Fluid collection assemblies including at least one inflation device

Information

  • Patent Grant
  • 12156792
  • Patent Number
    12,156,792
  • Date Filed
    Wednesday, September 8, 2021
    3 years ago
  • Date Issued
    Tuesday, December 3, 2024
    3 months ago
Abstract
An example fluid collection assembly includes a fluid impermeable barrier having a proximal surface and a distal surface opposite the proximal surface. The proximal surface defines an opening. The fluid collection assembly also includes at least one inflation device. The inflation device includes a bladder. The bladder may be adjacent to the distal surface of the fluid impermeable barrier or between a conduit disposed in the chamber and the distal surface. The bladder is configured to switch between a first state and at least a second state. A volume of the bladder is greater when the bladder is the second state than when the bladder is in the first state. Switching the bladder between the first and second states changes a curvature of the at least a portion of the fluid collection assembly.
Description
BACKGROUND

An individual may have limited or impaired mobility such that typical urination processes are challenging or impossible. For example, the individual may have surgery or a disability that impairs mobility. In another example, the individual may have restricted travel conditions such as those experience by pilots, drivers, and workers in hazardous areas. Additionally, fluid collection from the individual may be needed for monitoring purposes or clinical testing.


Bed pans and urinary catheters, such as a Foley catheter, may be used to address some of these circumstances. However, bed pans and urinary catheters have several problems associated therewith. For example, bed pans may be prone to discomfort, spills, and other hygiene issues. Urinary catheters be may be uncomfortable, painful, and may cause urinary tract infections.


Thus, users and manufacturers of fluid collection devices continue to seek new and improved devices, systems, and methods to collect urine.


SUMMARY

Embodiments disclosed herein are directed to fluid collection assemblies, systems including the same, and methods of using the same are disclosed herein. In an embodiment, a fluid collection assembly is disclosed. The fluid collection assembly includes a fluid impermeable barrier defining a chamber, at least one opening, and at least one fluid outlet. The fluid impermeable barrier includes at least one proximal surface defining the at least one opening and at least one distal surface opposite the proximal surface. The fluid collection assembly also includes at least one porous material disposed in the chamber. The fluid collection assembly includes at least one inflation device that includes a bladder. The bladder is operably coupled to the fluid impermeable barrier. The bladder includes one or more walls defining at least one interior region, The bladder is configured to switch between a first state and at least a second state. A volume of the at least one interior region is greater when the bladder is in the second state than when the bladder is in the first state. Switching the bladder between the first state and the second state changes a curvature of at least a portion of the fluid impermeable barrier.


In an embodiment, a system is disclosed. The system includes a fluid collection assembly, a fluid storage container, and a vacuum source. the chamber of the fluid collection assembly, the fluid storage container, and the vacuum source are in fluid communication with each other via one or more conduits.


In an embodiment, a method of using a fluid collection assembly is disclosed. The method includes positioning at least one opening of the fluid collection assembly adjacent to a female urethral opening. The fluid collection assembly includes a fluid impermeable barrier defining a chamber, at least one opening, and at least one fluid outlet. The fluid impermeable barrier includes at least one proximal surface defining the at least one opening and at least one distal surface opposite the proximal surface. The fluid collection assembly also includes at least one porous material disposed in the chamber. The fluid collection assembly further includes at least one inflation device including a bladder and at least one valve. The bladder includes one or more walls defining at least one interior region. The method further includes flowing at least one inflation fluid through the at least one valve and into the at least one interior region of the at least one inflation device to change a curvature of the fluid impermeably barrier.


Features from any of the disclosed embodiments may be used in combination with one another, without limitation. In addition, other features and advantages of the present disclosure will become apparent to those of ordinary skill in the art through consideration of the following detailed description and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate several embodiments of the present disclosure, wherein identical reference numerals refer to identical or similar elements or features in different views or embodiments shown in the drawings.



FIGS. 1A and 1B are isometric views of a fluid collection assembly when a bladder of the fluid collection assembly is in a first state and a second state, respectively, according to an embodiment.



FIGS. 1C and 1D are cross-sectional schematics of the fluid collection assembly taken along planes C-C and D-D shown in FIGS. 1A and 1B, respectively, according to an embodiment.



FIG. 1E is a cross-sectional schematic of the fluid collection assembly taken along plane E-E shown in FIG. 1A, according to an embodiment.



