collection assembly 200 to be selectively and controllably changed thereby allowing the width of at least a portion of the fluid collection assembly 200 to be controllably and selectively changed. As previously discussed, the inflation device 212 may be disposed adjacent to the at least one lateral side 236 of the fluid impermeable barrier 202 which allows the inflation device 212 to control the width of at least a portion of the fluid collection assembly 200. The lateral side 236 of the fluid impermeable barrier 202 may include a side of the fluid impermeable barrier 202 that is between the opening 204 and the back side 222 of the fluid impermeable barrier 202 and between the proximal and distal end regions 203, 205 of the fluid impermeable barrier 202. As shown in FIG. 2B, a portion of the fluid collection assembly 200 may exhibit a first width W1 when the bladder 214 is in the first (e.g., deflated) state. The fluid collection assembly 200 may be used with relatively small sized labia folds when the fluid collection assembly 200 exhibits the first width W1 (e.g., when the bladder 214 is in the first state). However, the fluid collection assembly 200 may also be used with relatively large sized labia folds (e.g., labia folds that are larger than the relatively small sized labia folds). When used with the relatively large sized labia folds, the at least one inflation fluid may be disposed in the interior region 218 of the bladder 214 via the valve 220 to switch the bladder 214 to the second state thereof. As shown in FIG. 2C, switching the bladder 214 from the first state to the second state increases the width of the portion of the fluid collection assembly 200 from the first width W1 to a second width W2 that is greater than the first width W1. As such, the fluid collection assembly 200 may be used more effectively with the relatively large sized labia folds when the fluid collection assembly 200 exhibits the second width W2 than when the fluid collection assembly 200 exhibits the first width W1.


At least some convention fluid collection assemblies exhibit a maximum width that is greater than 3 cm. Such widths of the conventional fluid collection assemblies allows the conventional fluid collection assemblies to be used with a significant number (but not all) individuals. In an embodiment, the fluid collection assembly 200 may exhibit a maximum width that is about 3 cm or greater when the bladder 214 exhibits the deflated state. In an embodiment, the fluid collection assembly 200 may exhibit a maximum width when the bladder 214 exhibits the deflated state that is about 3 cm or less, such as about 2.75 cm or less, about 2.5 cm or less, about 2.25 cm or less, about 2 cm or less, about 1.75 cm or less, about 1.5 cm or less, or in ranges of about 1.5 cm to about 2 cm, about 1.75 cm to about 2.25 cm, about 2 cm to about 2.5 cm, about 2.25 cm to about 2.75 cm, or about 2.5 cm to about 3 cm. Selecting the maximum width of the fluid collection assembly 200 to be about 3 cm or less may decrease the volume of the chamber 206 which limits the quantity of bodily fluids that may be stored in the chamber 206 but also allows the fluid collection assembly 200 to be used with individuals having relatively small sized labia folds. Further, the inflation device 212 allows the fluid collection assembly 200 to be used with individuals having relatively large sized labia folds by switching the bladder 214 from the first state to the second state even when the fluid collection assembly 200 exhibits a maximum width that is less than 3 cm.


In an embodiment, the at least one inflation device 212 may be configured such that the maximum difference between the second width W2 is greater than the first width W1 by about 2 cm or less, about 1.75 cm or less, about 1.5 cm or less, about 1.25 cm or less, about 1 cm or less, about 7.5 mm or less, about 6 mm or less, about 5 mm or less, about 4 mm or less, about 3 mm or less, about 2 mm or less, about 1 mm or less, or in ranges of about 1 mm to about 3 mm, about 2 mm to about 4 mm, about 3 mm to about 5 mm, about 4 mm to about 6 mm, about 5 mm to about 7.5 mm, about 6 mm to about 1 cm, about 7.5 mm to about 1.25 cm, about 1 cm to about 1.5 cm, about 1.25 cm to about 1.75 cm, or about 1.5 cm to about 2 cm. For example, the difference in sizes of the labia folds from a relatively small sized labia folds to a relatively large sized labia folds may only vary by at most 2 cm and, more commonly, less than 1.5 cm and less than 1 cm. Restricting the maximum change in the width that the portion of the fluid collection assembly 200 may exhibit may prevent overinflation of the bladder 214 when the fluid collection assembly 200 is positioned between the labia folds since overinflation may injure the labia folds. In an embodiment, the fluid collection assembly 200 may include a rigid band extending around at least a portion of or integrally formed with the inflation device 212 that prevents overinflation of the bladder 214.


In an embodiment, the inflation device 212 (e.g., the bladder 214) is positioned adjacent to a portion of the lateral side 236 of the fluid impermeable barrier 202 that is closer to the opening 204 than the back side 222 of the fluid impermeable barrier 202. The inflation device 212 may exhibit such a location since the portion of the lateral sides 236 that is closer to the opening 204 than the back side 222 is more likely to be positioned between the labia folds of the individual than a portion of the lateral side 236 that is closer to the back side 222 than the opening 204. As such, positioning the inflation device 212 to be closer to the opening 204 than the back side 222 better ensures that the inflation device 212 (e.g., the bladder 214) is positioned between the labia folds and that the bladder 214 is more likely to contact the labia folds than the thighs of the individual. In an embodiment, the inflation device 212 may be positioned adjacent to a portion of the lateral side 236 that is equally spaced from the opening 204 and the back side 222 or closer to the back side 222 than the opening 204.


In an embodiment, positioning the inflation device 212 to be closer to the opening 204 than the back side 222 allows the fluid collection assembly 200 to include one or more additional inflation devices (not shown) that are distinct and separate from the inflation devices 212. The additional inflation devices may be positioned adjacent to a portion of the lateral sides 236 that is closer to the back side 222 than the opening 204. The additional inflation devices may be configured to contact the thighs of the patient instead of the labia folds of the individual since the additional inflation devices are positioned closer to the back side 222 which decreases the likelihood that the addition inflation devices contact the labia folds. The additional inflation devices may be configured to increase the width of the fluid collection assembly 200 more than the inflation devices 212.


In an embodiment, the fluid collection assembly 200 includes a plurality of inflation devices 212 (e.g., plurality of bladders 214). In such an embodiment, at least one of the inflation devices 212 may be positioned on one side of the opening 204 and at least one other inflation device 212 may be positioned on the other side of the opening 204. Positioning the inflation devices 212 on both sides of the opening 204 allows for better control of the position of the opening 204 relatively to the urethral opening. For example, positioning the inflation devices 212 on both sides of the opening 204 may allow the central portion of the opening 204 to be positioned adjacent to the urethral opening of the individual by controllably inflating and/or deflating the bladders 214 on one or both sides of the opening 204. Positioning the central portion of the opening 204 adjacent to the urethral opening may maximize the quantity of bodily fluids that are received into the fluid collection assembly 200.


The fluid collection assemblies illustrated in FIGS. 1A to 2C are only configured to controllably and selectively change a length or a width thereof. However, any of the fluid collection assemblies disclosed herein may be configured to change both the length and the width thereof. For example, FIG. 3 is a cross-sectional schematic of a fluid collection assembly 300 that is configured to change a length and a width thereof, according to an embodiment. Except as otherwise disclosed herein, the fluid collection assembly 300 is the same or substantially similar to any of the fluid collection assemblies disclosed herein.


The fluid collection assembly 300 includes a fluid impermeable barrier 302 that includes a proximal end region 303, a distal end region 305 opposite the proximal end region 303, and at least one lateral side 336. The fluid collection assembly 300 includes at least one first inflation device 312a (e.g., at least one first inflation device 312a adjacent to the proximal end region 303 and at least one other inflation device 312a adjacent to the distal end region 305) that is configured to controllably change the length of the fluid collection assembly 300. For example, the first inflation device 312a may be the same or substantially similar to the inflation device(s) 112 illustrated in FIGS. 1A-1C. The fluid collection assembly 300 also includes at least one second inflation device 312b (e.g., at least one second inflation device 312b on one side of the opening (not shown) and at least one other second inflation device 312b on the other side of the opening) on the at least one lateral side 336 of the fluid impermeable barrier 302. The second inflation device 312b is configured to controllably change the width of at least a portion of the fluid collection assembly 300 and, as such, the second inflation device 312b may be the same or substantially similar to the inflation device(s) 212 illustrated in FIGS. 2A-2C. Thus, the first and second inflation devices 312a, 312b allow the fluid collection assembly 300 to controllably change the length and the width thereof thereby allowing the fluid collection assembly 300 to be configured to be used with a wider variety of individuals regardless of the length of the vulva and the size of the labia folds of the individual.


The at least one first inflation device 312a and the at least one second inflation device 312b are distinct and separate from each other. Further, the first inflation device 312a and the second inflation devices 312b are not in fluid communication with each other. This allows the first and second inflation devices 312a, 312b to be independently switched from the first state to second state and vice versa (e.g., independently inflated and deflated). Independently switching the first and second inflation devices 312a, 312b allows for better control of the size of the fluid collection assembly 300. For example, the first inflation device 312a may be inflated when the vulva of the individual is relatively long but the second inflation device 312b may remain deflated when the labia folds of the individual are relatively small.


The first and second inflation devices 312a, 312b may be in fluid communication with each other. For example, FIG. 4 is a cross-sectional schematic of a fluid collection assembly 400 that includes two or more inflation devices in fluid communication with each other, according to an embodiment. Except as otherwise disclosed herein, the fluid collection assembly 400 is the same or substantially similar to any of the fluid collection assemblies disclosed herein.


The fluid collection assembly 400 includes a fluid impermeable barrier 402 that includes a proximal end region 403, a distal end region 405 opposite the proximal end region 403, and at least one lateral side 436. The fluid collection assembly 400 includes at least one first inflation device 412a that is configured to controllably change the length of the fluid collection assembly 400. The first inflation device 412a may include, for example, at least one first inflation device 412a adjacent to the proximal end region 403 and/or at least one other first inflation device 412a adjacent to the distal end region 405. The fluid collection assembly also includes at least one second inflation device 412b configured to control the width of at least a portion of the fluid collection assembly 400. The second inflation device 412b may include at least one second inflation device 412b on one side of the opening (not shown) and/or at least one other second inflation device 412b on the other side of the opening.


At least two of the inflation devices of the fluid collection assembly 400 may be in fluid communication with each other. The inflation devices of the fluid collection assembly 400 may be in fluid communication with each other when the inflation fluid in one inflation device may flow to another inflation device through at least one tube 438. The tube 438 may include any structure that defines a passageway that allows the inflation fluid to flow therein and substantially prevents the inflation fluid from leaving the passageway. The tube 438 allows inflating one inflation device to also inflate at least one other inflation device and deflating one inflation to also deflate at least one other inflation device. Configuring at least two of the inflation devices to be in fluid communication with each other may help improve the comfort of using the fluid collection assembly 400 and prevent rupturing the bladders thereof when the individual using the fluid collection assembly 400 moves. For example, when the individual using the fluid collection assembly 400 moves, the individual may compress a portion of the bladder of one of the plurality of inflation devices. When the inflation device is not in fluid communication with another inflation device, the inflation fluid present in the bladder may cause another portion of the bladder to bulge with may cause discomfort or rupture the bladder. However, when the inflation devices are in fluid communication with each other, the inflation fluid displaced by the compression may be distributed over a larger area thereby preventing or at least minimizing the formation of bulges.


In an embodiment, as illustrated, the tube 438 may extending within the chamber 406. However, extending the tube 438 within the chamber 406 may decrease the quantity of bodily fluids that may be stored in the chamber 406 and may make disposing the porous material 410 in the chamber 406 more difficult. In an embodiment, the tube 438 may extend within the fluid impermeable barrier 402 (e.g., the fluid impermeable barrier 402 forms the tube 438) or extends outside of the chamber 406 and the fluid impermeable barrier 402. In an embodiment, the at least one tube 438 includes a plurality of tubes 438. In such an embodiment, at least one (e.g., all) of the plurality of tubes 438 may be disposed in the chamber 406, within the fluid impermeable barrier 402, outside of the chamber 406 and the fluid impermeable barrier 402, or combinations thereof.


In an embodiment, as illustrated, each of the first and second inflation devices 412a, 412b are in fluid communication with each other. In such an embodiment, the fluid collection assembly 400 may only include a single valve 420 which is used to inflate and deflate each of the first and second inflation devices 412a, 412b. It is noted that the fluid collection assembly 400 may include a plurality of valves 420 even when each of the first and second inflation devices 412a, 412b are in fluid communication with each other. In an embodiment, at least some of the plurality of inflation devices are not in fluid communication with each other. For example, when the first and second inflation devices 412a, 412b each include two or more inflation devices, the first inflation devices 412a may be in fluid communication with each other and the second inflation devices 412b may be in fluid communication with each other. As such, the length and width of the fluid collection assembly 400 may be control independently from each other.


In an embodiment, the fluid collection assemblies disclosed herein may include a single inflation device that is configured to controllably change the length and width of the fluid collection assembly. FIG. 5 is a cross-sectional schematic of a fluid collection assembly 500 including a single inflation device 512 that is configured to controllably change the length and width of the fluid collection assembly 500, according to an embodiment. Except as otherwise disclosed herein, the fluid collection assembly 500 is the same as or substantially similar to any of the fluid collection assemblies disclosed herein.


The inflation device 512 may include a single bladder 514 and at least one valve 520. The bladder 514 includes one or more walls 516 defining a single interior region 518 and the valve 520 is in fluid communication with the interior region such that the valve 520 may add the inflation fluid to or remove inflation fluid from the interior region 518. The inflation device 512 is positioned adjacent to at least one of the proximal end region 503 or the distal end region 505 of the fluid impermeable barrier 502. The inflation device 512 is also positioned adjacent to at least a portion of the lateral side 536 of the fluid impermeable barrier 502 on either one or both sides of the opening (not shown). As such, the inflation device 512 is able to control the length and the width of the fluid collection assembly 500. Further, the inflation device 512 may exhibit a relatively large size compared to an inflation device that was only adjacent to one of the proximal end region 503, the distal end region 505, or a portion of the lateral side 536. The greater size of the inflation device 512 allows the inflation fluid to be distributed therein without or minimizing bulging when movement of the individual using the fluid collection assembly 500 compresses a portion of the inflation device.



FIG. 6 is a block diagram of a system 601 for fluid collection, according to an embodiment. The system 601 includes a fluid collection assembly 600, a fluid storage container 607, and a vacuum source 609. The fluid collection assembly 600, the fluid storage container 607, and the vacuum source 609 may be fluidly coupled to each other via one or more conduits 628. For example, fluid collection assembly 600 may be operably coupled to one or more of the fluid storage container 607 or the vacuum source 609 via the conduit 628. Fluid (e.g., urine or other bodily fluids) collected in the fluid collection assembly 600 may be removed from the fluid collection assembly 600 via the conduit 628 which protrudes into the fluid collection assembly 600. For example, an inlet of the conduit 628 may extend into the fluid collection assembly 600, such as to a reservoir. The outlet of the conduit 628 may extend into the fluid collection assembly 600 or the vacuum source 609. Suction may be introduced into the chamber of the fluid collection assembly 600 via the inlet of the conduit 628 responsive to suction (e.g., vacuum) force applied at the outlet of the conduit 628.


The suction force may be applied to the outlet of the conduit 628 by the vacuum source 609 either directly or indirectly. The suction force may be applied indirectly via the fluid storage container 607. For example, the outlet of the conduit 628 may be disposed within the fluid storage container 607 and an additional conduit 628 may extend from the fluid storage container 607 to the vacuum source 609. The vacuum source 609 may apply suction to the fluid collection assembly 600 via the fluid storage container 607. The suction force may be applied directly via the vacuum source 609. For example, the outlet of the conduit 628 may be disposed within the vacuum source 609. An additional conduit 628 may extend from the vacuum source 609 to a point outside of the fluid collection assembly 600, such as to the fluid storage container 607. In such examples, the vacuum source 609 may be disposed between the fluid collection assembly 600 and the fluid storage container 607.


The fluid collection assembly 600 may be similar or identical to any of the fluid collection assemblies disclosed herein in one or more aspects. For example, the fluid collection assembly 600 may include a fluid impermeable barrier including a proximal end region, a distal end region, and at least one lateral side. The fluid impermeable barrier defines at least one opening, a chamber, and a fluid outlet at the proximal end region. The fluid collection assembly may at least one include at least one porous material and at least one inflation device. The inflation device is configured to controllably change a length and/or width of the fluid collection assembly.


The fluid storage container 607 is sized and shaped to retain a fluid. The fluid storage container 607 may include a bag (e.g., drainage bag), a bottle or cup (e.g., collection jar), or any other enclosed container for storing bodily fluid(s) such as urine. In some examples, the conduit 628 may extend from the fluid collection assembly 600 and attach to the fluid storage container 607 at a first point. An additional conduit 628 may attach to the fluid storage container 607 at a second point thereon and may extend and attach to the vacuum source 609. A vacuum (e.g., suction) may be drawn through fluid collection assembly 600 via the fluid storage container 607. Fluid, such as urine, may be drained from the fluid collection assembly 600 using the vacuum source 609.


The vacuum source 609 may include one or more of a manual vacuum pump, and electric vacuum pump, a diaphragm pump, a centrifugal pump, a displacement pump, a magnetically driven pump, a peristaltic pump, or any pump configured to produce a vacuum. The vacuum source 609 may provide a vacuum or suction to remove fluid from the fluid collection assembly 600. In some examples, the vacuum source 609 may be powered by one or more of a power cord (e.g., connected to a power socket), one or more batteries, or even manual power (e.g., a hand operated vacuum pump). In some examples, the vacuum source 609 may be sized and shaped to fit outside of, on, or within the fluid collection assembly 600. For example, the vacuum source 609 may include one or more miniaturized pumps or one or more micro pumps. The vacuum sources 609 disclosed herein may include one or more of a switch, a button, a plug, a remote, or any other device suitable to activate the vacuum source 609.


While various aspects and embodiments have been disclosed herein, other aspects and embodiments are contemplated. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting.


Terms of degree (e.g., “about,” “substantially,” “generally,” etc.) indicate structurally or functionally insignificant variations. In an example, when the term of degree is included with a term indicating quantity, the term of degree is interpreted to mean±10%, ±5%, or +2% of the term indicating quantity. In an example, when the term of degree is used to modify a shape, the term of degree indicates that the shape being modified by the term of degree has the appearance of the disclosed shape. For instance, the term of degree may be used to indicate that the shape may have rounded corners instead of sharp corners, curved edges instead of straight edges, one or more protrusions extending therefrom, is oblong, is the same as the disclosed shape, etc.