FIGS. 2-4 are cross-sectional schematics and FIGS. 5 and 6 are side views of different fluid collection assemblies illustrating different techniques for controlling the expansion rate of the first and second regions of the bladders, according to different embodiments.



FIG. 7 is side view of a fluid collection assembly that includes a “crinkle” shaped bladder, according to an embodiment.



FIG. 8 is a side view of a fluid collection assembly that includes a plurality of inflation devices, according to an embodiment.



FIG. 9 is a schematic side view of a fluid collection system that is configured to control the shape of a fluid collection assembly, according to an embodiment.



FIGS. 10-12 are cross-sectional schematics of fluid collection assemblies having at least one inflation device positioned at locations other than an outer surface of the fluid impermeable barrier, according to different embodiments.



FIG. 13A is a cross-sectional view of a fluid collection assembly, according to an embodiment.



FIG. 13B is a cross-sectional view of the fluid collection assembly taken along plane B-B of FIG. 13A, according to an embodiment.



FIG. 14 is a block diagram of a system for fluid collection, according to an embodiment.



FIG. 15 is a flow diagram of a method to collect fluid, according to an embodiment.





DETAILED DESCRIPTION

Embodiments are directed to fluid collection assemblies, systems including the same, and methods of using the same are disclosed herein. An example fluid collection assembly includes a fluid impermeable barrier having at least one proximal surface configured to be adjacent to an patient (i.e., an individual using the fluid collection assembly) when the fluid collection assembly is in use and at least one distal surface opposite the proximal surface. The fluid impermeable barrier at least defines a chamber, at least one opening defined by the proximal surface, and at least one fluid outlet. The fluid collection assembly also includes at least one porous material disposed in the chamber and at least one inflation device. The inflation device includes a bladder. The bladder may be adjacent to the distal surface of the fluid impermeable barrier or between a conduit disposed in the chamber and the distal surface. The bladder is configured to switch between a first state and at least a second state. A volume of the bladder is greater when the bladder is the second state than when the bladder is in the first state. Switching the bladder between the first state and the second state changes a curvature of at least a portion of the fluid impermeable barrier.


During use, the fluid collection assembly is positioned adjacent to a urethral opening (e.g., vagina) of the patient. One or more bodily fluids (e.g., urine, blood, etc.) that are discharged from the urethral opening of the patient flow through the opening and into the chamber. The bodily fluids that enter the chamber are received into the porous material and are directed towards the fluid outlet. The bodily fluids may be removed from the chamber through the fluid outlet, for example, when a suction force from a vacuum source is applied to the fluid outlet.


Generally, the fluid collection assembly conforms to the shape of the region about the urethral opening to prevent gaps between the fluid collection assembly and the region about the urethral opening. For example, bodily fluids may leak (e.g., do not enter the chamber and/or do not remain in the chamber) through gaps between the fluid collection assembly and the region about the patient. Such leaks may be embarrassing to the patient using the fluid collection assembly, create unsanitary situations, and cause the skin of the patient to remain moist which may cause skin degradation (e.g., rash) and general discomfort.


The region of the patient about the urethral opening may vary in size and shape depending on the patient. Some conventional fluid collection assemblies are manually bent to conform to the shape of the region about the urethral opening to prevent gaps between the conventional fluid collection assemblies and the region about the patient. Contact between the thighs of the patient and the conventional fluid collection assemblies maintains the bent shape of the conventional fluid collection assemblies. However, skinny patients may have too small of thighs to maintain contact with the conventional fluid collection assemblies while forgetful patients (e.g., confused patients, young children, patients with dementia) may move their legs such that the thighs no longer contact the conventional fluid collection assemblies, either of which may cause the fluid collection assembly to loss the bent shape thereof.