Claims
  • 1. A fluid collection assembly, comprising: a fluid impermeable barrier defining a chamber, at least one opening, and at least one fluid outlet, the fluid impermeable barrier including a proximal end region including the at least one fluid outlet and a distal end region opposite the proximal end region, wherein the distal end region is closed;at least one porous material disposed in the chamber; andat least one inflation device including a bladder and at least one valve, the bladder including one or more walls defining at least one interior region, the at least one valve configured to selectively permit at least one inflation fluid to flow into and out of the at least one interior region to switch the bladder between a first state and at least a second state, at least a portion of the at least one inflation device contacting an outer surface of the distal end region of the fluid impermeable barrier;wherein an amount of the at least one inflation fluid present in the at least one interior region is greater when the bladder is in the second state than when the bladder is in the first state;wherein the fluid impermeable barrier exhibits a first length when the bladder exhibits the first state and a second length when the bladder exhibits the second state, wherein the first length is less than the second length, the first length and second length measured parallel to a longitudinal axis of the fluid collection assembly.
  • 2. The fluid collection assembly of claim 1, wherein a portion of the at least one inflation device is adjacent to the proximal end region.
  • 3. The fluid collection assembly of claim 1, wherein the fluid impermeable barrier includes two lateral sides extending between the fluid impermeable barrier on opposing sides of the at least one opening, and wherein a portion of the at least one inflation device is adjacent to at least one of the two lateral sides.
  • 4. The fluid collection assembly of claim 3, wherein the fluid impermeable barrier exhibits a maximum width measured perpendicular to the longitudinal axis that is less than 2.5 cm.
  • 5. The fluid collection assembly of claim 3, wherein the at least one inflation device is adjacent to at least one of the two lateral sides and at least the distal end region.
  • 6. The fluid collection assembly of claim 3, wherein the at least one inflation device includes a single inflation device that is adjacent to the proximal end region, the distal end region, and the two lateral sides.
  • 7. The fluid collection assembly of claim 3, wherein the bladder of the at least one inflation device adjacent to the at least one of the two lateral sides is closer to the at least one opening than a back side of the fluid impermeable barrier, wherein the back side of the fluid impermeable barrier is opposite the at least one opening.
  • 8. The fluid collection assembly of claim 3, wherein the bladder of the at least one inflation device adjacent to at least one of the two lateral sides is configured to substantially only contact labia folds of an individual.
  • 9. The fluid collection assembly of claim 1, wherein the at least one inflation device includes a plurality of inflation devices that are in fluid communication with each other via at least one tube.
  • 10. The fluid collection assembly of claim 9, wherein at least a portion of the tube extends in the chamber.
  • 11. The fluid collection assembly of claim 1, wherein the at least one inflation device is spaced from the at least one opening.
  • 12. A fluid collection assembly, comprising: a fluid impermeable barrier defining a chamber, at least one opening, and at least one fluid outlet, the fluid impermeable barrier including two lateral sides extending between the fluid impermeable barrier on opposing sides of the at least one opening;at least one porous material disposed in the chamber; anda first inflation device and a second inflation device, each of the first inflation device and the second inflation device including a bladder, the bladder of the first inflation device and the second inflation device including one or more walls defining at least one interior region, at least a portion of the first inflation device contacting an outer surface of one of the two lateral sides of the fluid impermeable barrier and at least a portion of the second inflation device contacting an outer surface of the other one of the two lateral sides of the fluid impermeable barrier, wherein the at least the portion of the first inflation device and the at least a portion of the second inflation device extends generally parallel to a longitudinal axis of the fluid impermeable barrier;at least one valve forming part of at least one of the first inflation device or the second inflation device configured to selectively permit at least one inflation fluid to flow therethrough;wherein the first inflation device and the second inflation device are configured to switch the bladders thereof between a first state and at least a second state responsive to flowing the at least one inflation fluid into and out of the bladders;wherein an amount of the at least one inflation fluid present in the at least one interior region is greater when the bladder is in the second state than when the bladder is in the first state;wherein the fluid impermeable barrier exhibits a first width and a second width measured when the bladder of at least one of the first inflation device or the second inflation device exhibits the first state and the second state, respectively, the first width less than the second width by about 1 cm or less, the first width and the second width measured perpendicular to a longitudinal axis of the fluid collection assembly.
  • 13. The fluid collection assembly of claim 12, wherein the first width is less than the second width by about 5 mm or less.
  • 14. The fluid collection assembly of claim 12, wherein the fluid impermeable barrier includes a proximal end region including the at least one fluid outlet and a distal end region opposite the proximal end region, at least a portion of the bladder of at least one of the first inflation device, the second inflation device, or an additional inflation device is adjacent to the proximal end region.
  • 15. The fluid collection assembly of claim 12, wherein the fluid impermeable barrier includes a proximal end region including the at least one fluid outlet and a distal end region opposite the proximal end region, at least a portion of the bladder of at least one of the first inflation device, the second inflation device, or an additional inflation device contacts an outer surface of the distal end region.
  • 16. The fluid collection assembly of claim 12, wherein the fluid impermeable barrier includes a proximal end region and a distal end region opposite the proximal end region, the two lateral sides extending between the proximal end region and the distal end region.
  • 17. The fluid collection assembly of claim 16, wherein the bladders of the first inflation device and the second inflation device are closer to the at least one opening than a back side of the fluid impermeable barrier, wherein the back side of the fluid impermeable barrier is opposite the at least one opening.
  • 18. The fluid collection assembly of claim 12, wherein the bladders of the first inflation device and the second inflation device are configured to substantially only contact labia folds of an individual.
  • 19. The fluid collection assembly of claim 12, wherein the first inflation device is in fluid communication with the second inflation device.
  • 20. A system comprising: a fluid collecting assembly including: a fluid impermeable barrier defining a chamber, at least one opening, and at least one fluid outlet, the fluid impermeable barrier including a proximal end region including the at least one fluid outlet and a distal end region opposite the proximal end region, wherein the distal end region is closed;at least one porous material disposed in the chamber; andat least one inflation device including a bladder and at least one valve, the bladder including one or more walls defining at least one interior region, the at least one valve configured to selectively permit at least one inflation fluid to flow into and out of the at least one interior region to switch the bladder between a first state and at least a second state, at least a portion of the at least one inflation device contacting the outer surface of the distal end of the fluid impermeable barrier;wherein an amount of the at least one inflation fluid present in the at least one interior region is greater when the bladder is in the second state than when the bladder is in the first state;wherein the fluid impermeable barrier exhibits: a first length when the bladder exhibits the first state and a second length when the bladder exhibits the second state, wherein the first length is less than the second length, the first length and the second length measured parallel to a longitudinal axis of the fluid collection assembly;a fluid storage container; anda vacuum source;wherein the at least one fluid outlet of the fluid collection assembly, the fluid storage container, and the vacuum source are in fluid communication with each other.
  • 21. A method of using a fluid collection assembly, the method comprising: positioning at least one opening of the fluid collection assembly adjacent to a female urethral opening, the fluid collection assembly including: a fluid impermeable barrier including a proximal end region, a distal end region opposite the proximal end region, and two lateral sides extending between the proximal end region and the distal end region, the fluid impermeable barrier defining a chamber, at least one opening between the two lateral sides, and at least one fluid outlet at the proximal end region, wherein the distal end region is closed;at least one porous material disposed in the chamber; andat least one inflation device including a bladder and at least one valve, the bladder including one or more walls defining at least one interior region, at least a portion of the at least one inflation device contacting an outer surface of the distal end region of the fluid impermeable barrier; andflowing at least one inflation fluid through the at least one valve and into the at least one interior region of the at least one inflation element to increase: a length of the fluid collection assembly;while the at least one inflation fluid is in the at least one interior region of the at least one inflation device, removing one or more bodily fluids received into the chamber via a conduit, wherein the at least one inflation fluid is distinct from the one or more bodily fluids.
US Referenced Citations (1028)
Number Name Date Kind
737443 Mooers Aug 1903 A
1015905 Northrop Jan 1912 A
1032841 Koenig Jul 1912 A
1178644 Johnson Apr 1916 A
1387726 Karge Aug 1921 A
1742080 Jones Dec 1929 A
1979899 Obrien et al. Nov 1934 A
2241010 Chipley May 1941 A
2262772 Peder Nov 1941 A
2326881 Packer Aug 1943 A
2379346 Farrell Jun 1945 A
2485555 Bester Oct 1949 A
2571357 Charles Oct 1951 A
2613670 Edward Oct 1952 A
2616426 Adele Nov 1952 A
2644234 Earl Jul 1953 A
2648335 Chambers Aug 1953 A
2859786 Tupper Nov 1958 A
2944551 Carl Jul 1960 A
2968046 Duke Jan 1961 A
2971512 Reinhardt Feb 1961 A
3032038 Swinn May 1962 A
3077883 Hill Feb 1963 A
3087938 Hans et al. Apr 1963 A
3169528 Knox et al. Feb 1965 A
3171506 Therkel Mar 1965 A
3194238 Breece Jul 1965 A
3198994 Hildebrandt et al. Aug 1965 A
3221742 Egon Dec 1965 A
3312221 Overment Apr 1967 A
3312981 Mcguire et al. Apr 1967 A
3349768 Keane Oct 1967 A
3362590 Gene Jan 1968 A
3366116 Huck Jan 1968 A
3398848 Donovan Aug 1968 A
3400717 Bruce et al. Sep 1968 A
3406688 Bruce Oct 1968 A
3424163 Gravdahl Jan 1969 A
3425471 Yates Feb 1969 A
3511241 Lee May 1970 A
3512185 Ellis May 1970 A
3520300 Flower Jul 1970 A
3528423 Lee Sep 1970 A
3613123 Langstrom Oct 1971 A
3648700 Warner Mar 1972 A
3651810 Ormerod Mar 1972 A
3661155 Lindan May 1972 A
3683918 Pizzella Aug 1972 A
3699815 Holbrook Oct 1972 A
3726277 Hirschman Apr 1973 A
3742952 Magers et al. Jul 1973 A
3757355 Allen et al. Sep 1973 A
3788324 Lim Jan 1974 A
3843016 Bornhorst et al. Oct 1974 A
3863638 Rogers et al. Feb 1975 A
3863798 Kurihara et al. Feb 1975 A
3864759 Horiuchi Feb 1975 A
3865109 Elmore et al. Feb 1975 A
3881486 Fenton May 1975 A
3881489 Hartwell May 1975 A
3915189 Holbrook et al. Oct 1975 A
3998228 Poidomani Dec 1976 A
3999550 Martin Dec 1976 A
4015604 Csillag Apr 1977 A
4020843 Kanall May 1977 A
4022213 Stein May 1977 A
4027776 Douglas Jun 1977 A
4064962 Hunt Dec 1977 A
4096897 Cammarata Jun 1978 A
4116197 Bermingham Sep 1978 A
4180178 Turner Dec 1979 A
4187953 Turner Feb 1980 A
4194508 Anderson Mar 1980 A
4200102 Duhamel et al. Apr 1980 A
4202058 Anderson May 1980 A
4203503 Bertotti et al. May 1980 A
4209076 Bertotti et al. Jun 1980 A
4223677 Anderson Sep 1980 A
4233025 Larson et al. Nov 1980 A
4233978 Hickey Nov 1980 A
4246901 Frosch et al. Jan 1981 A
4253542 Ruspa et al. Mar 1981 A
4257418 Hessner Mar 1981 A
4270539 Frosch et al. Jun 1981 A
4281655 Terauchi Aug 1981 A
4292916 Bradley et al. Oct 1981 A
4330239 Gannaway May 1982 A
4352356 Tong Oct 1982 A
4360933 Kimura et al. Nov 1982 A
4365363 Windauer Dec 1982 A
4375841 Vielbig Mar 1983 A
4387726 Denard Jun 1983 A
4403991 Hill Sep 1983 A
4425130 Desmarais Jan 1984 A
4446986 Bowen et al. May 1984 A
4453938 Brendling Jun 1984 A
4457314 Knowles Jul 1984 A
4476879 Jackson Oct 1984 A
4526688 Schmidt et al. Jul 1985 A
4528703 Kraus Jul 1985 A
D280438 Wendt Sep 1985 S
4551141 Mcneil Nov 1985 A
4553968 Komis Nov 1985 A
4581026 Schneider Apr 1986 A
4589516 Inoue et al. May 1986 A
4601716 Smith Jul 1986 A
4610675 Triunfol Sep 1986 A
4620333 Ritter Nov 1986 A
4626250 Schneider Dec 1986 A
4627846 Ternstroem Dec 1986 A
4631061 Martin Dec 1986 A
4650477 Johnson Mar 1987 A
4655754 Richmond et al. Apr 1987 A
4656675 Fajnsztajn Apr 1987 A
4681570 Dalton Jul 1987 A
4681577 Stern et al. Jul 1987 A
4692160 Nussbaumer Sep 1987 A
4707864 Ikematsu et al. Nov 1987 A
4713065 Koot Dec 1987 A
4713066 Komis Dec 1987 A
4723953 Pratt et al. Feb 1988 A
4735841 Sourdet Apr 1988 A
4743236 Manschot May 1988 A
4747166 Kuntz May 1988 A
4752944 Conrads et al. Jun 1988 A
4769215 Ehrenkranz Sep 1988 A
4771484 Mozell Sep 1988 A
4772280 Rooyakkers Sep 1988 A
4784654 Beecher Nov 1988 A
4790830 Hamacher Dec 1988 A
4790835 Elias Dec 1988 A
4791686 Taniguchi et al. Dec 1988 A
4795449 Schneider et al. Jan 1989 A
4798603 Meyer et al. Jan 1989 A
4799928 Crowley Jan 1989 A
4804377 Hanifl et al. Feb 1989 A
4812053 Bhattacharjee Mar 1989 A
4813943 Smith Mar 1989 A
4820297 Kaufman et al. Apr 1989 A
4846818 Keldahl et al. Jul 1989 A
4846909 Klug et al. Jul 1989 A
4865595 Heyden Sep 1989 A
4880417 Yabrov et al. Nov 1989 A
4882794 Stewart Nov 1989 A
4883465 Brennan Nov 1989 A
4886498 Newton Dec 1989 A
4886508 Washington Dec 1989 A
4886509 Mattsson Dec 1989 A
4889532 Metz et al. Dec 1989 A
4889533 Beecher Dec 1989 A
4890691 Ching-Ho Jan 1990 A
4903254 Haas Feb 1990 A
4904248 Vaillancourt Feb 1990 A
4905692 More Mar 1990 A
4936838 Cross et al. Jun 1990 A
4950262 Takagi Aug 1990 A
4955922 Terauchi Sep 1990 A
4957487 Gerow Sep 1990 A
4965460 Tanaka et al. Oct 1990 A
4986823 Anderson et al. Jan 1991 A
4987849 Sherman Jan 1991 A
5002541 Conkling et al. Mar 1991 A
5004463 Nigay Apr 1991 A
5031248 Kemper Jul 1991 A
5045077 Blake Sep 1991 A
5045283 Patel Sep 1991 A
5049144 Payton Sep 1991 A
5053339 Patel Oct 1991 A
5057092 Webster Oct 1991 A
5058088 Haas et al. Oct 1991 A
5071347 McGuire Dec 1991 A
5078707 Peter Jan 1992 A
5084037 Barnett Jan 1992 A
5100396 Zamierowski Mar 1992 A
5112324 Wallace May 1992 A
5147301 Ruvio Sep 1992 A
5176667 Debring Jan 1993 A
5195997 Carns Mar 1993 A
5196654 Diflora et al. Mar 1993 A
5203699 McGuire Apr 1993 A
5244458 Takasu Sep 1993 A
5246454 Peterson Sep 1993 A
5267988 Farkas Dec 1993 A
5275307 Freese Jan 1994 A
5282795 Finney Feb 1994 A
5294983 Ersoz et al. Mar 1994 A
5295983 Kubo Mar 1994 A
5300052 Kubo Apr 1994 A
5304749 Crandell Apr 1994 A
5312383 Kubalak May 1994 A
5318550 Cermak et al. Jun 1994 A
5330459 Lavon et al. Jul 1994 A