Embodiments of the fluid collection assemblies disclosed herein are an improvement to such fluid collection assemblies. As previously discussed, the fluid collection assemblies disclosed herein include at least one inflation device. The inflation device is configured to control the curvature of at least a portion of the fluid impermeable barrier such that the fluid impermeable barrier generally conforms to the shape (e.g., curvature) of the region about the urethral opening. In other words, the inflation device allows the fluid collection assembly to maintain the shape thereof without relying on contact between the fluid collection assembly and the thighs of the patient. As such, the inflation device may minimize gaps between the fluid impermeable barrier and the region about the urethral opening through which bodily fluids may leak. For example, the inflation device includes a bladder that is configured to switch between a first state and at least a second state. The bladder switches from the first state to the second state by increasing a volume thereof and from the second state to the first state by decreasing the volume thereof. The bladder may increase and decrease the volume thereof by adding or removing, respectively, at least one inflation fluid (e.g., air, water, saline, or other suitable fluid) from the bladder. A curvature of the inflation device may change when switching the bladder between the first and second states thereof. For example, the bladder may exhibit a first shape (e.g., first curvature) when the bladder is in the first state and a second shape (e.g., second curvature) when the bladder is in the second state, wherein the first shape and the second shape are different. The shape of at least a portion of the rest of the fluid collection assembly (e.g., fluid impermeable barrier) generally corresponds to the shape of the bladder and, thus, the inflation device may control the shape of the fluid impermeable barrier.



FIGS. 1A and 1B are isometric views of a fluid collection assembly 100 when a bladder 118 of the fluid collection assembly 100 is in a first state and a second state, respectively, according to an embodiment. FIGS. 1C and 1D are cross-sectional schematics of the fluid collection assembly 100 taken along planes C-C and D-D shown in FIGS. 1A and 1B, respectively, according to an embodiment. FIG. 1E is a cross-sectional schematic of the fluid collection assembly 100 taken along plane E-E shown in FIG. 1A, according to an embodiment. The fluid collection assembly 100 includes a fluid impermeable barrier 102. The fluid impermeable barrier 102 includes a proximal surface 104 that is configured to be positioned adjacent to an patient during use and a distal surface 106 opposite the proximal surface 104. The fluid impermeable barrier 102 defines at least a chamber 108, at least one opening 110 that is defined by the proximal surface 104, and at least one fluid outlet 112. The fluid collection assembly 100 also includes at least one porous material 114 disposed in the chamber 108 and at least one inflation device 116 adjacent to the distal surface 106.


The inflation device 116 includes a bladder 118. The bladder 118 includes one or more walls 117 defining an interior region 120. The inflation device 116 also includes at least one valve 122 in fluid communication with the interior region 120. The valve 122 is configured to selectively permit flow of an inflation fluid into and/or out of the interior region 120. For example, the valve 122 may allow an inflation fluid to enter the interior region 120 when it is desirable to increase the volume of the bladder 118 which, in turn, changes a shape (e.g., curvature) of the bladder 118 and at least a portion of the fluid impermeable barrier 102. The valve 122 may also enable removing the inflation fluid from the interior region 120 when it is desirable to decrease the volume of the bladder 118 which, in turn changes a shape (e.g., return to the initial shape) of the bladder 118 and at least a portion of the fluid impermeable barrier 102.


Adding or removing the inflation fluids into and from the interior region 120 changes the state of the bladder 118. The bladder 118 may exhibit at least a first state and a second state. The amount (volume or weight) of inflation fluids present in the interior region 120 is greater when the bladder 118 is in the second state than when the bladder 118 is in the first state. In an example, as shown in FIG. 1C, the bladder 118 is in the first state when the bladder 118 is in a deflated state (e.g., there are not or substantially no fluids in the interior region 120). However, it is noted that the bladder 118 may be in the first state when some inflation fluids are present in the interior region 120. Generally, the fluid collection assembly 100 is provided without any inflation fluids in the interior region 120 (e.g., the fluid collection assembly 100 is provided with the bladder 118 in the deflated state) thereby preventing the bladder 118 from leaking during shipping and handling and inhibiting contaminant growth (e.g., bacteria growth) in the interior region 120 before use. In an example, as shown in FIG. 1D, the bladder 118 is in the second state when the bladder 118 is in an at least partially inflated state. The fluid collection assembly 100 is generally not provided with the bladder 118 in the second state since the inflation fluids may leak during shipping and handling and the inflation fluids may encourage contaminant growth more than if the bladder 118 was provided in an deflated state. However, in some examples, the fluid collection assembly 100 is provided in the second state.