5340840 Park et al. Aug 1994 A
5382244 Telang Jan 1995 A
5409014 Napoli et al. Apr 1995 A
5411495 Willingham May 1995 A
5423784 Metz Jun 1995 A
5456246 Schmieding et al. Oct 1995 A
5466229 Elson et al. Nov 1995 A
5478334 Bernstein Dec 1995 A
5499977 Marx Mar 1996 A
5543042 Filan et al. Aug 1996 A
D373928 Green Sep 1996 S
5582604 Ahr et al. Dec 1996 A
5592950 Kopelowicz Jan 1997 A
5605161 Cross Feb 1997 A
5618277 Goulter Apr 1997 A
5628735 Skow May 1997 A
5636643 Argenta et al. Jun 1997 A
5637104 Ball et al. Jun 1997 A
5674212 Osborn et al. Oct 1997 A
5678564 Lawrence et al. Oct 1997 A
5678654 Uzawa Oct 1997 A
5687429 Rahlff Nov 1997 A
5695485 Duperret et al. Dec 1997 A
5700254 Mcdowall et al. Dec 1997 A
5701612 Daneshvar Dec 1997 A
5705777 Flanigan et al. Jan 1998 A
5752944 Dann et al. May 1998 A
5763333 Suzuki et al. Jun 1998 A
5772644 Bark et al. Jun 1998 A
5792132 Garcia Aug 1998 A
5827243 Palestrant Oct 1998 A
5827247 Kay Oct 1998 A
5827250 Fujioka et al. Oct 1998 A
5827257 Fujioka et al. Oct 1998 A
D401699 Herchenbach et al. Nov 1998 S
5859393 Cummins et al. Jan 1999 A
5865378 Hollinshead et al. Feb 1999 A
5876393 Ahr et al. Mar 1999 A
5887291 Bellizzi Mar 1999 A
5891125 Plumley Apr 1999 A
5894608 Birbara Apr 1999 A
D409303 Oepping May 1999 S
5911222 Lawrence et al. Jun 1999 A
5957904 Holland Sep 1999 A
5968026 Osborn et al. Oct 1999 A
5972505 Phillips et al. Oct 1999 A
6007526 Passalaqua et al. Dec 1999 A
6039060 Rower Mar 2000 A
6050983 Moore et al. Apr 2000 A
6059762 Boyer et al. May 2000 A
6063064 Tuckey et al. May 2000 A
6098625 Winkler Aug 2000 A
6105174 Karlsten et al. Aug 2000 A
6113582 Dwork Sep 2000 A
6117163 Bierman Sep 2000 A
6123398 Arai et al. Sep 2000 A
6129718 Wada et al. Oct 2000 A
6131964 Sareshwala Oct 2000 A
6152902 Christian et al. Nov 2000 A
6164569 Hollinshead et al. Dec 2000 A
6177606 Etheredge et al. Jan 2001 B1
6209142 Mattsson et al. Apr 2001 B1
6220050 Cooksey Apr 2001 B1
6244311 Hand et al. Jun 2001 B1
6248096 Dwork et al. Jun 2001 B1
6263887 Dunn Jul 2001 B1
6283246 Nishikawa Sep 2001 B1
6311339 Kraus Nov 2001 B1
6336919 Davis et al. Jan 2002 B1
6338729 Wada et al. Jan 2002 B1
6352525 Wakabayashi Mar 2002 B1
6394988 Hashimoto May 2002 B1
6398742 Kim Jun 2002 B1
6406463 Brown Jun 2002 B1
6409712 Dutari et al. Jun 2002 B1
6416500 Wada et al. Jul 2002 B1
6423045 Wise et al. Jul 2002 B1
6428521 Droll Aug 2002 B1
6428522 Dipalma et al. Aug 2002 B1
6446454 Lee et al. Sep 2002 B1
6475198 Lipman et al. Nov 2002 B1
6479726 Cole et al. Nov 2002 B1
6491673 Palumbo et al. Dec 2002 B1
6508794 Palumbo et al. Jan 2003 B1
6524292 Dipalma et al. Feb 2003 B1
6540729 Wada et al. Apr 2003 B1
6547771 Robertson et al. Apr 2003 B2
6569133 Cheng et al. May 2003 B2
D476518 Doppelt Jul 2003 S
6592560 Snyder et al. Jul 2003 B2
6610038 Dipalma et al. Aug 2003 B1
6618868 Minnick Sep 2003 B2
6620142 Flueckiger Sep 2003 B1
6629651 Male et al. Oct 2003 B1
6635038 Scovel Oct 2003 B2
6652495 Walker Nov 2003 B1
6666850 Ahr et al. Dec 2003 B1
6685684 Falconer Feb 2004 B1
6695828 Dipalma et al. Feb 2004 B1
6699174 Bennett Mar 2004 B1
6700034 Lindsay et al. Mar 2004 B1
6702793 Sweetser et al. Mar 2004 B1
6706027 Harvie et al. Mar 2004 B2
6732384 Scott May 2004 B2
6736977 Hall et al. May 2004 B1
6740066 Wolff et al. May 2004 B2
6764477 Chen et al. Jul 2004 B1
6783519 Samuelsson Aug 2004 B2
6796974 Palumbo et al. Sep 2004 B2
6814547 Childers et al. Nov 2004 B2
6849065 Schmidt et al. Feb 2005 B2
6857137 Otto Feb 2005 B2
6885690 Aggerstam et al. Apr 2005 B2
6888044 Fell et al. May 2005 B2
6893425 Dunn et al. May 2005 B2
6912737 Ernest et al. Jul 2005 B2
6918899 Harvie Jul 2005 B2
6979324 Bybordi et al. Dec 2005 B2
7018366 Easter Mar 2006 B2
7066411 Male et al. Jun 2006 B2
7122023 Hinoki Oct 2006 B1
7125399 Miskie Oct 2006 B2
7131964 Harvie Nov 2006 B2
7135012 Harvie Nov 2006 B2
7141043 Harvie Nov 2006 B2
D533972 La Dec 2006 S
7160273 Greter et al. Jan 2007 B2
7171699 Ernest et al. Feb 2007 B2
7171871 Kozak Feb 2007 B2
7179951 Krishnaswamy-Mirle et al. Feb 2007 B2
7181781 Trabold et al. Feb 2007 B1
7186245 Cheng et al. Mar 2007 B1
7192424 Cooper Mar 2007 B2
7219764 Forbes May 2007 B1
7220250 Suzuki et al. May 2007 B2
D562975 Otto Feb 2008 S
7335189 Harvie Feb 2008 B2
7358282 Krueger et al. Apr 2008 B2
7390320 Machida et al. Jun 2008 B2
7438706 Koizumi et al. Oct 2008 B2
7488310 Yang Feb 2009 B2
7491194 Oliwa Feb 2009 B1
D591106 Dominique et al. Apr 2009 S
7513381 Heng et al. Apr 2009 B2
7520872 Biggie et al. Apr 2009 B2
D593801 Wilson et al. Jun 2009 S
7540364 Sanderson Jun 2009 B2
7549511 Marocco Jun 2009 B2
7549512 Newberry Jun 2009 B2
7585293 Vermaak Sep 2009 B2
7588560 Dunlop Sep 2009 B1
7637905 Saadat et al. Dec 2009 B2
7665359 Barber Feb 2010 B2
7682347 Parks et al. Mar 2010 B2
7687004 Allen Mar 2010 B2
7695459 Gilbert et al. Apr 2010 B2
7695460 Wada et al. Apr 2010 B2
7699818 Gilbert Apr 2010 B2
7699831 Bengtson et al. Apr 2010 B2
7722584 Tanaka et al. May 2010 B2
7727206 Gorres Jun 2010 B2
7740620 Gilbert et al. Jun 2010 B2
7749205 Tazoe et al. Jul 2010 B2
7755497 Wada et al. Jul 2010 B2
7766887 Burns et al. Aug 2010 B2
D625407 Koizumi et al. Oct 2010 S
7806879 Brooks et al. Oct 2010 B2
7811272 Lindsay et al. Oct 2010 B2
7815067 Matsumoto et al. Oct 2010 B2
7833169 Hannon Nov 2010 B2
7857806 Karpowicz et al. Dec 2010 B2
7866942 Harvie Jan 2011 B2
7871385 Levinson et al. Jan 2011 B2
7875010 Frazier et al. Jan 2011 B2
7901389 Mombrinie Mar 2011 B2
7927320 Goldwasser et al. Apr 2011 B2
7927321 Marland Apr 2011 B2
7931634 Swiecicki et al. Apr 2011 B2
7939706 Okabe et al. May 2011 B2
7946443 Stull et al. May 2011 B2
7947025 Buglino et al. May 2011 B2
7963419 Burney et al. Jun 2011 B2
7976519 Bubb et al. Jul 2011 B2
7993318 Olsson et al. Aug 2011 B2
8015627 Baker et al. Sep 2011 B2
8016071 Martinus et al. Sep 2011 B1
8028460 Williams Oct 2011 B2
8047398 DiMartino et al. Nov 2011 B2
8083094 Caulfield et al. Dec 2011 B2
8128608 Thevenin Mar 2012 B2
8181651 Pinel May 2012 B2
8181819 Burney et al. May 2012 B2
8211063 Bierman et al. Jul 2012 B2
8221369 Parks et al. Jul 2012 B2
8241262 Mahnensmith Aug 2012 B2
8277426 Wilcox et al. Oct 2012 B2
8287508 Sanchez Oct 2012 B1
8303554 Tsai et al. Nov 2012 B2
8322565 Caulfield et al. Dec 2012 B2
8337477 Parks et al. Dec 2012 B2
D674241 Bickert et al. Jan 2013 S
8343122 Gorres Jan 2013 B2
8343125 Kawazoe et al. Jan 2013 B2
8353074 Krebs Jan 2013 B2
8353886 Bester et al. Jan 2013 B2
D676241 Merrill Feb 2013 S
8388588 Wada et al. Mar 2013 B2
D679807 Burgess et al. Apr 2013 S
8425482 Khoubnazar Apr 2013 B2
8434586 Pawelski et al. May 2013 B2
8449510 Martini et al. May 2013 B2
D684260 Lund et al. Jun 2013 S
8470230 Caulfield et al. Jun 2013 B2
8479941 Matsumoto et al. Jul 2013 B2
8479949 Henkel Jul 2013 B2
8500719 Simpson et al. Aug 2013 B1
8512301 Ma Aug 2013 B2
8529530 Koch et al. Sep 2013 B2
8535284 Joder et al. Sep 2013 B2
8546639 Wada et al. Oct 2013 B2
8551075 Bengtson Oct 2013 B2
8568376 Delattre et al. Oct 2013 B2
D694404 Burgess et al. Nov 2013 S
8585683 Bengtson et al. Nov 2013 B2
8586583 Hamblin et al. Nov 2013 B2
8652112 Johannison et al. Feb 2014 B2
8669412 Fernkvist et al. Mar 2014 B2
D702973 Norland et al. Apr 2014 S
8703032 Menon et al. Apr 2014 B2
D704330 Cicatelli May 2014 S
D704510 Mason et al. May 2014 S
D705423 Walsh Cutler May 2014 S
D705926 Burgess et al. May 2014 S
8714394 Wulf May 2014 B2
8715267 Bengtson et al. May 2014 B2
8757425 Copeland Jun 2014 B2
8777032 Biesecker et al. Jul 2014 B2
8808260 Koch et al. Aug 2014 B2
8864730 Conway et al. Oct 2014 B2
8881923 Higginson Nov 2014 B2
8882731 Suzuki et al. Nov 2014 B2
8936585 Carson et al. Jan 2015 B2
D729581 Boroski May 2015 S
9028460 Medeiros May 2015 B2
9056698 Noer Jun 2015 B2
9078792 Ruiz Jul 2015 B2
9145879 Pirovano et al. Sep 2015 B2
9173602 Gilbert Nov 2015 B2
9173799 Tanimoto et al. Nov 2015 B2
9187220 Biesecker et al. Nov 2015 B2
9199772 Krippendorf Dec 2015 B2
9233020 Matsumiya Jan 2016 B2
9248058 Conway et al. Feb 2016 B2
9308118 Dupree et al. Apr 2016 B1
9309029 Incorvia et al. Apr 2016 B2
9333281 Giezendanner et al. May 2016 B2
9381108 Longoni et al. Jul 2016 B2
9382047 Schmidtner et al. Jul 2016 B2
9402424 Roy Aug 2016 B2
9456937 Ellis Oct 2016 B2
9480595 Baham et al. Nov 2016 B2
9517865 Albers et al. Dec 2016 B2
D777941 Piramoon Jan 2017 S
9533806 Ding et al. Jan 2017 B2
9550611 Hodge Jan 2017 B2
9555930 Campbell et al. Jan 2017 B2
9623159 Locke Apr 2017 B2
D789522 Burgess et al. Jun 2017 S
9687849 Bruno et al. Jun 2017 B2
9694949 Hendricks et al. Jul 2017 B2
9709048 Kinjo Jul 2017 B2
9713547 Lee et al. Jul 2017 B2
9732754 Huang et al. Aug 2017 B2
9752564 Arceno et al. Sep 2017 B2
9788992 Harvie Oct 2017 B2
D804907 Sandoval Dec 2017 S
9868564 McGirr et al. Jan 2018 B2
D814239 Arora Apr 2018 S
D817484 Lafond May 2018 S
10037640 Gordon Jul 2018 B2
10058470 Phillips Aug 2018 B2
10098990 Koch et al. Oct 2018 B2
D835264 Mozzicato et al. Dec 2018 S
D835779 Mozzicato et al. Dec 2018 S
D840533 Mozzicato et al. Feb 2019 S
D840534 Mozzicato et al. Feb 2019 S
10225376 Perez Martinez Mar 2019 B2
10226376 Sanchez et al. Mar 2019 B2
10258517 Maschino et al. Apr 2019 B1
D848612 Mozzicato et al. May 2019 S
10307305 Hodges Jun 2019 B1
10335121 Desai Jul 2019 B2
D856512 Cowart et al. Aug 2019 S
10376406 Newton Aug 2019 B2
10376407 Newton Aug 2019 B2
10390989 Sanchez et al. Aug 2019 B2
D858144 Fu Sep 2019 S
10406039 Mllarreal Sep 2019 B2
10407222 Allen Sep 2019 B2
10478356 Griffin Nov 2019 B2
10500108 Maschino et al. Dec 2019 B1
10538366 Pentelovitch et al. Jan 2020 B2
10569938 Zhao et al. Feb 2020 B2
10577156 Dagnelie et al. Mar 2020 B2
RE47930 Cho Apr 2020 E
10618721 Vazin Apr 2020 B2
D884390 Wang May 2020 S
10669079 Freedman et al. Jun 2020 B2
D892315 Airy Aug 2020 S
10730672 Bertram et al. Aug 2020 B2
10737848 Philip et al. Aug 2020 B2
10765854 Law et al. Sep 2020 B2
10766670 Kittmann Sep 2020 B2
10799386 Harrison Oct 2020 B1
10806642 Tagomori et al. Oct 2020 B2
D901214 Hu Nov 2020 S
10849799 Nishikawa et al. Dec 2020 B2
10857025 Davis et al. Dec 2020 B2
10865017 Cowart et al. Dec 2020 B1
10889412 West et al. Jan 2021 B2
10913581 Stahlecker Feb 2021 B2
D912244 Rehm et al. Mar 2021 S
10952889 Newton et al. Mar 2021 B2
10973378 Ryu et al. Apr 2021 B2
10973678 Newton et al. Apr 2021 B2
10974874 Ragias et al. Apr 2021 B2
11000401 Ecklund et al. May 2021 B2
D923365 Wang Jun 2021 S
11026829 Harvie Jun 2021 B2
11027900 Liu Jun 2021 B2
11045346 Argent et al. Jun 2021 B2
D928946 Sanchez et al. Aug 2021 S
11090183 Sanchez et al. Aug 2021 B2
11160695 Febo et al. Nov 2021 B2
11160697 Maschino et al. Nov 2021 B2
11168420 Kinugasa et al. Nov 2021 B2
11179506 Barr et al. Nov 2021 B2
11207206 Sharma et al. Dec 2021 B2
11226376 Yamauchi et al. Jan 2022 B2
11253389 Sharma et al. Feb 2022 B2
11253407 Miao et al. Feb 2022 B2
11326586 Milner et al. May 2022 B2
11369508 Ecklund et al. Jun 2022 B2
11369524 Hubbard et al. Jun 2022 B2
11376152 Sanchez et al. Jul 2022 B2
11382786 Sanchez et al. Jul 2022 B2
11382788 Hjorth Jul 2022 B2
11389318 Radl et al. Jul 2022 B2
11395871 Radl et al. Jul 2022 B2
11399990 Suyama Aug 2022 B2
11426303 Davis et al. Aug 2022 B2
11504265 Godinez et al. Nov 2022 B2
11529252 Glithero et al. Dec 2022 B2
11547788 Radl et al. Jan 2023 B2
11806266 Sanchez et al. Nov 2023 B2
11839567 Davis et al. Dec 2023 B2
D1010109 Ecklund et al. Jan 2024 S
11857716 Lee et al. Jan 2024 B2
11865030 Davis et al. Jan 2024 B2
11890221 Ulreich et al. Feb 2024 B2
11925575 Newton Mar 2024 B2
11938053 Austermann et al. Mar 2024 B2
11944740 Hughett et al. Apr 2024 B2
12023457 Mann et al. Jul 2024 B2
12042422 Davis et al. Jul 2024 B2
D1038385 Ecklund et al. Aug 2024 S
12090083 Ecklund et al. Sep 2024 B2
20010037097 Cheng et al. Nov 2001 A1
20010054426 Knudson et al. Dec 2001 A1
20020019614 Woon Feb 2002 A1
20020026161 Grundke Feb 2002 A1
20020087131 Wolff et al. Jul 2002 A1
20020091364 Prabhakar Jul 2002 A1
20020189992 Schmidt et al. Dec 2002 A1
20020193760 Thompson Dec 2002 A1
20030004436 Schmidt et al. Jan 2003 A1
20030032931 Grundke et al. Feb 2003 A1
20030032944 Cawood Feb 2003 A1
20030073964 Palumbo et al. Apr 2003 A1
20030120178 Heki Jun 2003 A1
20030157859 Ishikawa Aug 2003 A1
20030181880 Schwartz Sep 2003 A1
20030195484 Harvie Oct 2003 A1
20030204173 Burns et al. Oct 2003 A1
20030233079 Parks et al. Dec 2003 A1
20040006321 Cheng et al. Jan 2004 A1
20040015141 Cheng et al. Jan 2004 A1
20040056122 Male et al. Mar 2004 A1
20040084465 Luburic May 2004 A1
20040127872 Petryk et al. Jul 2004 A1
20040128749 Scott Jul 2004 A1
20040143229 Easter Jul 2004 A1
20040147863 Diaz et al. Jul 2004 A1
20040147894 Mizutani et al. Jul 2004 A1
20040158221 Mizutani et al. Aug 2004 A1
20040176731 Cheng et al. Sep 2004 A1
20040176746 Forral Sep 2004 A1
20040191919 Unger et al. Sep 2004 A1
20040200936 Opperthauser Oct 2004 A1
20040207530 Nielsen Oct 2004 A1
20040236292 Tazoe et al. Nov 2004 A1
20040243075 Harvie Dec 2004 A1
20040254547 Okabe et al. Dec 2004 A1
20050010182 Parks et al. Jan 2005 A1
20050033248 Machida et al. Feb 2005 A1
20050065471 Kuntz Mar 2005 A1
20050070861 Okabe et al. Mar 2005 A1
20050070862 Tazoe et al. Mar 2005 A1
20050082300 Modrell et al. Apr 2005 A1
20050097662 Leimkuhler et al. May 2005 A1
20050101924 Elson et al. May 2005 A1
20050119630 Harvie Jun 2005 A1
20050137557 Swiecicki et al. Jun 2005 A1
20050154360 Harvie Jul 2005 A1
20050177070 Levinson et al. Aug 2005 A1
20050197639 Mombrinie Sep 2005 A1
20050273920 Marinas Dec 2005 A1
20050277904 Chase et al. Dec 2005 A1
20050279359 Leblanc et al. Dec 2005 A1
20060004332 Marx Jan 2006 A1
20060015080 Mahnensmith Jan 2006 A1
20060015081 Suzuki et al. Jan 2006 A1
20060016778 Park Jan 2006 A1
20060069359 Dipalma et al. Mar 2006 A1
20060079854 Kay et al. Apr 2006 A1
20060111648 Vermaak May 2006 A1
20060155214 Wightman Jul 2006 A1
20060171997 Gruenbacher et al. Aug 2006 A1
20060200102 Cooper Sep 2006 A1
20060229575 Boiarski Oct 2006 A1
20060229576 Conway et al. Oct 2006 A1
20060231648 Male et al. Oct 2006 A1
20060235266 Nan Oct 2006 A1
20060235359 Marland Oct 2006 A1
20060241553 Harvie Oct 2006 A1
20060269439 White Nov 2006 A1
20060277670 Baker et al. Dec 2006 A1
20070006368 Key et al. Jan 2007 A1
20070010797 Nishtala et al. Jan 2007 A1
20070016152 Karpowicz et al. Jan 2007 A1
20070038194 Wada et al. Feb 2007 A1
20070055209 Patel et al. Mar 2007 A1
20070073252 Forgrave Mar 2007 A1
20070117880 Elson et al. May 2007 A1
20070118993 Bates May 2007 A1
20070135786 Schmidt et al. Jun 2007 A1
20070137718 Rushlander et al. Jun 2007 A1
20070149935 Dirico Jun 2007 A1
20070191804 Coley Aug 2007 A1
20070203464 Green et al. Aug 2007 A1
20070214553 Carromba et al. Sep 2007 A1
20070225663 Watt et al. Sep 2007 A1
20070225666 Otto Sep 2007 A1
20070225668 Otto Sep 2007 A1
20070266486 Ramirez Nov 2007 A1
20070282309 Bengtson et al. Dec 2007 A1
20080004576 Tanaka et al. Jan 2008 A1
20080015526 Reiner et al. Jan 2008 A1
20080015527 House Jan 2008 A1
20080033386 Okabe et al. Feb 2008 A1
20080041869 Backaert Feb 2008 A1
20080091153 Harvie Apr 2008 A1
20080091158 Yang Apr 2008 A1
20080114327 Barge May 2008 A1
20080167634 Kouta et al. Jul 2008 A1
20080183157 Walters Jul 2008 A1
20080215031 Belfort et al. Sep 2008 A1
20080234642 Patterson et al. Sep 2008 A1
20080269703 Collins et al. Oct 2008 A1
20080281282 Finger et al. Nov 2008 A1
20080287894 Van Den Heuvel et al. Nov 2008 A1
20080312550 Nishtala et al. Dec 2008 A1
20090025717 Pinel Jan 2009 A1
20090048570 Jensen Feb 2009 A1
20090056003 Ivie et al. Mar 2009 A1
20090069761 Vogel Mar 2009 A1
20090069765 Wortham Mar 2009 A1
20090120179 Nylander et al. May 2009 A1
20090192482 Dodge et al. Jul 2009 A1
20090234312 Otoole et al. Sep 2009 A1
20090251510 Noro et al. Oct 2009 A1
20090264840 Mrginio Oct 2009 A1
20090270822 Medeiros Oct 2009 A1
20090281510 Fisher Nov 2009 A1
20090283982 Thomas Nov 2009 A1
20100004612 Thevenin Jan 2010 A1
20100058660 Williams Mar 2010 A1
20100121289 Parks et al. May 2010 A1
20100158168 Murthy et al. Jun 2010 A1
20100160882 Lowe Jun 2010 A1
20100174250 Hu et al. Jul 2010 A1
20100179493 Heagle et al. Jul 2010 A1
20100185168 Graauw et al. Jul 2010 A1
20100198172 Wada et al. Aug 2010 A1
20100211032 Tsai et al. Aug 2010 A1
20100234820 Tsai et al. Sep 2010 A1
20100241104 Gilbert Sep 2010 A1