The bladder 118 may exhibit one or more additional states (e.g., a third state, a fourth state, and so forth) besides the first and second states discussed above. In an embodiment, the one or more additional states may include less inflation fluids in the interior region 120 (e.g., is more deflated) than the first state (e.g., the first state is a partially inflated state). In such an embodiment, the one or more additional states may include a deflated or partially deflated state and may be formed by removing inflation fluids from the interior region 120 when the bladder 118 is in the first or second state. In an embodiment, the one or more additional states may include more inflation fluids in the interior region 120 (e.g., is more inflated) than the first state (e.g., the first state is a deflated or partially inflated state) and include less inflation fluids in the interior region 120 than the second state. In such an embodiment, the one or more additional states include a partially inflated state and may be formed by adding or removing inflation fluids to the interior region 120 when the bladder 118 is in the first state or second state, respectively. In an embodiment, the one or more additional states may include more inflation fluids in the interior region 120 than the second state (e.g., the second state is a partially inflated state). In such an embodiment, the one or more additional states may be an at least partially inflated state and may be formed by adding inflation fluids to the interior region 120 when the bladder 118 is in the first state or second state. It is noted that, in some embodiments, the bladder 118 may only include the first and second states.


As shown in FIGS. 1A and 1B, switching the bladder 118 between the first state and the second state (or any of the other states thereof) changes the shape of the bladder 118. As discussed herein, changing the shape of the bladder 118 generally refers to changing at least a curvature of the bladder 118. Changing the shape of the bladder 118 causes at least a portion of the rest of the fluid collection assembly 100, such as at least a portion of the fluid impermeable barrier 102, to change a shape thereof that generally corresponds to the shape of the bladder 118. In an embodiment, as illustrated, the bladder 118 may exhibit a generally straight shape (e.g., exhibits a radius of curvature greater than about 25 cm) when the bladder 118 is in a first state (e.g., deflated state). In such an embodiment, at least a portion of the rest of the fluid collection assembly 100 may exhibit a generally straight shape when the bladder 118 is in the first state. The bladder 118 and the fluid collection assembly 100 may exhibit the generally straight shape when the bladder 118 is in the first state, for example, when the fluid collection assembly 100 would exhibit the substantially straight shape when the inflation device 116 is omitted from the fluid collection assembly 100. For instance, the bladder 118 may be flimsy or flexible and exert substantially no force on the rest of the fluid collection assembly 100 that is sufficient to significantly modify a shape of the rest of the fluid collection assembly 100 when the bladder 118 is in the first state. Switching the bladder 118 from the first state to the second state may cause the bladder 118 to exhibit a generally curved shape (e.g., exhibits an average radius of curvature less than about 40 cm, such as less than about 35 cm, less than about 30 cm, less than about 25 cm, less than about 20 cm, less than about 15 cm, or less than about 10 cm). The curved shape of the bladder 118 may be a concave curved shape relative to the opening 110. Similarly, at least a portion of the fluid collection assembly 100 may exhibit a generally curved shape when the bladder 118 is in the second state. For example, inflating the bladder 118 may increase the rigidity of the bladder 118 such that the bladder 118 exerts a force on the rest of the fluid collection assembly 100 that is sufficient to change a shape of the rest of the fluid collection assembly 100. The radius of curvature of the bladder 118 and the fluid collection assembly 100 may be controlled based on the amount of bodily fluids that are present in the interior region 120. For example, increasing the amount of inflation fluids in the interior region 120 may decrease the average radius of curvature of the bladder 118 and the fluid collection assembly 100. Similarly, decreasing the amount of inflation fluids in the interior region 120 may increase the radius of curvature of the bladder 118. Thus, the amount of inflation fluids in the interior region 120 may control the shape of the fluid collection assembly 100 and may be used to shape the fluid collection assembly 100 to exhibit a shape that corresponds to the shape of the region about the urethral opening.


In an embodiment, not shown, the bladder 118 and the fluid collection assembly 100 may exhibit a curved shape (e.g., a radius of curvature less than about 40 cm, less than about 25 cm, etc.) when the bladder 118 is in the first state. The curved shape of the bladder 118 may be a concave curve relative to the opening 110. The bladder 118 and the fluid collection assembly 100 may exhibit the curved shape when the bladder 118 is in the first state, for example, when the fluid collection assembly 100 would exhibit the curved shape when the inflation device 116 is omitted from the fluid collection assembly 100. For instance, the bladder 118 may be flimsy and exert no force on the rest of the fluid collection assembly 100 that is sufficient to significantly modify a shape of the rest of the fluid collection assembly 100 when the bladder 118 is in the first (e.g., deflated) state. Switching the bladder 118 to the second state may either increase or decrease the radius of curvature of the bladder 118 depending on the shape that the bladder assumes when inflated. Similarly, switching the bladder 118 to the second state may either increase or decrease the average radius of curvature of the rest of the fluid collection assembly 100. Thus, the amount of inflation fluids in the interior region 120 may control the shape of the fluid collection assembly 100 and may be used to shape the fluid collection assembly 100 to exhibit a shape that corresponds to the shape of the region about the urethral opening.


The shape that the bladder 118 assumes when switching the bladder 118 from the first state to the second state may be controlled by configuring different portions of the bladder 118 to expand at different rates (hereafter referred to as “expansion rate”). The expansion rate may be determined by taking the absolute value of the length of at least a portion (e.g., all) of bladder 118 when the bladder 118 is in the first state minus the length of the same portion of the bladder 118 when the bladder 118 is in the second state, wherein the length is measured parallel to the longitudinal axis of the fluid collection assembly 100. In an embodiment, the walls 117 of the bladder 118 includes a first region 124 and a second region 126 opposite the first region 124. The first region 124 and the second region 126 generally face the same direction as the proximal surface 104 and the distal surface 106, respectively. The first region 124 and the second region 126 may exhibit different expansion rates. In an embodiment, as illustrated, the first region 124 exhibits an expansion rate that is less than the second region 126. As such, switching the bladder 118 from the first state to the second state causes a decrease an average radius of curvature of the bladder 118 (i.e., causes the bladder 118 to bend) because a length of the second region 126 increases more than a length of the first region 124 when the bladder 118 switches from the first state to the second state. In an embodiment, the first region 124 exhibits an expansion rate that is greater than the second region 126. FIGS. 2-6 illustrate some examples of techniques that may be used to cause the first region 124 to exhibit different expansion rates than the second region 126.


The shape (e.g., curvature) that the bladder 118 assumes when in the first state, second state, and, optionally, the one or more additional states depend on a number of factors. For example, the shape that the bladder 118 assumes when the bladder 118 is in a deflated (e.g., first) state may be dictated by the shape of the rest of the fluid collection assembly 100. For instance, the bladder 118 may be formed from a relatively flexible material which allows the bladder 118 to be inflated. However, without any inflation fluids in the interior region 120, the bladder 118 merely conforms to the shape of the fluid collection assembly 100. Increasing the quantity of the inflation fluids in the interior region 120 to or near a level where the inflation fluids cause the bladder 118 to stretch may increase the rigidity of the bladder 118 to the point that the bladder 118 may exhibit a shape that is different than the fluid collection assembly 100. The shape that the bladder 118 exhibits may be, for example, an arc (e.g., a portion of a circle, oval, or other curve), one or more bends between adjacent straight or curved portions, or any other suitable shape. The different shapes that the bladder 118 may exhibit may be controlled by selecting the expansion rates of at least one of the first and second regions 124, 126, different portions of the first region 124 (e.g., one portion of the first region 124 may exhibit an expansion rate that is different than another portion of the first region 124), or different portions of the second region 126 (e.g., one portion of the second region 126 may exhibit an expansion rate that is different than another portion of the second region 126). In an example, the bladder 118 may exhibit a generally circular arc in the second state when substantially all the first region 124 exhibits the substantially same expansion rate and substantially all of the second region 126 exhibits the substantially same expansion rate, wherein the expansion rates of the first and second regions 124, 126 are different. In an example, the bladder 118 may exhibit a generally oval arc, other arc, or a bend therein when a portion of the first region 124 exhibits a different expansion rate than another portion of the first region 124 and/or when a portion of the second region 126 exhibits a different expansion rate than another portion of the second region 126. The expansion rates of the first and second regions 124, 126 may be selected based on factors discussed in more detail with regards to FIGS. 2-6.