20100263113 Shelton et al. Oct 2010 A1
20100310845 Bond et al. Dec 2010 A1
20110028920 Johannison Feb 2011 A1
20110028922 Kay et al. Feb 2011 A1
20110034889 Smith Feb 2011 A1
20110036837 Shang Feb 2011 A1
20110040267 Wada et al. Feb 2011 A1
20110040271 Rogers et al. Feb 2011 A1
20110054426 Stewart et al. Mar 2011 A1
20110060299 Wada et al. Mar 2011 A1
20110060300 Weig et al. Mar 2011 A1
20110077495 Gilbert Mar 2011 A1
20110077606 Wilcox et al. Mar 2011 A1
20110087337 Forsell Apr 2011 A1
20110137273 Muellejans et al. Jun 2011 A1
20110145993 Rader et al. Jun 2011 A1
20110152802 Dicamillo et al. Jun 2011 A1
20110164147 Takahashi et al. Jul 2011 A1
20110172620 Khambatta Jul 2011 A1
20110172625 Wada et al. Jul 2011 A1
20110202024 Cozzens Aug 2011 A1
20110238023 Slayton Sep 2011 A1
20110240648 Tucker Oct 2011 A1
20110251572 Nishtala et al. Oct 2011 A1
20110265889 Tanaka et al. Nov 2011 A1
20110276020 Mitsui Nov 2011 A1
20120029452 Roedsten Feb 2012 A1
20120035577 Tomes et al. Feb 2012 A1
20120041400 Christensen Feb 2012 A1
20120059328 Dikeman et al. Mar 2012 A1
20120066825 Birbara et al. Mar 2012 A1
20120103347 Wheaton et al. May 2012 A1
20120137420 Gordon et al. Jun 2012 A1
20120165768 Sekiyama et al. Jun 2012 A1
20120165786 Chappa et al. Jun 2012 A1
20120210503 Anzivino et al. Aug 2012 A1
20120233761 Huang Sep 2012 A1
20120245541 Suzuki et al. Sep 2012 A1
20120245542 Suzuki et al. Sep 2012 A1
20120245547 Wilcox et al. Sep 2012 A1
20120253303 Suzuki et al. Oct 2012 A1
20120271259 Ulert Oct 2012 A1
20120296305 Barraza Khaled et al. Nov 2012 A1
20120316522 Carter et al. Dec 2012 A1
20120330256 Wilcox et al. Dec 2012 A1
20130006206 Wada et al. Jan 2013 A1
20130045651 Esteves et al. Feb 2013 A1
20130053804 Soerensen et al. Feb 2013 A1
20130096523 Chang et al. Apr 2013 A1
20130110059 Kossow et al. May 2013 A1
20130138064 Stroebech et al. May 2013 A1
20130150813 Gordon et al. Jun 2013 A1
20130218112 Thompson Aug 2013 A1
20130245496 Wells et al. Sep 2013 A1
20130245586 Jha Sep 2013 A1
20130292537 Dirico Nov 2013 A1
20130330501 Aizenberg et al. Dec 2013 A1
20140005647 Shuffler et al. Jan 2014 A1
20140031774 Bengtson Jan 2014 A1
20140039432 Dunbar et al. Feb 2014 A1
20140107599 Fink et al. Apr 2014 A1
20140157499 Suzuki et al. Jun 2014 A1
20140171889 Hopman et al. Jun 2014 A1
20140182051 Tanimoto et al. Jul 2014 A1
20140196189 Lee et al. Jul 2014 A1
20140276501 Cisko Sep 2014 A1
20140303582 Wright et al. Oct 2014 A1
20140316381 Reglin Oct 2014 A1
20140325746 Block Nov 2014 A1
20140348139 Gomez Martinez Nov 2014 A1
20140352050 Yao et al. Dec 2014 A1
20140371628 Desai Dec 2014 A1
20150045757 Lee et al. Feb 2015 A1
20150047114 Ramirez Feb 2015 A1
20150048089 Robertson Feb 2015 A1
20150135423 Sharpe et al. May 2015 A1
20150157300 Ealovega et al. Jun 2015 A1
20150209194 Heyman Jul 2015 A1
20150290425 Macy et al. Oct 2015 A1
20150320583 Harvie Nov 2015 A1
20150329255 Rzepecki Nov 2015 A1
20150342799 Michiels et al. Dec 2015 A1
20150359660 Harvie Dec 2015 A1
20150366699 Nelson Dec 2015 A1
20160029998 Brister et al. Feb 2016 A1
20160030228 Jones Feb 2016 A1
20160038356 Yao et al. Feb 2016 A1
20160058322 Brister et al. Mar 2016 A1
20160060001 Wada et al. Mar 2016 A1
20160100976 Conway et al. Apr 2016 A1
20160106604 Timm Apr 2016 A1
20160113809 Kim Apr 2016 A1
20160183689 Miner Jun 2016 A1
20160256022 Le Sep 2016 A1
20160270982 Raycheck et al. Sep 2016 A1
20160278662 Brister et al. Sep 2016 A1
20160357400 Penha et al. Dec 2016 A1
20160366699 Zhang et al. Dec 2016 A1
20160367226 Newton et al. Dec 2016 A1
20160367411 Justiz et al. Dec 2016 A1
20160367726 Gratzer Dec 2016 A1
20160374848 Sanchez et al. Dec 2016 A1
20170007438 Harvie Jan 2017 A1
20170014560 Minskoff et al. Jan 2017 A1
20170100276 Joh Apr 2017 A1
20170128638 Giezendanner et al. May 2017 A1
20170136209 Burnett et al. May 2017 A1
20170143534 Sanchez May 2017 A1
20170165100 Jackson et al. Jun 2017 A1
20170165405 Muser et al. Jun 2017 A1
20170189225 Voorhees et al. Jul 2017 A1
20170202692 Laniado Jul 2017 A1
20170216081 Accosta Aug 2017 A1
20170246026 Laniado Aug 2017 A1
20170252014 Siller Gonzalez et al. Sep 2017 A1
20170252202 Sanchez et al. Sep 2017 A9
20170266031 Sanchez et al. Sep 2017 A1
20170266658 Bruno et al. Sep 2017 A1
20170281399 Vanmiddendorp et al. Oct 2017 A1
20170312116 Laniado Nov 2017 A1
20170325788 Ealovega et al. Nov 2017 A1
20170333244 Laniado Nov 2017 A1
20170042748 Griffin Dec 2017 A1
20170348139 Newton et al. Dec 2017 A1
20170354532 Holt Dec 2017 A1
20170354551 Gawley et al. Dec 2017 A1
20170367873 Grannum Dec 2017 A1
20180002075 Lee Jan 2018 A1
20180008451 Stroebech Jan 2018 A1
20180008804 Laniado Jan 2018 A1
20180021218 Brosch et al. Jan 2018 A1
20180028349 Newton et al. Feb 2018 A1
20180037384 Archeny et al. Feb 2018 A1
20180049910 Newton Feb 2018 A1
20180064572 Wiltshire Mar 2018 A1
20180104131 Killian Apr 2018 A1
20180127187 Sewell May 2018 A1
20180193215 Davies et al. Jul 2018 A1
20180200101 Su Jul 2018 A1
20180228642 Davis et al. Aug 2018 A1
20180256384 Kasirye Sep 2018 A1
20180271694 Fernandez et al. Sep 2018 A1
20180317892 Catlin Nov 2018 A1
20180325748 Sharma et al. Nov 2018 A1
20190001030 Braga et al. Jan 2019 A1
20190021899 Vlet Jan 2019 A1
20190038451 Harvie Feb 2019 A1
20190046102 Kushnir et al. Feb 2019 A1
20190059938 Holsten Feb 2019 A1
20190091059 Gabriel Mar 2019 A1
20190100362 Meyers et al. Apr 2019 A1
20190133814 Tammen et al. May 2019 A1
20190142624 Sanchez et al. May 2019 A1
20190224036 Sanchez et al. Jul 2019 A1
20190247222 Ecklund et al. Aug 2019 A1
20190247223 Brun Aug 2019 A1
20190282391 Johannes et al. Sep 2019 A1
20190314189 Acosta Oct 2019 A1
20190314190 Sanchez et al. Oct 2019 A1
20190321587 Mcmenamin et al. Oct 2019 A1
20190344934 Faerber et al. Nov 2019 A1
20190365307 Laing et al. Dec 2019 A1
20190365561 Newton et al. Dec 2019 A1
20190374373 Joh Dec 2019 A1
20200008985 Nguyen et al. Jan 2020 A1
20200016012 Dutkiewicz Jan 2020 A1
20200030595 Boukidjian Jan 2020 A1
20200046544 Godinez et al. Feb 2020 A1
20200055638 Lau et al. Feb 2020 A1
20200070392 Huber et al. Mar 2020 A1
20200085609 Schelch et al. Mar 2020 A1
20200085610 Cohn et al. Mar 2020 A1
20200086090 Von Weymarn-schärli et al. Mar 2020 A1
20200107518 Hiroshima et al. Apr 2020 A1
20200129322 Leuckel Apr 2020 A1
20200171217 Braga et al. Jun 2020 A9
20200206039 Mclain Jul 2020 A1
20200214910 Varona et al. Jul 2020 A1
20200216898 Hubbell Jul 2020 A1
20200216989 Kinugasa et al. Jul 2020 A1
20200229964 Staali et al. Jul 2020 A1
20200231343 Freedman et al. Jul 2020 A1
20200232841 Satish et al. Jul 2020 A1
20200246172 Ho Aug 2020 A1
20200246203 Tulk et al. Aug 2020 A1
20200255189 Liu Aug 2020 A1
20200261280 Heyman Aug 2020 A1
20200276046 Staali et al. Sep 2020 A1
20200306075 Newton et al. Oct 2020 A1
20200315837 Radl et al. Oct 2020 A1
20200315838 Eckert Oct 2020 A1
20200315872 Viens et al. Oct 2020 A1
20200315874 Viens et al. Oct 2020 A1
20200331672 Bertram et al. Oct 2020 A1
20200345332 Duval Nov 2020 A1
20200353135 Gregory et al. Nov 2020 A1
20200367677 Silsby et al. Nov 2020 A1
20200369444 Silsby et al. Nov 2020 A1
20200375781 Staali et al. Dec 2020 A1
20200375810 Carlin et al. Dec 2020 A1
20200385179 McCourt Dec 2020 A1
20200390591 Glithero et al. Dec 2020 A1
20200390592 Merrill Dec 2020 A1
20200405521 Glasroe Dec 2020 A1
20210008771 Huber et al. Jan 2021 A1
20210009323 Markarian et al. Jan 2021 A1
20210020072 Moehring et al. Jan 2021 A1
20210023279 Radl et al. Jan 2021 A1
20210059853 Davis et al. Mar 2021 A1
20210061523 Bytheway Mar 2021 A1
20210069005 Sanchez et al. Mar 2021 A1
20210069008 Blabas et al. Mar 2021 A1
20210069009 Im Mar 2021 A1
20210069030 Nishikawa et al. Mar 2021 A1
20210077993 Nazareth et al. Mar 2021 A1
20210113749 Radl et al. Apr 2021 A1
20210121318 Pinlac Apr 2021 A1
20210137724 Ecklund et al. May 2021 A1
20210138190 Erbey et al. May 2021 A1
20210154055 Villarreal May 2021 A1
20210170079 Radl et al. Jun 2021 A1
20210178390 Oueslati et al. Jun 2021 A1
20210186742 Newton et al. Jun 2021 A1
20210212865 Wallajapet et al. Jul 2021 A1
20210220162 Jamison Jul 2021 A1
20210220163 Mayrand Jul 2021 A1
20210228400 Glithero Jul 2021 A1
20210228401 Becker et al. Jul 2021 A1
20210228795 Hughett et al. Jul 2021 A1
20210229877 Ragias et al. Jul 2021 A1
20210236323 Austermann et al. Aug 2021 A1
20210236324 Sweeney Aug 2021 A1
20210251814 Jönegren et al. Aug 2021 A1
20210267787 Nazemi Sep 2021 A1
20210275343 Sanchez et al. Sep 2021 A1
20210275344 Wing Sep 2021 A1
20210290454 Yamada Sep 2021 A1
20210315727 Jiang Oct 2021 A1
20210353450 Sharma et al. Nov 2021 A1
20210361469 Liu et al. Nov 2021 A1
20210369495 Cheng et al. Dec 2021 A1
20210386925 Hartwell et al. Dec 2021 A1
20210393433 Godinez et al. Dec 2021 A1
20220023091 Ecklund et al. Jan 2022 A1
20220031523 Pierpoint Feb 2022 A1
20220039995 Johannes et al. Feb 2022 A1
20220047410 Walthall Feb 2022 A1
20220062027 Mitchell et al. Mar 2022 A1
20220062028 Mitchell et al. Mar 2022 A1
20220062029 Johannes et al. Mar 2022 A1
20220066825 Saraf et al. Mar 2022 A1
20220071811 Cheng et al. Mar 2022 A1
20220071826 Kulkarni et al. Mar 2022 A1
20220104965 Vaninetti et al. Apr 2022 A1
20220104976 Hoeger et al. Apr 2022 A1
20220104981 Jones Apr 2022 A1
20220117773 Davis et al. Apr 2022 A1
20220117774 Meyer et al. Apr 2022 A1
20220117775 Jones et al. Apr 2022 A1
20220133524 Davis May 2022 A1
20220151817 Mann May 2022 A1
20220160949 Simiele et al. May 2022 A1
20220168159 Triado et al. Jun 2022 A1
20220193312 Lee et al. Jun 2022 A1
20220211536 Johannes et al. Jul 2022 A1
20220218510 Metzger et al. Jul 2022 A1
20220229053 Levin et al. Jul 2022 A1
20220241106 Johannes et al. Aug 2022 A1
20220247407 Yamamoto et al. Aug 2022 A1
20220248836 Cagle et al. Aug 2022 A1
20220257407 Johannes et al. Aug 2022 A1
20220265460 Coker Aug 2022 A1
20220265462 Alder et al. Aug 2022 A1
20220270711 Feala et al. Aug 2022 A1
20220273482 Johannes et al. Sep 2022 A1
20220280357 Jagannathan et al. Sep 2022 A1
20220287689 Johannes Sep 2022 A1
20220287867 Jones et al. Sep 2022 A1
20220287868 Garvey et al. Sep 2022 A1
20220296408 Evans et al. Sep 2022 A1
20220305191 Joseph et al. Sep 2022 A1
20220313222 Austermann et al. Oct 2022 A1
20220313474 Kriscovich et al. Oct 2022 A1
20220331170 Erdem et al. Oct 2022 A1
20220339024 Johannes et al. Oct 2022 A1
20220354685 Davis et al. Nov 2022 A1
20220362049 Austermann et al. Nov 2022 A1
20220370231 Wang et al. Nov 2022 A1
20220370234 Hughett et al. Nov 2022 A1
20220370235 Johannes et al. Nov 2022 A1
20220370237 Parmar et al. Nov 2022 A1
20220387001 Askenazi et al. Dec 2022 A1
20220395390 Brooks Dec 2022 A1
20220395391 Saunders et al. Dec 2022 A1
20220409422 Schneider et al. Dec 2022 A1
20230018845 Lee Jan 2023 A1
20230020563 Sharma et al. Jan 2023 A1
20230031640 Hughett et al. Feb 2023 A1
20230037159 Brennan et al. Feb 2023 A1
20230052238 Oluwasogo Feb 2023 A1
20230062944 Vollenberg et al. Mar 2023 A1
20230062994 Ecklund et al. Mar 2023 A1
20230070347 Watson et al. Mar 2023 A1
20230073708 Xu et al. Mar 2023 A1
20230089032 Hughett et al. Mar 2023 A1
20230099821 Radl et al. Mar 2023 A1
20230099991 Bianchi et al. Mar 2023 A1
20230105001 Whittome et al. Apr 2023 A1
20230110577 Choi Apr 2023 A1
20230138269 Abdelal et al. May 2023 A1
20230145365 Martin et al. May 2023 A1
20230155253 Mn et al. May 2023 A1
20230210504 Kuroda et al. Jul 2023 A1
20230210685 Fallows et al. Jul 2023 A1
20230218426 Hughett Jul 2023 A1
20230240884 Davis et al. Aug 2023 A1
20230248562 Sanchez et al. Aug 2023 A1
20230248564 Mann et al. Aug 2023 A1
20230255812 Sanchez et al. Aug 2023 A1
20230255813 Sanchez et al. Aug 2023 A1
20230255815 Newton Aug 2023 A1
20230263650 Sanchez et al. Aug 2023 A1
20230263655 Johannes et al. Aug 2023 A1
20230277362 Davis et al. Sep 2023 A1
20230285178 Sanchez et al. Sep 2023 A1
20230293339 James Sep 2023 A1
20230301846 Greenwood Sep 2023 A1
20230355423 Stevenson et al. Nov 2023 A1
20230404791 Ecklund et al. Dec 2023 A1
20240008444 Su et al. Jan 2024 A1
20240009023 Johannes et al. Jan 2024 A1
20240024170 Scott Jan 2024 A1
20240041638 Johannes et al. Feb 2024 A1
20240058161 Ulreich et al. Feb 2024 A1
20240065881 Kuroda et al. Feb 2024 A1
20240099874 Sanchez et al. Mar 2024 A1
20240110318 Bendt et al. Apr 2024 A1
20240123134 Kharkar et al. Apr 2024 A1
20240261131 Garvey et al. Aug 2024 A1
Foreign Referenced Citations (459)
Number Date Country
2018216821 Aug 2019 AU
2021299304 Feb 2023 AU
2165286 Sep 1999 CA
2354132 Jun 2000 CA
2359091 Sep 2003 CA
2488867 Aug 2007 CA
3050918 Aug 2018 CA
3098571 Nov 2019 CA
2269203 Dec 1997 CN
1332620 Jan 2002 CN
1434693 Aug 2003 CN
1533755 Oct 2004 CN
1602825 Apr 2005 CN
1720888 Jan 2006 CN
2936204 Aug 2007 CN
101262836 Sep 2008 CN
101522148 Sep 2009 CN
102159159 Aug 2011 CN
202184840 Apr 2012 CN
102481441 May 2012 CN
202463712 Oct 2012 CN
202950810 May 2013 CN
103533968 Jan 2014 CN
103717180 Apr 2014 CN
204562697 Aug 2015 CN
105411783 Mar 2016 CN
105451693 Mar 2016 CN
105534632 May 2016 CN
205849719 Jan 2017 CN
106726089 May 2017 CN
107847384 Mar 2018 CN
107920912 Apr 2018 CN
108420590 Aug 2018 CN
209285902 Aug 2019 CN
110381883 Oct 2019 CN
211198839 Aug 2020 CN
112566550 Mar 2021 CN
112603184 Apr 2021 CN
114007493 Feb 2022 CN
114375187 Apr 2022 CN
116096332 May 2023 CN
79818 Oct 1893 DE
1516466 Jun 1969 DE
2721330 Nov 1977 DE
2742298 Mar 1978 DE
9407554.9 May 1995 DE
4443710 Jun 1995 DE
4416094 Nov 1995 DE
4236097 Oct 1996 DE
19619597 Nov 1997 DE
102005037762 Sep 2006 DE
102011103783 Dec 2012 DE
102012112818 Jun 2014 DE
202015104597 Jul 2016 DE
102020121462 Jan 2022 DE
9600118 Nov 1996 DK
0032138 Jul 1981 EP
0066070 Dec 1982 EP
0068712 Jan 1983 EP
0140470 May 1985 EP
0140471 May 1988 EP
0274753 Jul 1988 EP
0119143 Nov 1988 EP
0483592 May 1992 EP
0610638 Aug 1994 EP
0613355 Sep 1994 EP
0613355 Jan 1997 EP
0787472 Aug 1997 EP
0966936 Dec 1999 EP
0987293 Mar 2000 EP
1063953 Jan 2001 EP
0653928 Oct 2002 EP
1332738 Aug 2003 EP
1382318 Jan 2004 EP
1089684 Oct 2004 EP
1616542 Jan 2006 EP
1382318 May 2006 EP
1063953 Jan 2007 EP
1872752 Jan 2008 EP
2180907 May 2010 EP
2380532 Oct 2011 EP
2389908 Nov 2011 EP
2601916 Jun 2013 EP
2676643 Dec 2013 EP
2997950 Mar 2016 EP
2879534 Mar 2017 EP
3424471 Jan 2019 EP
3169292 Nov 2019 EP
3753492 Dec 2020 EP
3788992 Mar 2021 EP
3576689 Mar 2022 EP
3752110 Mar 2022 EP
3787570 Mar 2022 EP
4025163 Jul 2022 EP
3463180 Mar 2023 EP
3569205 Jun 2023 EP
4382082 Jun 2024 EP
871820 Jul 1961 GB
1011517 Dec 1965 GB
1467144 Mar 1977 GB
2106395 Apr 1983 GB
2106784 Apr 1983 GB
2148126 May 1985 GB
2171315 Aug 1986 GB
2181953 May 1987 GB
2148126 Jul 1987 GB
2191095 Dec 1987 GB
2199750 Jul 1988 GB
2260907 May 1993 GB
2462267 Feb 2010 GB
2469496 Oct 2010 GB
2490327 Oct 2012 GB
2507318 Apr 2014 GB
2612752 May 2023 GB
201800009129 Apr 2020 IT
S498638 Jan 1974 JP
S5410596 Jan 1979 JP
S5410596 May 1979 JP
S54155729 Oct 1979 JP
S55155618 Dec 1980 JP
S56152629 Nov 1981 JP
S57142534 Sep 1982 JP
S5888596 Jun 1983 JP
S58188016 Dec 1983 JP
S63107780 Jul 1988 JP
H0267530 Mar 1990 JP
H02103871 Apr 1990 JP
H02131422 May 1990 JP
H02131422 Nov 1990 JP
H0460220 Feb 1992 JP
H05123349 May 1993 JP
H05123350 May 1993 JP
H0626264 Apr 1994 JP
3087938 Oct 1995 JP
H085630 Jan 1996 JP
H1040141 Feb 1998 JP
H10225430 Aug 1998 JP
H11113946 Apr 1999 JP
H11290365 Oct 1999 JP
2000116690 Apr 2000 JP
2000185068 Jul 2000 JP
2001054531 Feb 2001 JP
2001070331 Mar 2001 JP
2001224616 Aug 2001 JP
2001276107 Oct 2001 JP
2001276108 Oct 2001 JP
2002028173 Jan 2002 JP
2003038563 Feb 2003 JP
2003505152 Feb 2003 JP
2003126242 May 2003 JP
2003180722 Jul 2003 JP
2003528691 Sep 2003 JP
2004057578 Feb 2004 JP
2004130056 Apr 2004 JP
2004267530 Sep 2004 JP
2005052219 Mar 2005 JP
2005066011 Mar 2005 JP
2005066325 Mar 2005 JP
2005102978 Apr 2005 JP
2005518237 Jun 2005 JP
3749097 Dec 2005 JP
2006026108 Feb 2006 JP
3123547 Jun 2006 JP
2006136492 Jun 2006 JP
2006204868 Aug 2006 JP
2007044494 Feb 2007 JP
3132659 May 2007 JP
2007209687 Aug 2007 JP
4039641 Nov 2007 JP
2008005975 Jan 2008 JP
2009509570 Mar 2009 JP
2009165887 Jul 2009 JP
2009525776 Jul 2009 JP
2010504150 Feb 2010 JP
2010081981 Apr 2010 JP
4640772 Dec 2010 JP
2010536439 Dec 2010 JP
2011500225 Jan 2011 JP
2011030962 Feb 2011 JP
4747166 May 2011 JP
2011087823 May 2011 JP
4801218 Aug 2011 JP
2011218130 Nov 2011 JP