In an embodiment, as illustrated, the inflation device 116 is positioned such that the first region 124 is adjacent to the distal surface 106 of the fluid impermeable barrier 102. Positioning the first region 124 adjacent to the distal surface 106 allows the inflation device 116 to change the shape of at least a portion of the rest of the rest of the fluid collection assembly 100. Further, a width of the bladder 118 (e.g., measured perpendicular to a length of the bladder 118 and perpendicular to thickness measured between the first and second regions 124, 126) may increase when the bladder 118 switches from the first state to the second state. However, positioning the first region 124 adjacent to the distal surface 106 may prevent the increase in the width of the bladder 118 from increasing the maximum width of the fluid collection assembly 100 when the bladder 118 switches from the first state to the second state, wherein the width of the fluid collection assembly 100 is measured perpendicular to the width of the bladder 118. The maximum width of the fluid collection assembly 100 does not change when the bladder 118 switches from the first state to the second state because the width of the bladder 118 is less than the maximum width of the fluid collection assembly 100 and/or the width of the bladder 118 does not need to significantly increase to significantly change the shape of the bladder 118. It is noted that not increasing the maximum width of the fluid collection assembly 100 when switching the bladder 118 from the first state to the second state allows the fluid collection assembly 100 to be used comfortably with patient's having average or larger than average sized thighs. For example, patients having average or larger than average thighs do not have much space between the thighs to accommodate an increased width of the fluid collection assembly 100 without uncomfortably pressing into the thighs.


The fluid impermeable barrier 102 may include at least one lateral surface 128 extending between the proximal and distal surfaces 104, 106. The lateral surface 128 may be adjacent to a thigh of an patient when the fluid collection assembly 100 is worn by the patient. In an embodiment, as discussed, above, the bladder 118 may be positioned adjacent to the distal surface 106 and not adjacent to the lateral surface 128 to prevent the bladder 118 from increasing the maximum width of the fluid collection assembly 100. In an embodiment, the bladder 118 may be positioned adjacent to the lateral surface 128 of the fluid impermeable barrier 102. In such an embodiment, switching the bladder 118 from the first state to the second state may increase the width of the fluid collection assembly 100. Increasing the width of the fluid collection assembly 100 may improve contact between smaller than average thighs and the fluid collection assembly 100. Further, when the bladder 118 is positioned adjacent to the lateral surface 128, the fluid collection assembly 100 may require two inflation devices on opposing sides of the lateral surface 128 and both inflation devices may need to receive the same amount of inflation fluids to ensure that the fluid collection assembly 100 is symmetrically shaped thereby making the manufacturing and use of the inflation device 116 more complex. It is noted that gaps may form between the fluid collection assembly 100 and the patient when the fluid collection assembly 100 is shaped non-symmetrically.


The walls 117 of the bladder 118 are formed from a material is substantially impermeable to the inflation fluid (e.g., substantially impermeable to a gas and/or a liquid) which allows the bladder 118 to retain the inflation fluids without leaks. The walls 117 may also be formed from a flexible material. The flexible material of the walls 117 allows the bladder 118 and, by extension, the fluid collection assembly 100 to change a shape thereof. For example, the flexible material of the walls 117 allow the interior region 120 to increase a volume thereof when the interior region 120 receives an inflation fluid and decrease a volume thereof when inflation fluids are removed from the interior region 120 which, in turn, changes the shape of the bladder 118. Examples of materials that may form the walls 117 of the bladder 118 include silicone, rubber, latex, polychloroprene, nylon fabric, polypropylene, polyvinyl chloride, nitrile rubber, other suitable polymers, a metal foil, a composite, or combinations thereof. It is noted that the walls 117 may contact the patient and might be formed from a biocompatible material. In an embodiment, the walls 117 are configured to stretch (e.g., elastically or plastically stretch) so the walls 117 remain taut when the bladder 118 is at least partially inflated. In an embodiment, the wall 117 forms a plurality of wrinkles when the bladder 118 is at least partially deflated and adding inflation fluid into the interior region 120 decreases the wrinkles.