2011224070 Nov 2011 JP
3175719 Apr 2012 JP
2012523869 Oct 2012 JP
2013238608 Nov 2013 JP
2014521960 Aug 2014 JP
2015092945 May 2015 JP
3198994 Jul 2015 JP
2016521191 Jul 2016 JP
2017014698 Jan 2017 JP
2019076342 May 2019 JP
2019525811 Sep 2019 JP
2019170942 Oct 2019 JP
2019533492 Nov 2019 JP
2020520775 Jul 2020 JP
2021120686 Aug 2021 JP
2021522009 Aug 2021 JP
2021522013 Aug 2021 JP
7129493 Aug 2022 JP
2023532132 Jul 2023 JP
200290061 Sep 2002 KR
20030047451 Jun 2003 KR
20140039485 Apr 2014 KR
101432639 Aug 2014 KR
20180106659 Oct 2018 KR
20180108774 Oct 2018 KR
2068717 Jun 2013 PT
505542 Sep 1997 SE
8101957 Jul 1981 WO
8804558 Jun 1988 WO
9104714 Apr 1991 WO
9104714 Jun 1991 WO
9220299 Feb 1993 WO
9303690 Mar 1993 WO
9307839 Apr 1993 WO
9309736 May 1993 WO
9309736 Jun 1993 WO
9514448 Jun 1995 WO
9600096 Jan 1996 WO
9634636 Nov 1996 WO
9817211 Apr 1998 WO
9830336 Jul 1998 WO
0000112 Jan 2000 WO
0000113 Jan 2000 WO
0025651 May 2000 WO
0033773 Jun 2000 WO
0057784 Oct 2000 WO
0069377 Nov 2000 WO
0079497 Dec 2000 WO
0145618 Jun 2001 WO
0145621 Jun 2001 WO
02094160 Nov 2002 WO
03013967 Feb 2003 WO
03024824 Mar 2003 WO
03055423 Jul 2003 WO
03071931 Sep 2003 WO
03079942 Oct 2003 WO
03071931 Feb 2004 WO
2004019836 Mar 2004 WO
2004024046 Mar 2004 WO
2004026195 Apr 2004 WO
2005051252 Jun 2005 WO
2005074571 Sep 2005 WO
2005089687 Sep 2005 WO
2005107661 Nov 2005 WO
2006021220 Mar 2006 WO
2006037140 Apr 2006 WO
2007005851 Jan 2007 WO
2007007845 Jan 2007 WO
2007042823 Apr 2007 WO
2007055651 May 2007 WO
2006098950 Nov 2007 WO
2007134608 Nov 2007 WO
2007128156 Feb 2008 WO
2008026106 Mar 2008 WO
2008078117 Jul 2008 WO
2008104019 Sep 2008 WO
2008141471 Nov 2008 WO
2009004368 Jan 2009 WO
2009004369 Jan 2009 WO
2009052496 Apr 2009 WO
2009052502 Apr 2009 WO
2009007702 Jul 2009 WO
2009101738 Aug 2009 WO
2010058192 May 2010 WO
2010030122 Jul 2010 WO
2010101915 Jan 2011 WO
2011018132 Feb 2011 WO
2011018133 Feb 2011 WO
2011024864 Mar 2011 WO
2011054118 May 2011 WO
2011079132 Jun 2011 WO
2011107972 Sep 2011 WO
2011108972 Sep 2011 WO
2011117292 Sep 2011 WO
2011123219 Oct 2011 WO
2011132043 Oct 2011 WO
2012012908 Feb 2012 WO
2012065274 May 2012 WO
2012097462 Jul 2012 WO
2012098796 Jul 2012 WO
2012101288 Aug 2012 WO
2012175916 Dec 2012 WO
2013018435 Feb 2013 WO
2013033429 Mar 2013 WO
2013055434 Apr 2013 WO
2013082397 Jun 2013 WO
2013103291 Jul 2013 WO
2013131109 Sep 2013 WO
2013167478 Nov 2013 WO
2013177716 Dec 2013 WO
2014041534 Mar 2014 WO
2014046420 Mar 2014 WO
2014118518 Aug 2014 WO
2014160852 Oct 2014 WO
2015023599 Feb 2015 WO
2015052348 Apr 2015 WO
2015068384 May 2015 WO
2015169403 Nov 2015 WO
2015170307 Nov 2015 WO
2015197462 Dec 2015 WO
2016051385 Apr 2016 WO
2016055989 Apr 2016 WO
2016071894 May 2016 WO
2016103242 Jun 2016 WO
2016116915 Jul 2016 WO
2016124203 Aug 2016 WO
2016139448 Sep 2016 WO
2016166562 Oct 2016 WO
2016167535 Oct 2016 WO
2016191574 Dec 2016 WO
2016200088 Dec 2016 WO
2016200361 Dec 2016 WO
2016204731 Dec 2016 WO
2017001532 Jan 2017 WO
2017001846 Jan 2017 WO
2017075226 May 2017 WO
2017152198 Sep 2017 WO
2017153357 Sep 2017 WO
2017162559 Sep 2017 WO
2017205446 Nov 2017 WO
2017209779 Dec 2017 WO
2017210524 Dec 2017 WO
2018022414 Feb 2018 WO
2018044781 Mar 2018 WO
2018056953 Mar 2018 WO
2018090550 May 2018 WO
2018138513 Aug 2018 WO
2018144318 Aug 2018 WO
2018144463 Aug 2018 WO
2018150263 Aug 2018 WO
2018150268 Aug 2018 WO
2018152156 Aug 2018 WO
2018183791 Oct 2018 WO
2018150267 Nov 2018 WO
2018235026 Dec 2018 WO
2018235065 Dec 2018 WO
2019004404 Jan 2019 WO
2019041005 Mar 2019 WO
2019044217 Mar 2019 WO
2019044218 Mar 2019 WO
2019044219 Mar 2019 WO
2019050959 Mar 2019 WO
2019065541 Apr 2019 WO
2019096845 May 2019 WO
2019150385 Aug 2019 WO
2019161094 Aug 2019 WO
2019188566 Oct 2019 WO
2019190593 Oct 2019 WO
2019212949 Nov 2019 WO
2019212950 Nov 2019 WO
2019212951 Nov 2019 WO
2019212952 Nov 2019 WO
2019212954 Nov 2019 WO
2019212955 Nov 2019 WO
2019212956 Nov 2019 WO
2019214787 Nov 2019 WO
2019214788 Nov 2019 WO
2019226826 Nov 2019 WO
2019239433 Dec 2019 WO
2020000994 Jan 2020 WO
2020020618 Jan 2020 WO
2020038822 Feb 2020 WO
2020088409 May 2020 WO
2020049394 Jun 2020 WO
2020120657 Jun 2020 WO
2020152575 Jul 2020 WO
2020182923 Sep 2020 WO
2020204967 Oct 2020 WO
2020205939 Oct 2020 WO
2020209898 Oct 2020 WO
2020242790 Dec 2020 WO
2020251893 Dec 2020 WO
2020256865 Dec 2020 WO
2021007144 Jan 2021 WO
2021007345 Jan 2021 WO
2021010844 Jan 2021 WO
2021016026 Jan 2021 WO
2021016300 Jan 2021 WO
2021025919 Feb 2021 WO
2021034886 Feb 2021 WO
2021041123 Mar 2021 WO
2021046501 Mar 2021 WO
2021086868 May 2021 WO
2021094352 May 2021 WO
2021094639 May 2021 WO
2021097067 May 2021 WO
2021102296 May 2021 WO
2021107025 Jun 2021 WO
2021138411 Jul 2021 WO
2021138414 Jul 2021 WO
2021154686 Aug 2021 WO
2021155206 Aug 2021 WO
2021170075 Sep 2021 WO
2021173436 Sep 2021 WO
2021188817 Sep 2021 WO
2021195384 Sep 2021 WO
2021205995 Oct 2021 WO
2021207621 Oct 2021 WO
2021211568 Oct 2021 WO
2021211801 Oct 2021 WO
2021211914 Oct 2021 WO
2021216419 Oct 2021 WO
2021216422 Oct 2021 WO
2021231532 Nov 2021 WO
2021247523 Dec 2021 WO
2021257202 Dec 2021 WO
2022006256 Jan 2022 WO
2022031943 Feb 2022 WO
2022035745 Feb 2022 WO
2022051360 Mar 2022 WO
2022054613 Mar 2022 WO
2022066704 Mar 2022 WO
2022067392 Apr 2022 WO
2022069950 Apr 2022 WO
2022071429 Apr 2022 WO
2022076322 Apr 2022 WO
2022076427 Apr 2022 WO
2022086898 Apr 2022 WO
2022090199 May 2022 WO
2022098536 May 2022 WO
2022099087 May 2022 WO
2022101999 May 2022 WO
2022115692 Jun 2022 WO
2022125685 Jun 2022 WO
2022140545 Jun 2022 WO
2022145231 Jul 2022 WO
2022150360 Jul 2022 WO
2022150463 Jul 2022 WO
2022159392 Jul 2022 WO
2022170182 Aug 2022 WO
2022182385 Sep 2022 WO
2022187152 Sep 2022 WO
2022192188 Sep 2022 WO
2022192347 Sep 2022 WO
2022204000 Sep 2022 WO
2022216507 Oct 2022 WO
2022216776 Oct 2022 WO
2022222030 Oct 2022 WO
2023286058 Jan 2023 WO
2023014639 Feb 2023 WO
2023014641 Feb 2023 WO
2023018475 Feb 2023 WO
2023023777 Mar 2023 WO
2023034453 Mar 2023 WO
2023038945 Mar 2023 WO
2023038950 Mar 2023 WO
2023049109 Mar 2023 WO
2023049175 Mar 2023 WO
2023086394 May 2023 WO
2023149884 Aug 2023 WO
2023149902 Aug 2023 WO
2023149903 Aug 2023 WO
2023154390 Aug 2023 WO
2023191764 Oct 2023 WO
2023244238 Dec 2023 WO
2024058788 Mar 2024 WO
Non-Patent Literature Citations (835)
Entry
US 9,908,683 B2, 03/2018, Sandhausen et al. (withdrawn)
International Search Report and Written Opinion from International Application No. PCT/US2021/051456 mailed Jan. 19, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/012794 mailed May 3, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022015471 mailed May 16, 2022.
Notice of Allowance for U.S. Appl. No. 29/741,751 mailed Jun. 9, 2022.
U.S. Appl. No. 17/664,914 filed May 25, 222.
U.S. Appl. No. 17/749,340, filed May 20, 2022.
U.S. Appl. No. 17/756,201, filed May 19, 2022.
Advisory Action for U.S. Appl. No. 14/722,613 mailed Mar. 4, 2019.
Advisory Action for U.S. Appl. No. 14/952,591 mailed Jun. 1, 2018.
Advisory Action for U.S. Appl. No. 15/238,427 mailed Apr. 10, 2019.
Advisory Action for U.S. Appl. No. 16/899,956 mailed Jul. 9, 2021.
Advisory Action for U.S. Appl. No. 16/904,868 mailed Jul. 2, 2021.
Advisory Action for U.S. Appl. No. 16/905,400 mailed Feb. 16, 2022.
Advisory Action for U.S. Appl. No. 16/905,400 mailed Jun. 9, 2021.
Corrected International Search Report and Written Opinion for International Application No. PCT/US2017/043025 mailed Jan. 11, 2018.
Corrected Notice of Allowability for U.S. Appl. No. 15/221,106 mailed Jul. 2, 2019.
Corrected Notice of Allowability for U.S. Appl. No. 15/612,325 mailed Mar. 17, 2021.
Corrected Notice of Allowability for U.S. Appl. No. 17/330,657 mailed Dec. 9, 2021.
Final Office Action for U.S. Appl. No. 14/722,613 mailed on Nov. 29, 2018.
Final Office Action for U.S. Appl. No. 14/947,759 mailed Apr. 8, 2016.
Final Office Action for U.S. Appl. No. 14/952,591 mailed Feb. 23, 2018.
Final Office Action for U.S. Appl. No. 14/952,591 mailed Nov. 1, 2019.
Final Office Action for U.S. Appl. No. 14/952,591 mailed Nov. 27, 2020.
Final Office Action for U.S. Appl. No. 15/171,968 mailed Feb. 14, 2020.
Final Office Action for U.S. Appl. No. 15/171,968 mailed Mar. 19, 2019.
Final Office Action for U.S. Appl. No. 15/221,106 mailed Jan. 23, 2019.
Final Office Action for U.S. Appl. No. 15/238,427 mailed Jan. 2, 2019.
Final Office Action for U.S. Appl. No. 15/260,103 mailed Feb. 14, 2019.
Final Office Action for U.S. Appl. No. 15/612,325 mailed Sep. 17, 2020.
Final Office Action for U.S. Appl. No. 16/452,145 mailed Mar. 25, 2022.
Final Office Action for U.S. Appl. No. 16/899,956 mailed Apr. 19, 2021.
Final Office Action for U.S. Appl. No. 16/904,868 mailed Mar. 10, 2022.
Final Office Action for U.S. Appl. No. 16/904,868 mailed Mar. 26, 2021.
Final Office Action for U.S. Appl. No. 16/905,400 mailed Apr. 6, 2021.
Final Office Action for U.S. Appl. No. 16/905,400 mailed Dec. 9, 2021.
Final Office Action for U.S. Appl. No. 17/088,272 mailed May 25, 2021.
Final Office Action for U.S. Appl. No. 29/624,661 mailed Feb. 18, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2016/049274 mailed Dec. 1, 2016.
International Search Report and Written Opinion from International Application No. PCT/US2017/035625 mailed Aug. 15, 2017.
International Search Report and Written Opinion from International Application No. PCT/US2017/043025 mailed Oct. 18, 2017.
International Search Report and Written Opinion from International Application No. PCT/US2018/015968 mailed Apr. 6, 2018.
International Search Report and Written Opinion from International Application No. PCT/US2019/029608 mailed Sep. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029609 mailed Sep. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029610 mailed Sep. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029611 mailed Jul. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029613 mailed Jul. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029614 mailed Sep. 26, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029616 mailed Aug. 30, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2020/023572 mailed Jul. 6, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/033064 mailed Aug. 31, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/033122 mailed Aug. 31, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/040860 mailed Oct. 2, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/041242 mailed Nov. 17, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/041249 mailed Oct. 2, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/042262 mailed Oct. 14, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/043059 mailed Oct. 6, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/044024 mailed Nov. 12, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/046914 mailed Dec. 1, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/055680 mailed Dec. 15, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/057562 mailed Jan. 27, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/061563 mailed Feb. 19, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/065234 mailed Apr. 12, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/067451 mailed Mar. 25, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/067454 mailed Mar. 29, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/067455 mailed Mar. 26, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/015024 mailed May 18, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/015787 mailed May 27, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/023001 mailed Jun. 21, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/024162 mailed Jul. 8, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/026607 mailed Jul. 29, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027061 mailed Jul. 19, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027104 mailed Jul. 6, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027314 mailed Jul. 6, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027422 mailed Aug. 12, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027425 mailed Aug. 11, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027913 mailed Jul. 12, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027917 mailed Aug. 19, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/035181 mailed Sep. 16, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/043893 mailed Nov. 22, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/044699 mailed Nov. 22, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/045188 mailed Jan. 26, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/047536 mailed Dec. 23, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/048211 mailed Dec. 22, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/048661 mailed Feb. 14, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/049404 mailed Jan. 18, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/053593 mailed Apr. 11, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/056566 mailed Feb. 11, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/060993 mailed Mar. 18, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/062440 mailed Mar. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011108 mailed Apr. 22, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011281 mailed Apr. 25, 2022.
Issue Notification for U.S. Appl. No. 14/952,591 mailed Jul. 28, 2021.
Issue Notification for U.S. Appl. No. 15/171,968 mailed Mar. 3, 2021.
Issue Notification for U.S. Appl. No. 15/221,106 mailed Jul. 24, 2019.
Issue Notification for U.S. Appl. No. 15/238,427 mailed Jul. 24, 2019.
Issue Notification for U.S. Appl. No. 15/260,103 mailed Aug. 7, 2019.
Issue Notification for U.S. Appl. No. 15/611,587 mailed Feb. 20, 2019.
Issue Notification for U.S. Appl. No. 15/612,325 mailed Mar. 24, 2021.
Issue Notification for U.S. Appl. No. 29/624,661 mailed Aug. 4, 2021.
Non-Final Office Action for U.S. Appl. No. 14/592,591 mailed Mar. 20, 2020.
Non-Final Office Action for U.S. Appl. No. 14/722,613 mailed Jun. 13, 2019.
Non-Final Office Action for U.S. Appl. No. 14/947,759 mailed Mar. 17, 2016.
Non-Final Office Action for U.S. Appl. No. 14/952,591 mailed Aug. 1, 2017.
Non-Final Office Action for U.S. Appl. No. 14/952,591 mailed Mar. 20, 2020.
Non-Final Office Action for U.S. Appl. No. 14/952,591 mailed Mar. 21, 2019.
Non-Final Office Action for U.S. Appl. No. 14/952,591 mailed Sep. 28, 2018.
Non-Final Office Action for U.S. Appl. No. 15/171,968 mailed May 11, 2020.
Non-Final Office Action for U.S. Appl. No. 15/171,968 mailed Aug. 20, 2019.
Non-Final Office Action for U.S. Appl. No. 15/171,968 mailed Jun. 12, 2018.
Non-Final Office Action for U.S. Application No. 15/221, 106 mailed Jun. 5, 2018.
Non-Final Office Action for U.S. Appl. No. 15/238,427 mailed Aug. 8, 2018.
Non-Final Office Action for U.S. Application No. 15/260, 103 mailed Sep. 26, 2018.
Non-Final Office Action for U.S. Appl. No. 15/611,587 mailed Dec. 29, 2017.
Non-Final Office Action for U.S. Appl. No. 15/611,587 mailed Jul. 13, 2018.
Non-Final Office Action for U.S. Appl. No. 15/612,325 mailed Mar. 19, 2020.
Non-Final Office Action for U.S. Appl. No. 16/245,726 mailed Jan. 21, 2022.
Non-Final Office Action for U.S. Appl. No. 16/369,676 mailed Mar. 31, 2022.
Non-Final Office Action for U.S. Appl. No. 16/433,773 mailed Apr. 21, 2022.
Non-Final Office Action for U.S. Appl. No. 16/449,039 mailed Dec. 8, 2021.
Non-Final Office Action for U.S. Appl. No. 16/452,145 mailed Sep. 28, 2021.
Non-Final Office Action for U.S. Appl. No. 16/452,258 mailed Sep. 28, 2021.
Non-Final Office Action for U.S. Appl. No. 16/478,180 mailed Oct. 22, 2021.
Non-Final Office Action for U.S. Appl. No. 16/899,956 mailed Oct. 16, 2020.
Non-Final Office Action for U.S. Appl. No. 16/899,956 mailed Sep. 2, 2021.
Non-Final Office Action for U.S. Appl. No. 16/904,868 mailed Nov. 25, 2020.
Non-Final Office Action for U.S. Appl. No. 16/904,868 mailed Oct. 5, 2021.
Non-Final Office Action for U.S. Appl. No. 16/905,400 mailed Apr. 27, 2022.
Non-Final Office Action for U.S. Appl. No. 16/905,400 mailed Dec. 2, 2020.
Non-Final Office Action for U.S. Appl. No. 16/905,400 mailed Jul. 22, 2021.
Non-Final Office Action for U.S. Appl. No. 17/088,272 mailed Jan. 25, 2021.
Non-Final Office Action for U.S. Appl. No. 17/330,657 mailed Aug. 11, 2021.
Non-Final Office Action for U.S. Appl. No. 29/624,661 mailed Jul. 18, 2019.
Non-Final Office Action for U.S. Appl. No. 29/694,002 mailed Jun. 24, 2020.
Non-Final Office Action for U.S. Appl. No. 29/741,751 mailed Jan. 18, 2022.
Notice of Allowance for U.S. Appl. No. 14/952,591 mailed Apr. 5, 2021.
Notice of Allowance for U.S. Appl. No. 14/952,591 mailed Jul. 8, 2021.
Notice of Allowance for U.S. Appl. No. 15/171,968 mailed Feb. 16, 2021.
Notice of Allowance for U.S. Appl. No. 15/171,968 mailed Nov. 6, 2020.
Notice of Allowance for U.S. Appl. No. 15/221,106 mailed May 1, 2019.
Notice of Allowance for U.S. Appl. No. 15/238,427 mailed May 23, 2019.
Notice of Allowance for U.S. Appl. No. 15/260,103 mailed Jun. 7, 2019.
Notice of Allowance for U.S. Appl. No. 15/611,587 mailed Dec. 21, 2018.
Notice of Allowance for U.S. Appl. No. 15/612,325 mailed Feb. 19, 2021.
Notice of Allowance for U.S. Appl. No. 15/612,325 mailed Jan. 21, 2021.
Notice of Allowance for U.S. Appl. No. 16/899,956 mailed Apr. 19, 2022.
Notice of Allowance for U.S. Appl. No. 16/899,956 mailed Dec. 29, 2021.
Notice of Allowance for U.S. Appl. No. 17/088,272 mailed Aug. 5, 2021.
Notice of Allowance for U.S. Appl. No. 17/088,272 mailed Mar. 4, 2022.
Notice of Allowance for U.S. Appl. No. 17/088,272 mailed Nov. 24, 2021.
Notice of Allowance for U.S. Appl. No. 17/330,657 mailed Mar. 16, 2022.
Notice of Allowance for U.S. Appl. No. 17/330,657 mailed Nov. 26, 2021.
Notice of Allowance for U.S. Appl. No. 29/624,661 mailed Apr. 28, 2021.
Notice of Allowance for U.S. Appl. No. 29/624,661 mailed Jul. 10, 2020.
Notice of Allowance for U.S. Appl. No. 29/624,661 mailed May 14, 2020.
Notice of Allowance for U.S. Appl. No. 29/624,661 mailed Sep. 29, 2020.
Notice of Allowance for U.S. Appl. No. 29/694,002 mailed Apr. 29, 2021.
Notice of Allowance for U.S. Appl. No. 29/694,002 mailed Jan. 29, 2021.
Notice of Allowance for U.S. Appl. No. 29/694,002 mailed Oct. 16, 2020.
Notice to File Missing Parts for U.S. Appl. No. 17/179,116 mailed Mar. 3, 2021.
Restriction Requirement for U.S. Appl. No. 16/433,773 mailed Dec. 7, 2021.
Restriction Requirement for U.S. Appl. No. 16/478,180 mailed May 25, 2021.
U.S. Appl. No. 14/625,469, filed Feb. 28, 2015.
U.S. Appl. No. 14/947,759, filed Nov. 20, 2015.
U.S. Appl. No. 14/952,591, filed Nov. 25, 2015.
U.S. Appl. No. 15/171,968, filed Jun. 2, 2016.
U.S. Appl. No. 15/221,106, filed Jul. 27, 2016.
U.S. Appl. No. 15/260,103, filed Sep. 8, 2016.
U.S. Appl. No. 15/384,196, filed Dec. 19, 2016.
U.S. Appl. No. 15/612,325, filed Jun. 2, 2017.
U.S. Appl. No. 16/245,726, filed Jan. 11, 2019.
U.S. Appl. No. 16/369,676, filed Mar. 29, 2019.
U.S. Appl. No. 16/433,773, filed Jun. 6, 2019.
U.S. Appl. No. 16/449,039, filed Jun. 21, 2019.
U.S. Appl. No. 16/452,145, filed Jun. 25, 2019.
U.S. Appl. No. 16/452,258, filed Jun. 25, 2019.
U.S. Appl. No. 16/478,180, filed Jul. 16, 2019.
U.S. Appl. No. 16/904,868, filed Jun. 18, 2020.
U.S. Appl. No. 16/905,400, filed Jun. 18, 2020.
U.S. Appl. No. 17/051,550, filed Oct. 29, 2020.
U.S. Appl. No. 17/051,554, filed Oct. 29, 2020.
U.S. Appl. No. 17/051,585, filed Oct. 29, 2020.
U.S. Appl. No. 17/051,600, filed Oct. 29, 2020.
U.S. Appl. No. 17/088,272, filed Nov. 3, 2020.
U.S. Appl. No. 17/179,116, filed Feb. 18, 2021.
U.S. Appl. No. 17/330,657, filed May 26, 2021.
U.S. Appl. No. 17/378,015, filed Jul. 16, 2021.
U.S. Appl. No. 17/394,055, filed Aug. 4, 2021.
U.S. Appl. No. 17/412,864, filed Aug. 26, 2021.
U.S. Appl. No. 17/444,825, filed Aug. 10, 2021.
U.S. Appl. No. 17/446,256, filed Aug. 27, 2021.
U.S. Appl. No. 17/446,654, filed Sep. 1, 2021.
U.S. Appl. No. 17/447,123, filed Sep. 8, 2021.
U.S. Appl. No. 17/450,864, filed Oct. 14, 2021.
U.S. Appl. No. 17/451,345, filed Oct. 19, 2021.
U.S. Appl. No. 17/451,354, filed Oct. 19, 2021.
U.S. Appl. No. 17/453,260, filed Nov. 2, 2021.
U.S. Appl. No. 17/453,560, filed Nov. 4, 2021.
U.S. Appl. No. 17/461,036 mailed Aug. 30, 2021.
U.S. Appl. No. 17/494,578, filed Oct. 5, 2021.
U.S. Appl. No. 17/501,591, filed Oct. 14, 2021.
U.S. Appl. No. 17/595,747, filed Nov. 23, 2021.
U.S. Appl. No. 17/597,408, filed Jan. 5, 2022.
U.S. Appl. No. 17/597,673, filed Jan. 18, 2022.
U.S. Appl. No. 17/614,173, filed Nov. 24, 2021.
U.S. Appl. No. 17/631,619, filed Jan. 31, 2022.
U.S. Appl. No. 17/645,821, filed Dec. 23, 2021.
U.S. Appl. No. 17/646,771, filed Jan. 3, 2022.
U.S. Appl. No. 17/653,314, filed Mar. 3, 2022.
U.S. Appl. No. 17/653,920, filed Mar. 8, 2022.
U.S. Appl. No. 17/654,156, filed Mar. 9, 2022.
U.S. Appl. No. 17/655,464, filed Mar. 18, 2022.
U.S. Appl. No. 17/657,474, filed Mar. 31, 2022.
U.S. Appl. No. 17/661,090, filed Apr. 28, 2022.
U.S. Appl. No. 17/662,700, filed May 10, 2022.
U.S. Appl. No. 17/663,046, filed May 12, 2022.
U.S. Appl. No. 17/754,736, filed Apr. 11, 2022.
U.S. Appl. No. 29/741,751, filed Jul. 15, 2020.
U.S. Appl. No. 61/955,537, filed Mar. 19, 2014.
U.S. Appl. No. 62/082,279, filed Nov. 20, 2014.
U.S. Appl. No. 62/084,078, filed Nov. 25, 2014.
U.S. Appl. No. 62/414,963, filed Oct. 31, 2016.
U.S. Appl. No. 62/452,437, filed Jan. 31, 2017.
U.S. Appl. No. 62/485,578, filed Apr. 14, 2017.
U.S. Appl. No. 62/665,297, filed May 1, 2018.
U.S. Appl. No. 62/665,302, filed May 1, 2018.
U.S. Appl. No. 62/665,317, filed May 1, 2018.
U.S. Appl. No. 62/665,321, filed May 1, 2018.
U.S. Appl. No. 62/665,331, filed May 1, 2018.
U.S. Appl. No. 62/665,335, filed May 1, 2018.
U.S. Appl. No. 62/853,279, filed May 28, 2019.
U.S. Appl. No. 62/853,889, filed May 29, 2019.
U.S. Appl. No. 62/864,656, filed Jun. 21, 2019.
U.S. Appl. No. 62/873,045, filed Jul. 11, 2019.
U.S. Appl. No. 62/873,048, filed Jul. 11, 2019.
U.S. Appl. No. 62/876,500, filed Jul. 19, 2019.
U.S. Appl. No. 62/877,558, filed Jul. 23, 2019.
U.S. Appl. No. 62/883,172, filed Aug. 6, 2019.
U.S. Appl. No. 62/889,149, filed Aug. 20, 2019.
U.S. Appl. No. 62/923,279, filed Oct. 18, 2019.
U.S. Appl. No. 62/926,767, filed Oct. 28, 2019.
U.S. Appl. No. 62/935,337, filed Nov. 14, 2019.
U.S. Appl. No. 62/938,447, filed Nov. 21, 2019.
U.S. Appl. No. 62/949,187, filed Dec. 17, 2019.
U.S. Appl. No. 62/956,756, filed Jan. 3, 2020.
U.S. Appl. No. 62/956,767, filed Jan. 3, 2020.
U.S. Appl. No. 62/956,770, filed Jan. 3, 2020.
U.S. Appl. No. 62/967,977, filed Jan. 30, 2020.
U.S. Appl. No. 62/994,912, filed Mar. 26, 2020.
U.S. Appl. No. 63/008,112, filed Apr. 10, 2020.
U.S. Appl. No. 63/011,445, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,487, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,571, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,657, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,760, filed Apr. 17, 2020.
U.S. Appl. No. 63/012,347, filed Apr. 20, 2020.
U.S. Appl. No. 63/012,384, filed Apr. 20, 2020.
U.S. Appl. No. 63/030,685, filed May 27, 2020.
U.S. Appl. No. 63/033,310, filed Jun. 2, 2020.
U.S. Appl. No. 63/047,374, filed Jul. 2, 2020.
U.S. Appl. No. 63/061,241, filed Aug. 5, 2020.
U.S. Appl. No. 63/061,244, filed Aug. 5, 2020.
U.S. Appl. No. 63/061,834, filed Aug. 6, 2020.
U.S. Appl. No. 63/064,017, filed Aug. 11, 2020.
U.S. Appl. No. 63/064,126, filed Aug. 11, 2020.
U.S. Appl. No. 63/067,542, filed Aug. 19, 2020.
U.S. Appl. No. 63/071,438, filed Aug. 28, 2020.
U.S. Appl. No. 63/071,821, filed Aug. 28, 2020.
U.S. Appl. No. 63/073,545, filed Sep. 2, 2020.
U.S. Appl. No. 63/073,553, filed Sep. 2, 2020.
U.S. Appl. No. 63/074,051, filed Sep. 3, 2020.
U.S. Appl. No. 63/074,066, filed Sep. 3, 2020.
U.S. Appl. No. 63/076,032, filed Sep. 9, 2020.
U.S. Appl. No. 63/076,474, filed Sep. 10, 2020.
U.S. Appl. No. 63/076,477, filed Sep. 10, 2020.
U.S. Appl. No. 63/082,261, filed Sep. 23, 2020.
U.S. Appl. No. 63/088,506, filed Oct. 7, 2020.
U.S. Appl. No. 63/088,511, filed Oct. 7, 2020.
U.S. Appl. No. 63/088,539, filed Oct. 7, 2020.
U.S. Appl. No. 63/094,464, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,498, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,594, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,608, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,626, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,646, filed Oct. 21, 2020.
U.S. Appl. No. 63/109,066, filed Nov. 3, 2020.
U.S. Appl. No. 63/109,084, filed Nov. 3, 2020.
U.S. Appl. No. 63/112,417, filed Nov. 11, 2020.
U.S. Appl. No. 63/119,161, filed Nov. 30, 2020.
U.S. Appl. No. 63/124,271, filed Dec. 11, 2020.
U.S. Appl. No. 63/133,892, filed Jan. 5, 2021.
U.S. Appl. No. 63/134,287, filed Jan. 6, 2021.
U.S. Appl. No. 63/134,450, filed Jan. 6, 2021.
U.S. Appl. No. 63/134,631, filed Jan. 7, 2021.
U.S. Appl. No. 63/134,632, filed Jan. 7, 2021.
U.S. Appl. No. 63/134,754, filed Jan. 7, 2021.
U.S. Appl. No. 63/138,878, filed Jan. 19, 2021.
U.S. Appl. No. 63/146,946, filed Feb. 8, 2021.
U.S. Appl. No. 63/147,013, filed Feb. 8, 2021.
U.S. Appl. No. 63/147,299, filed Feb. 9, 2021.
U.S. Appl. No. 63/148,723, filed Feb. 12, 2021.
U.S. Appl. No. 63/154,248, filed Feb. 26, 2021.
U.S. Appl. No. 63/155,395, filed Mar. 2, 2021.
U.S. Appl. No. 63/157,007, filed Mar. 5, 2021.
U.S. Appl. No. 63/157,014, filed Mar. 5, 2021.
U.S. Appl. No. 63/159,142, filed Mar. 10, 2021.
U.S. Appl. No. 63/159,186, filed Mar. 10, 2021.
U.S. Appl. No. 63/159,210, filed Mar. 10, 2021.
U.S. Appl. No. 63/159,280, filed Mar. 10, 2021.
U.S. Appl. No. 63/165,273, filed Mar. 24, 2021.
U.S. Appl. No. 63/165,384, filed Mar. 24, 2021.
U.S. Appl. No. 63/171,165, filed Apr. 6, 2021.
U.S. Appl. No. 63/172,975, filed Apr. 9, 2021.
U.S. Appl. No. 63/181,695, filed Apr. 29, 2021.
U.S. Appl. No. 63/191,558, filed May 21, 2021.
U.S. Appl. No. 63/192,274, filed May 24, 2021.
U.S. Appl. No. 63/192,289, filed May 24, 2021.
U.S. Appl. No. 63/193,235, filed May 26, 2021.
U.S. Appl. No. 63/193,406, filed May 26, 2021.
U.S. Appl. No. 63/193,891, filed May 27, 2021.
U.S. Appl. No. 63/208,262, filed Jun. 8, 2021.
U.S. Appl. No. 63/214,551, filed Jun. 24, 2021.
U.S. Appl. No. 63/214,570, filed Jun. 24, 2021.
U.S. Appl. No. 63/215,017, filed Jun. 25, 2021.
U.S. Appl. No. 63/228,244, filed Aug. 2, 2021.
U.S. Appl. No. 63/228,252, filed Aug. 2, 2021.
U.S. Appl. No. 63/228,258, filed Aug. 2, 2021.
U.S. Appl. No. 63/230,894, filed Aug. 9, 2021.
U.S. Appl. No. 63/230,897, filed Aug. 9, 2021.
U.S. Appl. No. 63/238,457, filed Aug. 30, 2021.
U.S. Appl. No. 63/238,477, filed Aug. 30, 2021.
U.S. Appl. No. 63/241,562, filed Sep. 8, 2021.
U.S. Appl. No. 63/241,564, filed Sep. 8, 2021.
U.S. Appl. No. 63/241,575, filed Sep. 8, 2021.
U.S. Appl. No. 63/246,972, filed Sep. 22, 2021.
U.S. Appl. No. 63/247,375, filed Sep. 23, 2021.
U.S. Appl. No. 63/247,478, filed Sep. 23, 2021.
U.S. Appl. No. 63/247,491, filed Sep. 23, 2021.
U.S. Appl. No. 63/299,208, filed Jan. 13, 2022.
Sage's Second Supplemental Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508, 10,226,375, 10,390,989, and 10,376,407, 292 pages.
Plaintiff's Identification of Claim Terms and Proposed Constructions, 3 pages.
Sage's Preliminary Identification of Claim Elements and Proposed Constructions for U.S. Pat. Nos. 8,287,508, 10,226,376, 10,390,989 and 10,376,407, 7 pages.
Corrected Certificate of Service, 2020, 2 pages.
Excerpts from the 508 (Patent No. 8,278,508) Patent's Prosecution History, 2020, 99 pages.
Declaration of Diane K. Newman Curriculum Vitae, 2020, pp. 1-199.
Sage's Supplemental and Initial Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508; 10,226,375; 10,390,989 and Initial Invalidity Contentions Regarding U.S. Pat. No. 10,376,407, Aug. 21, 2020, 277 pages.
Decision Granting Institution of Inter Partes Review for U.S. Pat. No. 8,287,508, Feb. 17, 2021, 39 pages.
Memorandum Order, Feb. 2021, 14 pgs.
BOEHRINGER CareDry System—Second Generation for Non-Invasive Urinary Management for Females, Mar. 2021, 3 pgs.
PureWick's Response to Interrogatory No. 9 in PureWick, LLC v. Sage Products, LLC, Mar. 23, 2020, 6 pages.
Sage's Initial Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508; 10,226,375; and 10,390,989, May 29, 2020, 193 pages.
Defendant and Counterclaim Plaintiff Sage Products, LLC's Answer, Defenses, and Counterclaims to Plaintiff's Amended Complaint, Nov. 1, 2019.
Plaintiff's Opening Claim Construction Brief, Oct. 16, 2020, 26 pages.
“3 Devices Take Top Honors in Dare-To-Dream Medtech Design Contest”, R+D Digest, Nov. 2013, 1 page.
“Advanced Mission Extender Device (AMDX) Products”, Omni Medical Systems, Inc., 15 pages.
“AMXD Control Starter Kit Brochure”, https://www.omnimedicalsys.com/index.php?page=products, 8 pages.
“AMXDmax In-Flight Bladder Relief”, Omni Medical; Omni Medical Systems, Inc., 2015.
“AMXDX—Advanced Mission Extender Device Brochure”, Omni Medical, 2 pages.
“External Urine Management for Female Anatomy”, https://www.stryker.com/us/en/sage/products/sage-primafit.html, Jul. 2020, 4 pages.
“High Absorbancy Cellulose Acetate Electrospun Nanofibers for Feminine Hygiene Application”, https://www.sciencedirect.com/science/article/abs/pii/S2352940716300701?via%3Dihub, Jul. 2016, 3 pages.
“How Period Panties Work”, www.shethinx.com/pages/thinx-itworks, 2020, 10 pages.
“Hydrogel properties of electrospun polyvinylpyrrolidone and polyvinylpyrrolidone/poly(acrylic acid) blend nanofibers”, https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra07514a#!divAbstract, 2015, 5 pages.
“In Flight Bladder Relief”, Omni Medical, 14 pages.
“Making Women's Sanitary Products Safer and Cheaper”, https://www.elsevier.com/connect/making-womens-sanitary-products-safer-and-cheaper, Sep. 2016, 10 pages.
“Novel Nanofibers Make Safe and Effective Absorbent for Sanitary Products”, https://www.materialstoday.com/nanomaterials/news/nanofibers-make-safe-and-effective-absorbent/, Oct. 2016, 3 pages.
“Research and Development Work Relating to Assistive Technology Jun. 2005”, British Department of Health, Nov. 2006, 40 pages.
“Rising Warrior Insulated Gallon Jug Cover”, https://www.amazon.com/Rising-Warrior-Insulated-Sleeve, 2021, 2 pages.
“Step by Step How Ur24 WorksHome”, http://medicalpatentur24.com, Aug. 30, 2017, 4 pages.
“Underwear that absorbs your period”, Thinx!, 7 pages.
“Urine Bag Cover-Catheter Bag Cover 2000 ml Volume-Medline Style-Multiple Sclerosis-Spine Injury-Suprapublic Catheter-Bladder Incontinence”, https://www.etsy.com/listing/1142934658/urine-bag-cover-caatheter-bag-cover-2000, 2022, 1 page.
“User & Maintenance Guide”, Omni Medical, 2007, 16 pages.
“Vinyl Dust Cover, Janome #741811000, Janome, Sewing Parts Online”, https://www.sewingpartsonline.com/vinyl-dust-cover-janome-74181000, 2020, 2 pages.
“Winners Announced for Dare-to-Dream Medtech Design Challenge”, https://www.mddionline.com/design-engineering/winners-announced-dare-dream-medtech-design-challenge, 2014, 4 pages.
Ali , “Sustainability Assessment: Seventh Generation Diapers versus gDiapers”, The University of Vermont, Dec. 6, 2011, pp. 1-31.
Autumn, et al., “Frictional adhesion: a new angle on gecko attachment”, The Journal of Experimental Biology, 2006, pp. 3569-3579.
Cañas, et al., “Effect of nano- and micro-roughness on adhesion of bioinspired micropatterned surfaces”, Acta Biomaterialia 8, 2012, pp. 282-288.
Chaudhary, et al., “Bioinspired dry adhesive: Poly(dimethylsiloxane) grafted with poly(2-ethylhexyl acrylate) brushes”, European Polymer Journal, 2015, pp. 432-440.
Dai, et al., “Non-sticky and Non-slippery Biomimetic Patterned Surfaces”, Journal of Bionic Engineering, Mar. 2020, pp. 326-334.
Espinoza-Ramirez, “Nanobiodiversity and Biomimetic Adhesives Development: From Nature to Production and Application”, Journal of Biomaterials and Nanobiotechnology, pp. 78-101, 2019.
Hollister, “Female Urinary and Pouch and Male Urinary Pouch Brochure”, 2011, 1 page.
Hollister, “Male Urinary Pouch External Collection Device”, http://www.hollister.com/en/products/Continence-Care-Products/Urine-Collectors/Urine-Collection-Accessories/Male-Urinary-Pouch-External-Collection-Device.
Hollister, “Retracted Penis Pouch by Hollister”, Vitality Medical.com, 6 pages.
Hwang, et al., “Multifunctional Smart Skin Adhesive Patches for Advanced Health Care”, Adv. Healthcare Mater, 2018, pp. 1-20.
Jagota, et al., “Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces”, Materials Science and Engineering, 2011, pp. 253-292.