The valve 122 (illustrated schematically) may include any suitable valve configured to allow for the controllable addition and removal of inflation fluids from the interior region 120. In an embodiment, the valve 122 is a luer valve and includes a male-tapper fitting or a female-taper fitting. In an embodiment, the valve 122 includes a fluid impermeable membrane with a slit or opening formed therein. The slit or opening of the fluid impermeable membrane remains substantially closed when no external load is applied thereto but opens when an external load is applied thereto (e.g., an external load caused by pressing a syringe against the fluid impermeable membrane). In an embodiment, the valve 122 may include a mechanical valve, such as a ball valve, a butterfly valve, or any other suitable mechanical valve. The mechanical valve may be manually operated or controlled using a computer. In an embodiment, the valve 122 may include a one-way valve (e.g., check valve) to limit leaks from the bladder 118 and to make the fluid collection assembly 100 easier to use. In such an embodiment, the valve 122 may only add or remove (but not both) inflation fluid from the interior region 120 and, as such, the fluid collection assembly 100 including the check valve is configured for single use. In an embodiment, the valve 122 may include a two-way valve which allows the inflation fluid to be added and removed from the interior region 120. In such an embodiment, at least a portion of the fluid collection assembly 100 (e.g., the fluid impermeable barrier 102 and the inflation device 116) may be reusable.


In an embodiment, as illustrated, the valve 122 may extend outwardly from the bladder 118. For example, the valve 122 may extend from the bladder 118 thereby allowing a user (e.g., medical practitioner or patient) of the fluid collection assembly 100 to easily access the valve 122. As shown, the valve 122 may extend a short distance only from the fluid impermeable barrier 102, such as about 2 cm or less, about 1.5 cm or less, about 1 cm or less, about 0.75 cm or less, about 0.5 cm or less, about 0.25 cm or less, or in ranges of about 0.25 cm to about 0.75 cm, about 0.5 cm to about 1 cm, about 0.75 cm to about 1.5 cm, or about 1 cm to about 2 cm. However, the valve 122 may extend a significant distance from the fluid impermeable barrier 102, such as a distance that is about 2 cm or greater, about 5 cm or greater, about 10 cm or greater, about 50 cm or greater, about 100 cm or greater, about 500 cm or greater, about 1 m or greater, about 2 m or greater, or in ranges of about 2 cm to about 10 cm, about 5 cm to about 50 cm, about 10 cm to about 100 cm, about 50 cm to about 500 cm, about 100 cm to about 1 m, or about 500 cm to about 2 m. When the valve 122 extends a significant distance from the fluid impermeable barrier 102, the valve 122 may include a flexible tube which allows a user of the fluid collection assembly 100 to easily access to the valve 122 while the fluid collection assembly 100 is positioned adjacent to the urethral opening without having the user near the urethral opening (which the patient may find uncomfortable).


In an embodiment, as illustrated, the valve 122 extends from or near a second region 126 of the bladder 118. The valve 122 at or near the second region 126 may allow a user of the fluid collection assembly 100 to access the valve 122 when the fluid collection assembly 100 is adjacent to the urethral opening since, generally, the inner thighs of the patient may contact or obstruct the proximal and lateral surfaces 104, 128 of the fluid impermeable barrier 102. Further, the valve 122 at or near the second region 126 prevents or at least inhibits the valve 122 from pressing against the inner thighs during use which may cause discomfort.


The at least one inflation fluid added or removed from the interior region 120 may include any suitable fluid, such as any suitable liquid or any suitable gas. In an embodiment, the inflation fluids are formed from a generally regarded as safe (“GRAS”) material. Forming the inflation fluids from a GRAS materials may decrease health risks caused by inadvertently exposing the patient to the inflation fluids. Examples of GRAS materials that may form the inflation fluids includes water, saline solution, alcohol solution, atmospheric air, nitrogen, any other GRAS material, or combinations thereof.


Further examples of inflation devices are disclosed in U.S. Provisional Patent Application No. 63/030,685 filed on May 27, 2020, the disclosure of which is incorporated herein, in its entirety, by this reference.


As previously discussed, the fluid collection assembly 100 includes a fluid impermeable barrier 102. In the illustrated embodiment, the fluid impermeable barrier 102 is distinct from the inflation device 116.