Jeong, et al., “A nontransferring dry adhesive with hierarchical polymer nanohairs”, PNAS, Apr. 7, 2009, pp. 5639-5644.
Jeong, et al., “Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives”, Science Direct, 2009, pp. 335-346.
Karp, et al., “Dry solution to a sticky problem”, Nature., 2011, pp. 42-43.
Lee, et al., “Continuous Fabrication of Wide-Tip Microstructures for Bio-Inspired Dry Adhesives via Tip Inking Process”, Journal of Chemistry, Jan. 2, 2019, pp. 1-5.
Macaulay, et al., “A Noninvasive Continence Management System: Development and Evaluation of a Novel Toileting Device for Women”, The Wound, Ostomy and Continence Nurses Society, 2007, pp. 641-648.
Newman, et al., “The Urinary Incontinence Sourcebook”, Petition for Interparties Review, 1997, 23 pages.
Newton, et al., “Measuring Safety, Effectiveness and Ease of Use of PureWick in the Management of Urinary Incontinence in Bedbound Women: Case Studies”, Jan. 8, 2016, 11 pages.
Parmar , “10 Finalists Chosen for Dare-to-Dream Medtech Design Challenge (PureWick)”, Design Services, Nov. 10, 2014, 3 pages.
Parness, et al., “A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality”, J.R. Soc. Interface, 2009, pp. 1223-1232.
Purewick “Incontinence Relief for Women”, Presentation, Sep. 23, 2015, 7 pages.
Pytlik, “Super Absorbent Polymers”, University of Buffalo.
Sachtman, “New Relief for Pilots? It Depends”, Wired, 2008, 2 pages.
Tsipenyuk, et al., “Use of biomimetic hexagonal surface texture in friction against lubricated skin”, Journal of The Royal Society—Interface, 2014, pp. 1-6.
Advisory Action for U.S. Appl. No. 16/245,726 mailed Apr. 19, 2023.
Advisory Action for U.S. Appl. No. 16/369,676 mailed Mar. 24, 2023.
Advisory Action for U.S. Appl. No. 16/433,773 mailed Feb. 15, 2023.
Advisory Action for U.S. Appl. No. 16/452,258 mailed Oct. 26, 2022.
Advisory Action for U.S. Appl. No. 16/478,180 mailed Sep. 21, 2022.
Advisory Action for U.S. Appl. No. 16/478,180 mailed Sep. 7, 2023.
Advisory Action for U.S. Appl. No. 16/904,868 mailed Jun. 15, 2022.
Advisory Action for U.S. Appl. No. 17/051,550 mailed Sep. 8, 2023.
Advisory Action for U.S. Appl. No. 17/444,792 mailed Aug. 25, 2023.
Advisory Action for U.S. Appl. No. 17/662,700 mailed Jan. 30, 2023.
Final Office Action for U.S. Appl. No. 16/245,726 mailed Nov. 25, 2022.
Final Office Action for U.S. Appl. No. 16/369,676 mailed Aug. 31, 2023.
Final Office Action for U.S. Appl. No. 16/369,676 mailed Dec. 5, 2022.
Final Office Action for U.S. Appl. No. 16/433,773 mailed Oct. 25, 2022.
Final Office Action for U.S. Appl. No. 16/449,039 mailed Aug. 1, 2022.
Final Office Action for U.S. Appl. No. 16/452,258 mailed Jun. 14, 2022.
Final Office Action for U.S. Appl. No. 16/478,180 mailed Jun. 22, 2022.
Final Office Action for U.S. Appl. No. 16/478,180 mailed May 31, 2023.
Final Office Action for U.S. Appl. No. 17/051,399 mailed Mar. 9, 2023.
Final Office Action for U.S. Appl. No. 17/051,550 mailed May 23, 2023.
Final Office Action for U.S. Appl. No. 17/051,585 mailed Jul. 27, 2023.
Final Office Action for U.S. Appl. No. 17/444,792 mailed Jun. 15, 2023.
Final Office Action for U.S. Appl. No. 17/446,256 mailed Sep. 19, 2023.
Final Office Action for U.S. Appl. No. 17/448,811 mailed Aug. 3, 2023.
Final Office Action for U.S. Appl. No. 17/451,345 mailed May 3, 2023.
Final Office Action for U.S. Appl. No. 17/653,137 mailed Sep. 21, 2023.
Final Office Action for U.S. Appl. No. 17/655,464 mailed Sep. 1, 2023.
Final Office Action for U.S. Appl. No. 17/662,700 mailed Sep. 30, 2022.
International Search Report and Written Opinion from International Application No. PCT/IB2021/057173 mailed Nov. 5, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/039866 mailed Oct. 7, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/055515 mailed Jan. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011419 mailed Jun. 7, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011421 mailed Jun. 13, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/014285 mailed Sep. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/014749 mailed Sep. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015026 mailed Oct. 31, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015045 mailed Sep. 9, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015073 mailed Sep. 8, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015418 mailed Nov. 11, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015420 mailed Nov. 18, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015492 mailed Apr. 26, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015781 mailed May 6, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/016942 mailed Jun. 8, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/018159 mailed Dec. 12, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/018170 mailed May 31, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/019254 mailed Jun. 7, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/019480 mailed Jun. 13, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/021103 mailed Jun. 23, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/022111 mailed Oct. 26, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/023594 mailed Jul. 12, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/026667 mailed Aug. 22, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/030685 mailed Oct. 31, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/031032 mailed Sep. 9, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/032424 mailed Oct. 11, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/034457 mailed Oct. 12, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/034744 mailed Dec. 9, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/039018 mailed Jan. 10, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/039022 mailed Jan. 10, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/039711 mailed Jan. 12, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/039714 mailed Nov. 22, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/041085 mailed Mar. 16, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/041688 mailed Nov. 21, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/042719 mailed Dec. 5, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/042725 mailed Dec. 19, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/043818 mailed Mar. 24, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/044107 mailed Dec. 23, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/044208 mailed May 8, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/044212 mailed Jan. 20, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/044243 mailed Feb. 24, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/049300 mailed Jun. 6, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/050909 mailed Jul. 24, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2023/012696 mailed Jul. 6, 2023.
Issue Notification for U.S. Appl. No. 16/899,956 mailed Mar. 29, 2023.
Issue Notification for U.S. Appl. No. 16/905,400 mailed Nov. 30, 2022.
Issue Notification for U.S. Appl. No. 17/088,272 mailed Jun. 15, 2022.
Issue Notification for U.S. Appl. No. 17/330,657 mailed Jun. 22, 2022.
Non-Final Office Action for U.S. Appl. No. 16/433,773 mailed Apr. 11, 2023.
Non-Final Office Action for U.S. Appl. No. 16/449,039 mailed Apr. 27, 2023.
Non-Final Office Action for U.S. Appl. No. 16/452,145 mailed Mar. 28, 2023.
Non-Final Office Action for U.S. Appl. No. 16/452,258 mailed Apr. 26, 2023.
Non-Final Office Action for U.S. Appl. No. 16/478,180 mailed Dec. 20, 2022.
Non-Final Office Action for U.S. Appl. No. 16/904,868 mailed Mar. 15, 2023.
Non-Final Office Action for U.S. Appl. No. 17/051,399 mailed Aug. 18, 2023.
Non-Final Office Action for U.S. Appl. No. 17/051,550 mailed Dec. 15, 2022.
Non-Final Office Action for U.S. Appl. No. 17/051,585 mailed Mar. 29, 2023.
Non-Final Office Action for U.S. Appl. No. 17/179,116 mailed Mar. 24, 2023.
Non-Final Office Action for U.S. Appl. No. 17/326,980 mailed Jul. 11, 2023.
Non-Final Office Action for U.S. Appl. No. 17/444,792 mailed Feb. 10, 2023.
Non-Final Office Action for U.S. Appl. No. 17/446,256 mailed Apr. 13, 2023.
Non-Final Office Action for U.S. Appl. No. 17/446,654 mailed Sep. 8, 2023.
Non-Final Office Action for U.S. Appl. No. 17/448,811 mailed Mar. 1, 2023.
Non-Final Office Action for U.S. Appl. No. 17/450,864 mailed May 10, 2023.
Non-Final Office Action for U.S. Appl. No. 17/451,345 mailed Dec. 7, 2022.
Non-Final Office Action for U.S. Appl. No. 17/451,354 mailed May 3, 2023.
Non-Final Office Action for U.S. Appl. No. 17/453,260 mailed Mar. 14, 2023.
Non-Final Office Action for U.S. Appl. No. 17/501,591 mailed Apr. 25, 2023.
Non-Final Office Action for U.S. Appl. No. 17/646,771 mailed Jul. 5, 2023.
Non-Final Office Action for U.S. Appl. No. 17/653,137 mailed Apr. 7, 2023.
Non-Final Office Action for U.S. Appl. No. 17/655,464 mailed Mar. 14, 2023.
Non-Final Office Action for U.S. Appl. No. 17/657,474 mailed Sep. 12, 2023.
Non-Final Office Action for U.S. Appl. No. 17/661,090 mailed Jul. 6, 2023.
Non-Final Office Action for U.S. Appl. No. 17/662,700 mailed Jul. 22, 2022.
Non-Final Office Action for U.S. Appl. No. 17/664,487 mailed Jun. 8, 2023.
Non-Final Office Action for U.S. Appl. No. 18/139,523 mailed Aug. 17, 2023.
Non-Final Office Action for U.S. Appl. No. 18/140,751 mailed Sep. 14, 2023.
Notice of Allowance for U.S. Appl. No. 16/245,726 mailed Jul. 6, 2023.
Notice of Allowance for U.S. Appl. No. 16/449,039 mailed Dec. 15, 2022.
Notice of Allowance for U.S. Appl. No. 16/899,956 mailed Aug. 10, 2022.
Notice of Allowance for U.S. Appl. No. 16/899,956 mailed Dec. 1, 2022.
Notice of Allowance for U.S. Appl. No. 16/905,400 mailed Aug. 17, 2022.
Notice of Allowance for U.S. Appl. No. 17/051,554 mailed Jul. 6, 2023.
Notice of Allowance for U.S. Appl. No. 17/461,036 mailed Feb. 22, 2023.
Notice of Allowance for U.S. Appl. No. 17/461,036 mailed Jun. 30, 2023.
Notice of Allowance for U.S. Appl. No. 17/461,036 mailed Oct. 6, 2022.
Notice of Allowance for U.S. Appl. No. 17/662,700 mailed Jul. 28, 2023.
Notice of Allowance for U.S. Appl. No. 17/662,700 mailed Mar. 28, 2023.
Notice of Allowance for U.S. Appl. No. 17/663,046 mailed Jan. 30, 2023.
Notice of Allowance for U.S. Appl. No. 18/299,788 mailed Jul. 24, 2023.
Restriction Requirement for U.S. Appl. No. 17/051,600 mailed Sep. 21, 2023.
Restriction Requirement for U.S. Appl. No. 17/326,980 mailed Mar. 20, 2023.
Restriction Requirement for U.S. Appl. No. 17/446,256 mailed Jan. 23, 2023.
Restriction Requirement for U.S. Appl. No. 17/645,821 mailed Jul. 12, 2023.
Restriction Requirement for U.S. Appl. No. 17/646,771 mailed Apr. 6, 2023.
Restriction Requirement for U.S. Appl. No. 17/657,474 mailed Jun. 30, 2023.
Text Messages to Lorena Eckert Re Prototype PureWick Holder dated Apr. 16, 2022.
U.S. Appl. No. 15/611,587, filed Jun. 1, 2017.
U.S. Appl. No. 17/664,487, filed May 23, 2022.
U.S. Appl. No. 17/758,152, filed Jun. 29, 2022.
U.S. Appl. No. 17/758,316, filed Jul. 1, 2022.
U.S. Appl. No. 17/759,697, filed Jul. 28, 2022.
U.S. Appl. No. 17/878,268, filed Aug. 1, 2022.
U.S. Appl. No. 17/907,125, filed Sep. 23, 2022.
U.S. Appl. No. 17/912,147, filed Sep. 16, 2022.
U.S. Appl. No. 17/929,887, filed Sep. 6, 2022.
U.S. Appl. No. 17/930,238, filed Sep. 7, 2022.
U.S. Appl. No. 17/933,590, filed Sep. 20, 2022.
U.S. Appl. No. 17/996,064, filed Oct. 12, 2022.
U.S. Appl. No. 17/996,155, filed Oct. 13, 2022.
U.S. Appl. No. 17/996,253, filed Oct. 14, 2022.
U.S. Appl. No. 17/996,468, filed Oct. 18, 2022.
U.S. Appl. No. 17/996,556, filed Oct. 19, 2022.
U.S. Appl. No. 18/003,029, filed Dec. 22, 2022.
U.S. Appl. No. 18/006,807, filed Jan. 25, 2023.
U.S. Appl. No. 18/007,105, filed Jan. 27, 2023.
U.S. Appl. No. 18/041,109, filed Feb. 9, 2023.
U.S. Appl. No. 18/042,842, filed Feb. 24, 2023.
U.S. Appl. No. 18/043,618, filed Mar. 1, 2023.
U.S. Appl. No. 18/115,444, filed Feb. 28, 2023.
U.S. Appl. No. 18/134,857, filed Apr. 14, 2023.
U.S. Appl. No. 18/140,163, filed Apr. 27, 2023.
U.S. Appl. No. 18/140,751, filed Apr. 28, 2023.
U.S. Appl. No. 18/164,800, filed Feb. 6, 2023.
U.S. Appl. No. 18/198,464, filed May 17, 2023.
U.S. Appl. No. 18/246,121, filed Mar. 21, 2023.
U.S. Appl. No. 18/247,986, filed Apr. 5, 2023.
U.S. Appl. No. 18/259,626, filed Jun. 28, 2023.
U.S. Appl. No. 18/260,122, filed Jun. 30, 2023.
U.S. Appl. No. 18/260,391, filed Jul. 5, 2023.
U.S. Appl. No. 18/260,394, filed Jul. 5, 2023.
U.S. Appl. No. 18/263,800, filed Aug. 1, 2023.
U.S. Appl. No. 18/264,004, filed Aug. 2, 2023.
U.S. Appl. No. 18/265,736, filed Jun. 7, 2023.
U.S. Appl. No. 18/299,788, filed Apr. 13, 2023.
U.S. Appl. No. 18/335,579, filed Jun. 15, 2023.
U.S. Appl. No. 18/548,152, filed Aug. 28, 2023.
U.S. Appl. No. 18/549,387, filed Sep. 7, 2023.
U.S. Appl. No. 18/549,658, filed Sep. 8, 2023.
U.S. Appl. No. 62/967,158, filed Jan. 26, 2020.
U.S. Appl. No. 62/991,754, filed Mar. 19, 2020.
U.S. Appl. No. 63/150,640, filed Feb. 18, 2021.
U.S. Appl. No. 63/241,328, filed Sep. 7, 2021.
U.S. Appl. No. 63/308,190, filed Feb. 9, 2022.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 2, Mar. 29, 2022.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 3, Mar. 30, 2022.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 4, Mar. 31, 2022.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 5, Apr. 1, 2022.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 1, Mar. 28, 2022.
“AMXD Control Starter Kit”, Omni Medical Systems, Inc., 1 page.
“AMXDmax Advanced Mission Extender Device User & Maintenance Guide”, Omni Medical, Jan. 11, 2010, 10 pages.
“AMXDmax Development History 2002-2014”, Omni Medical Systems, Inc., 2 pages.
“Combat Force Multiplier in Flight Bladder Relief Cockpit Essential Equipment Brochure”, Omni Medical, 20 pages.
“GSA Price List”, Omni Medical, Apr. 2011, 2 pages.
“How is Polypropylene Fiber Made”, https:www.yarnsandfibers.com/textile-resources/synthetic-fibers/polypropylene-fiber/polypropylene-fiber-production-raw-materials/how-is-polypropylene- fiber-made/ last accessed 2020, Oct. 7, 2020, 3 pages.
“Letter to Mark Harvie of Omni Measurement Systems”, Department of Veterans Affairs, Nov. 1, 2007, 11 pages.
“Revised AMXDmax Advanced Mission Extender Device User & Maintenance Guide”, Omni Medical Systems, Oct. 8, 2019, 52 pages.
Merriam-Webster Dictionary, “Embed Definition & Meaning”, https://www.merriam-webster.com/dictionary/embed last accessed Aug. 3, 2023, 2003.
Pieper, et al., “An external urine-collection device for women: A clinical trial”, Journal of ER Nursing, vol. 20, No. 2, Mar./Apr. 1993, pp. 51-55.
Mnas, “A Solution for an Awkward—But Serious—Subject”, http://www.aero-news.net/index.cfm?do=main.textpost&id=69ae2bb1-838b-4098-a7b5-7flbb2505688 last accessed Feb. 8, 2021.
Advisory Action for U.S. Appl. No. 16/433,773 mailed Dec. 29, 2023.
Advisory Action for U.S. Appl. No. 16/449,039 mailed Jan. 25, 2024.
Advisory Action for U.S. Appl. No. 16/904,868 mailed Jan. 2, 2024.
Advisory Action for U.S. Appl. No. 17/051,585 mailed Oct. 17, 2023.
Advisory Action for U.S. Appl. No. 17/179,116 mailed Jan. 8, 2024.
Advisory Action for U.S. Appl. No. 17/446,256 mailed Dec. 8, 2023.
Advisory Action for U.S. Appl. No. 17/448,811 mailed Nov. 15, 2023.
Advisory Action for U.S. Appl. No. 17/451,345 mailed Oct. 20, 2023.
Advisory Action for U.S. Appl. No. 17/451,354 mailed Jan. 30, 2024.
Advisory Action for U.S. Appl. No. 17/453,260 mailed Dec. 22, 2023.
Advisory Action for U.S. Appl. No. 17/501,591 mailed Feb. 22, 2024.
Advisory Action for U.S. Appl. No. 17/646,771 mailed Feb. 29, 2024.
Advisory Action for U.S. Appl. No. 17/653,137 mailed Dec. 1, 2023.
Advisory Action for U.S. Appl. No. 17/655,464 mailed Dec. 13, 2023.
Advisory Action for U.S. Appl. No. 17/661,090 mailed Feb. 26, 2024.
Advisory Action for U.S. Appl. No. 17/663,330 mailed Feb. 27, 2024.
Advisory Action for U.S. Appl. No. 18/164,800 mailed Feb. 12, 2024.
Communication of Notice of Opposition of European Application No. 17807547.9 mailed Jan. 5, 2024.
Corrected Notice of Allowability for U.S. Appl. No. 16/369,676 mailed Dec. 7, 2023.
Corrected Notice of Allowability for U.S. Appl. No. 17/326,980 mailed Feb. 8, 2024.
Final Office Action for U.S. Appl. No. 16/433,773 mailed Oct. 10, 2023.
Final Office Action for U.S. Appl. No. 16/449,039 mailed Nov. 21, 2023.
Final Office Action for U.S. Appl. No. 16/452,258 mailed Dec. 21, 2023.
Final Office Action for U.S. Appl. No. 16/478,180 mailed Feb. 28, 2024.
Final Office Action for U.S. Appl. No. 16/904,868 mailed Nov. 2, 2023.
Final Office Action for U.S. Appl. No. 17/051,399 mailed Jan. 8, 2024.
Final Office Action for U.S. Appl. No. 17/179,116 mailed Oct. 31, 2023.
Final Office Action for U.S. Appl. No. 17/446,654 mailed Jan. 31, 2024.
Final Office Action for U.S. Appl. No. 17/450,864 mailed Dec. 28, 2023.
Final Office Action for U.S. Appl. No. 17/451,354 mailed Oct. 30, 2023.
Final Office Action for U.S. Appl. No. 17/453,260 mailed Oct. 5, 2023.
Final Office Action for U.S. Appl. No. 17/501,591 mailed Nov. 14, 2023.
Final Office Action for U.S. Appl. No. 17/646,771 mailed Dec. 21, 2023.
Final Office Action for U.S. Appl. No. 17/661,090 mailed Dec. 11, 2023.
Final Office Action for U.S. Appl. No. 17/664,487 mailed Jan. 4, 2024.
Final Office Action for U.S. Appl. No. 18/139,523 mailed Dec. 22, 2023.
Final Office Action for U.S. Appl. No. 18/140,751 mailed Jan. 17, 2024.
Final Office Action for U.S. Appl. No. 18/164,800 mailed Dec. 6, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2023/018474 mailed Sep. 11, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2023/024805 mailed Dec. 14, 2023.
Issue Notification for U.S. Appl. No. 16/245,726 mailed Oct. 18, 2023.
Issue Notification for U.S. Appl. No. 17/461,036 mailed Oct. 11, 2023.
Issue Notification for U.S. Appl. No. 17/663,046 mailed Dec. 20, 2023.
Issue Notification for U.S. Appl. No. 18/299,788 mailed Feb. 21, 2024.
Non-Final Office Action for U.S. Appl. No. 16/369,676 mailed Feb. 29, 2024.
Non-Final Office Action for U.S. Appl. No. 16/433,773 mailed Feb. 26, 2024.
Non-Final Office Action for U.S. Appl. No. 16/452,145 mailed Nov. 2, 2023.
Non-Final Office Action for U.S. Appl. No. 16/478,180 mailed Nov. 7, 2023.
Non-Final Office Action for U.S. Appl. No. 17/051,550 mailed Oct. 24, 2023.
Non-Final Office Action for U.S. Appl. No. 17/051,585 mailed Jan. 8, 2024.
Non-Final Office Action for U.S. Appl. No. 17/051,600 mailed Jan. 17, 2024.
Non-Final Office Action for U.S. Appl. No. 17/179,116 mailed Feb. 26, 2024.
Non-Final Office Action for U.S. Appl. No. 17/444,792 mailed Nov. 17, 2023.
Non-Final Office Action for U.S. Appl. No. 17/446,256 mailed Feb. 13, 2024.
Non-Final Office Action for U.S. Appl. No. 17/447,123 mailed Jan. 24, 2024.
Non-Final Office Action for U.S. Appl. No. 17/448,811 mailed Jan. 17, 2024.
Non-Final Office Action for U.S. Appl. No. 17/451,345 mailed Jan. 17, 2024.
Non-Final Office Action for U.S. Appl. No. 17/453,560 mailed Oct. 16, 2023.
Non-Final Office Action for U.S. Appl. No. 17/645,821 mailed Oct. 25, 2023.
Non-Final Office Action for U.S. Appl. No. 17/653,137 mailed Jan. 18, 2024.
Non-Final Office Action for U.S. Appl. No. 17/664,914 mailed Jan. 31, 2024.
Non-Final Office Action for U.S. Appl. No. 17/808,354 mailed Nov. 28, 2023.
Non-Final Office Action for U.S. Appl. No. 18/134,857 mailed Jan. 25, 2024.
Non-Final Office Action for U.S. Appl. No. 18/140,163 mailed Nov. 9, 2023.
Non-Final Office Action for U.S. Appl. No. 18/198,464 mailed Dec. 7, 2023.
Notice of Allowance for U.S. Appl. No. 16/369,676 mailed Nov. 14, 2023.
Notice of Allowance for U.S. Appl. No. 17/051,550 mailed Feb. 7, 2024.
Notice of Allowance for U.S. Appl. No. 17/051,554 mailed Oct. 18, 2023.
Notice of Allowance for U.S. Appl. No. 17/326,980 mailed Jan. 29, 2024.
Notice of Allowance for U.S. Appl. No. 17/453,560 mailed Jan. 31, 2024.
Notice of Allowance for U.S. Appl. No. 17/662,700 mailed Nov. 15, 2023.
Notice of Allowance for U.S. Appl. No. 18/299,788 mailed Nov. 6, 2023.
Restriction Requirement for U.S. Appl. No. 18/134,857 mailed Oct. 23, 2023.
Submission in Opposition Proceedings for European Application No. 17807547.9 filed Jan. 10, 2024.
Supplemental Notice of Allowance for U.S. Appl. No. 17/051,550 mailed Feb. 21, 2024.
Supplemental Notice of Allowance for U.S. Appl. No. 17/051,554 mailed Feb. 14, 2024.
U.S. Appl. No. 17/451,719, filed Oct. 19, 2021.
U.S. Appl. No. 18/294,370, filed Feb. 1, 2024.
U.S. Appl. No. 18/294,403, filed Feb. 1, 2024.
U.S. Appl. No. 18/373,424, filed Sep. 27, 2023.
U.S. Appl. No. 18/376,274, filed Oct. 3, 2023.
U.S. Appl. No. 18/389,009, filed Nov. 13, 2023.
U.S. Appl. No. 18/415,080, filed Jan. 17, 2024.
U.S. Appl. No. 18/426,795, filed Jan. 30, 2024.
U.S. Appl. No. 18/553,625, filed Oct. 2, 2023.
U.S. Appl. No. 18/556,945, filed Oct. 24, 2023.
U.S. Appl. No. 18/558,502, filed Nov. 1, 2023.
U.S. Appl. No. 18/562,626, filed Nov. 20, 2023.
U.S. Appl. No. 18/563,672, filed Nov. 22, 2023.
U.S. Appl. No. 18/569,711, filed Dec. 13, 2023.
U.S. Appl. No. 18/569,778, filed Dec. 13, 2023.
U.S. Appl. No. 18/584,002, filed Feb. 22, 2024.
U.S. Appl. No. 18/681,987, filed Feb. 7, 2024.
U.S. Appl. No. 18/682,006, filed Feb. 7, 2024.
U.S. Appl. No. 18/687,117, filed Feb. 27, 2024.
U.S. Appl. No. 18/688,023, filed Feb. 29, 2024.
U.S. Appl. No. 63/596,012, filed Nov. 3, 2023.
U.S. Appl. No. 63/608,553, filed Dec. 11, 2023.
Wikipedia Article, “Zylinder (Geometrie)” , https://de.wikipedia.org/w/index.php?title=Zylinder (Geometrie)&oldid=154862081, version of Jun. 1, 2016, 7 pages.
Advisory Action for U.S. Appl. No. 16/452,258 mailed Apr. 8, 2024.
Advisory Action for U.S. Appl. No. 16/478,180 mailed Jun. 7, 2024.
Advisory Action for U.S. Appl. No. 17/051,585 mailed Oct. 8, 2024.
Advisory Action for U.S. Appl. No. 17/444,792 mailed Jul. 8, 2024.
Advisory Action for U.S. Appl. No. 17/446,654 mailed Apr. 15, 2024.
Advisory Action for U.S. Appl. No. 17/450,864 mailed Mar. 21, 2024.
Advisory Action for U.S. Appl. No. 17/451,345 mailed Jul. 3, 2024.
Advisory Action for U.S. Appl. No. 17/645,821 mailed Jul. 2, 2024.
Advisory Action for U.S. Appl. No. 17/664,487 mailed Mar. 13, 2024.
Advisory Action for U.S. Appl. No. 17/808,354 mailed Jun. 12, 2024.
Advisory Action for U.S. Appl. No. 18/134,857 mailed Oct. 23, 2024.
Advisory Action for U.S. Appl. No. 18/139,523 mailed Apr. 24, 2024.
Advisory Action for U.S. Appl. No. 18/140,163 mailed Jun. 3, 2024.
Advisory Action for U.S. Appl. No. 18/140,751 mailed Apr. 24, 2024.
Corrected Notice of Allowability for U.S. Appl. No. 17/450,864 mailed Oct. 24, 2024.
Corrected Notice of Allowability for U.S. Appl. No. 17/501,591 mailed Aug. 9, 2024.
Corrected Notice of Allowability for U.S. Appl. No. 17/657,474 mailed Mar. 13, 2024.
Corrected Notice of Allowability for U.S. Appl. No. 17/657,474 mailed May 14, 2024.
Corrected Notice of Allowability for U.S. Appl. No. 17/664,914 mailed Aug. 9, 2024.
Final Office Action for U.S. Appl. No. 16/433,773 mailed Sep. 9, 2024.
Final Office Action for U.S. Appl. No. 17/051,585 mailed Jul. 5, 2024.
Final Office Action for U.S. Appl. No. 17/051,600 mailed Jun. 27, 2024.
Final Office Action for U.S. Appl. No. 17/444,792 mailed Apr. 3, 2024.
Final Office Action for U.S. Appl. No. 17/446,256 mailed Aug. 7, 2024.
Final Office Action for U.S. Appl. No. 17/447,123 mailed May 14, 2024.
Final Office Action for U.S. Appl. No. 17/451,345 mailed Apr. 18, 2024.
Final Office Action for U.S. Appl. No. 17/597,673 mailed Oct. 22, 2024.
Final Office Action for U.S. Appl. No. 17/645,821 mailed Apr. 3, 2024.
Final Office Action for U.S. Appl. No. 17/653,137 mailed Aug. 7, 2024.
Final Office Action for U.S. Appl. No. 17/653,920 mailed Aug. 14, 2024.
Final Office Action for U.S. Appl. No. 17/808,354 mailed Apr. 10, 2024.
Final Office Action for U.S. Appl. No. 18/003,029 mailed Oct. 22, 2024.
Final Office Action for U.S. Appl. No. 18/134,857 mailed Jul. 25, 2024.
Final Office Action for U.S. Appl. No. 18/140,163 mailed Mar. 27, 2024.
Final Office Action for U.S. Appl. No. 18/164,800 mailed Oct. 22, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/025192 mailed Feb. 7, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/025939 mailed Feb. 7, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/030365 mailed Mar. 13, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/030373 mailed Mar. 13, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/031433 mailed Mar. 4, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/031740 mailed Mar. 4, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/036238 mailed Jul. 22, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/036868 mailed Jun. 5, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/075507 mailed Jun. 13, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/077168 mailed Jun. 24, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/077208 mailed May 10, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/080680 mailed Jul. 22, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/085516 mailed Aug. 26, 2024.
Issue Notification for U.S. Appl. No. 16/369,676 mailed Oct. 2, 2024.
Issue Notification for U.S. Appl. No. 16/449,039 mailed Jun. 19, 2024.
Issue Notification for U.S. Appl. No. 16/452,145 mailed Oct. 23, 2024.
Issue Notification for U.S. Appl. No. 17/051,550 mailed Mar. 13, 2024.
Issue Notification for U.S. Appl. No. 17/051,554 mailed Mar. 6, 2024.
Issue Notification for U.S. Appl. No. 17/326,980 mailed Jul. 10, 2024.
Issue Notification for U.S. Appl. No. 17/448,811 mailed Jul. 3, 2024.
Issue Notification for U.S. Appl. No. 17/453,260 mailed Jul. 10, 2024.
Issue Notification for U.S. Appl. No. 17/453,560 mailed Aug. 7, 2024.
Issue Notification for U.S. Appl. No. 17/657,474 mailed Jun. 19, 2024.
Issue Notification for U.S. Appl. No. 17/662,700 mailed Oct. 23, 2024.
Non-Final Office Action for U.S. Appl. No. 16/452,258 mailed Jun. 20, 2024.
Non-Final Office Action for U.S. Appl. No. 16/478,180 mailed Aug. 7, 2024.
Non-Final Office Action for U.S. Appl. No. 16/904,868 mailed Mar. 12, 2024.
Non-Final Office Action for U.S. Appl. No. 17/378,015 mailed Jul. 5, 2024.
Non-Final Office Action for U.S. Appl. No. 17/446,654 mailed Jun. 25, 2024.
Non-Final Office Action for U.S. Appl. No. 17/450,864 mailed May 29, 2024.
Non-Final Office Action for U.S. Appl. No. 17/451,345 mailed Jul. 25, 2024.
Non-Final Office Action for U.S. Appl. No. 17/451,354 mailed Apr. 4, 2024.
Non-Final Office Action for U.S. Appl. No. 17/595,747 mailed Jun. 7, 2024.
Non-Final Office Action for U.S. Appl. No. 17/597,408 mailed Aug. 15, 2024.
Non-Final Office Action for U.S. Appl. No. 17/597,673 mailed Mar. 20, 2024.
Non-Final Office Action for U.S. Appl. No. 17/614,173 mailed Sep. 24, 2024.
Non-Final Office Action for U.S. Appl. No. 17/628,411 mailed Sep. 23, 2024.
Non-Final Office Action for U.S. Appl. No. 17/645,821 mailed Sep. 6, 2024.
Non-Final Office Action for U.S. Appl. No. 17/646,771 mailed Apr. 24, 2024.
Non-Final Office Action for U.S. Appl. No. 17/653,314 mailed Aug. 29, 2024.
Non-Final Office Action for U.S. Appl. No. 17/653,920 mailed Mar. 15, 2024.
Non-Final Office Action for U.S. Appl. No. 17/655,464 mailed Mar. 26, 2024.
Non-Final Office Action for U.S. Appl. No. 17/661,090 mailed May 22, 2024.
Non-Final Office Action for U.S. Appl. No. 17/664,487 mailed Jun. 17, 2024.
Non-Final Office Action for U.S. Appl. No. 17/749,340 mailed Aug. 14, 2024.
Non-Final Office Action for U.S. Appl. No. 17/757,311 mailed Oct. 22, 2024.
Non-Final Office Action for U.S. Appl. No. 17/758,316 mailed Aug. 28, 2024.
Non-Final Office Action for U.S. Appl. No. 18/003,029 mailed Mar. 26, 2024.
Non-Final Office Action for U.S. Appl. No. 18/139,523 mailed Aug. 26, 2024.
Non-Final Office Action for U.S. Appl. No. 18/140,751 mailed Jun. 21, 2024.
Non-Final Office Action for U.S. Appl. No. 18/164,800 mailed Mar. 22, 2024.
Non-Final Office Action for U.S. Appl. No. 18/389,009 mailed May 24, 2024.
Non-Final Office Action for U.S. Appl. No. 18/426,795 mailed Aug. 9, 2024.
Non-Final Office Action for U.S. Appl. No. 18/451,080 mailed Jul. 30, 2024.
Non-Final Office Action for U.S. Appl. No. 18/584,002 mailed Sep. 19, 2024.
Notice of Allowance for U.S. Appl. No. 16/369,676 mailed Jun. 17, 2024.
Notice of Allowance for U.S. Appl. No. 16/449,039 mailed Mar. 28, 2024.
Notice of Allowance for U.S. Appl. No. 16/452,145 mailed Jul. 11, 2024.
Notice of Allowance for U.S. Appl. No. 16/904,868 mailed Sep. 29, 2024.
Notice of Allowance for U.S. Appl. No. 17/179,116 mailed Sep. 13, 2024.
Notice of Allowance for U.S. Appl. No. 17/326,980 mailed Apr. 5, 2024.
Notice of Allowance for U.S. Appl. No. 17/447,123 mailed Jul. 26, 2024.
Notice of Allowance for U.S. Appl. No. 17/448,811 mailed Jun. 14, 2024.
Notice of Allowance for U.S. Appl. No. 17/450,864 mailed Sep. 18, 2024.
Notice of Allowance for U.S. Appl. No. 17/453,260 mailed Apr. 8, 2024.
Notice of Allowance for U.S. Appl. No. 17/501,591 mailed Jul. 31, 2024.
Notice of Allowance for U.S. Appl. No. 17/657,474 mailed Mar. 5, 2024.
Notice of Allowance for U.S. Appl. No. 17/657,474 mailed May 2, 2024.
Notice of Allowance for U.S. Appl. No. 17/662,700 mailed Jun. 12, 2024.
Notice of Allowance for U.S. Appl. No. 17/662,700 mailed Mar. 6, 2024.
Notice of Allowance for U.S. Appl. No. 17/664,914 mailed Jul. 26, 2024.
Notice of Allowance for U.S. Appl. No. 17/667,097 mailed Aug. 28, 2024.
Notice of Allowance for U.S. Appl. No. 18/140,163 mailed Aug. 21, 2024.
Notice of Allowance for U.S. Appl. No. 18/198,464 mailed Apr. 17, 2024.
Notice of Allowance for U.S. Appl. No. 18/198,464 mailed Jul. 30, 2024.
Notice of Allowance for U.S. Appl. No. 18/389,009 mailed Aug. 28, 2024.
Restriction Requirement for U.S. Appl. No. 17/527,769 mailed Jun. 17, 2024.
Restriction Requirement for U.S. Appl. No. 17/596,629 mailed Sep. 19, 2024.
Restriction Requirement for U.S. Appl. No. 17/625,941 mailed Aug. 7, 2024.
Restriction Requirement for U.S. Appl. No. 17/667,097 mailed Mar. 20, 2024.
Restriction Requirement for U.S. Appl. No. 17/756,201 mailed Oct. 4, 2024.
Restriction Requirement for U.S. Appl. No. 17/878,268 mailed Sep. 20, 2024.
U.S. Appl. No. 17/013,822, filed Sep. 7, 2020.
U.S. Appl. No. 17/444,792, filed Aug. 10, 2021.
U.S. Appl. No. 18/249,577, filed Oct. 19, 2021.
U.S. Appl. No. 18/610,523, filed Mar. 20, 2024.
U.S. Appl. No. 18/662,216, filed May 13, 2024.
U.S. Appl. No. 18/693,638, filed Mar. 20, 2024.
U.S. Appl. No. 18/694,090, filed Mar. 21, 2024.
U.S. Appl. No. 18/728,604, filed Jul. 12, 2024.
U.S. Appl. No. 18/757,964, filed Jun. 28, 2024.
U.S. Appl. No. 18/758,025, filed Jun. 28, 2024.
U.S. Appl. No. 18/828,559, filed Sep. 9, 2024.
U.S. Appl. No. 18/834,115, filed Jul. 29, 2024.
U.S. Appl. No. 18/834,176, filed Jul. 29, 2024.
U.S. Appl. No. 18/834,340, filed Jul. 30, 2024.
U.S. Appl. No. 18/835,068, filed Aug. 1, 2024.
U.S. Appl. No. 18/835,444, filed Aug. 2, 2024.
U.S. Appl. No. 18/836,204, filed Aug. 6, 2024.
U.S. Appl. No. 18/841,630, filed Aug. 26, 2024.
U.S. Appl. No. 18/851,197, filed Sep. 26, 2024.
U.S. Appl. No. 18/886,306, filed Sep. 16, 2024.
U.S. Appl. No. 18/903,592, filed Oct. 1, 2024.
U.S. Appl. No. 18/925,921, filed Oct. 24, 2024.
U.S. Appl. No. 63/564,696, filed Mar. 13, 2024.
U.S. Appl. No. 63/561,893, filed Dec. 11, 2023.
U.S. Appl. No. 63/568,615, filed Mar. 22, 2024.
U.S. Appl. No. 63/683,428, filed Aug. 15, 2024.
U.S. Appl. No. 63/711,438, filed Oct. 24, 2024.
U.S. Appl. No. 63/711,445, filed Oct. 24, 2024.
“Dictionary.com, Abut Definition and Meaning”, Dictionary.com, https://www.dictionary.com/browse/abut, 2024, 1 page.
“Oblong”, Cambridge Dictionary, https://dictionary.cambridge.org/dictionary/english/oblong, 2024, 1 page.
Britannica, “Polyolefin”, Britannica Online Encyclopedia, T. Editors of Encyclopaedia, https://www.britannica.com/science/polyolefin, Jul. 26, 2012.
Martin, et al., “Chapter 5 Applications of Polyethylene Oxide (POLYOX) in Hydrophilic Matrices”, Hydrophilic Matrix Tablets for Oral Controlled Release, AAPS Advances in the Pharmaceutical Sciences vol. 16, 2014, pp. 123-141.
Wikipedia Article, “Decibel”, https://web.archive.org/web/2020041521917/https://en.wikipedia/org/wiki/Decibel last accessed Mar. 11, 2024, 21 pages.
Wikipedia Article, “Fiberglass”, https://web.archive.org.web/20200309194847/https://en.wikipedia.org/wiki/Fiberglass last accessed Mar. 11, 2024.
Related Publications (1)
Number Date Country
20220370236 A1 Nov 2022 US
Provisional Applications (1)
Number Date Country
63191558 May 2021 US