The fluid impermeable barrier 102 may be formed of any suitable fluid impermeable material(s), such as a fluid impermeable polymer (e.g., silicone, polypropylene, polyethylene, polyethylene terephthalate, a polycarbonate, etc.), a metal film, natural rubber, another suitable material, or combinations thereof. The fluid impermeable barrier 102 substantially prevents the bodily fluids from passing through the fluid impermeable barrier 102. In an example, the fluid impermeable barrier 102 may be air permeable and fluid impermeable. In such an example, the fluid impermeable barrier 102 may be formed of a hydrophobic material that defines a plurality of pores. At least a surface of the fluid impermeable barrier 102 that may contact the patient may be formed from a soft and/or smooth material (e.g., silicone), thereby reducing chaffing. In an embodiment, the fluid impermeable barrier 102 may be formed from a flexible material, such as silicone, which allows the fluid impermeable barrier 102 to be bent into a shape that conforms the anatomy of the patient. Further, as shown in FIGS. 1B and 1C, forming the fluid impermeable barrier 102 from a flexible material allows the fluid impermeable barrier 102 to accommodate the shape and/or size changes by switching the fluid collection assembly 100 and the bladder 118 between states.


In some examples, the fluid impermeable barrier 102 may be tubular (ignoring the opening), such as substantially cylindrical (as shown), oblong, prismatic, or flattened tubes. During use, the outer surface (e.g., at least a portion of one or more of the proximal surface 104, the distal surface 106, or the lateral surface 128) of the fluid impermeable barrier 102 may contact the patient. The fluid impermeable barrier 102 may be sized and shaped to fit in the gluteal cleft between the legs of a female user when the bladder 118 are in at least the second state.


The opening 110 provides an ingress route for fluids to enter the chamber 108. The opening 110 may be defined by the fluid impermeable barrier 102 such as by an inner edge of the fluid impermeable barrier 102. For example, the opening 110 is formed in and extends through the fluid impermeable barrier 102, from the proximal surface 104 to an inner surface 132 of the fluid impermeable barrier 102, thereby enabling bodily fluids to enter the chamber 108 from outside of the fluid collection assembly 100. The opening 110 may be an elongated hole in the fluid impermeable barrier 102. For example, the opening 110 may be defined as a cut-out in the fluid impermeable barrier 102. The opening 110 may be located and shaped to be positioned adjacent to a female urethral opening.


The fluid collection assembly 100 may be positioned proximate to the female urethral opening and urine or other bodily fluids may enter the chamber of the fluid collection assembly 100 via the opening 110. The fluid collection assembly 100 is configured to receive the bodily fluids into the chamber 108 via the opening 110. When in use, the opening 110 may have an elongated shape that extends from a first location below the urethral opening (e.g., at or near the anus or the vaginal opening) to a second location above the urethral opening (e.g., at or near the top of the vaginal opening or the pubic hair).


The opening 110 may have an elongated shape because the space between the legs of a female is relatively small when the legs of the female are closed, thereby only permitting the flow of the bodily fluids along a path that corresponds to the elongated shape of the opening 110 (e.g., longitudinally extending opening). The opening 110 in the fluid impermeable barrier 102 may exhibit a length measured along the longitudinal axis of the fluid collection assembly 100 that may be at least about 10% of the length of the fluid collection assembly 100, such as about 25% to about 50%, about 40% to about 60%, about 50% to about 75%, about 65% to about 85%, or about 75% to about 95% of the length of the fluid collection assembly 100.


The opening 110 in the fluid impermeable barrier 102 may exhibit a width measured transverse to the longitudinal axis of the fluid collection assembly 100 that may be at least about 10% of the circumference of the fluid collection assembly 100, such as about 25% to about 50%, about 40% to about 60%, about 50% to about 75%, about 65% to about 85%, or about 75% to about 100% of the circumference of the fluid collection assembly 100. The opening 110 may exhibit a width that is greater than 50% of the circumference of the fluid collection assembly 100 since the vacuum (e.g., suction) through the conduit 134 pulls the fluid through the porous material 114 and into the conduit 134.


In some examples, the opening 110 may be vertically oriented (e.g., having a major axis parallel to the longitudinal axis of the fluid collection assembly 100). In some examples (not shown), the opening 110 may be horizontally oriented (e.g., having a major axis perpendicular to the longitudinal axis of the fluid collection assembly 100). In an example, the fluid impermeable barrier 102 may be configured to be attached to the patient, such as adhesively attached (e.g., with a hydrogel adhesive) to the patient. According to an example, a suitable adhesive is a hydrogel layer.


As previously discussed, the fluid impermeable barrier 102 may define fluid outlet 112 configured to remove bodily fluids from the chamber 108. The fluid outlet 112 is distinct from the opening 110 and the valve 122. In some examples, the fluid outlet 112 is sized to receive the conduit 134. The conduit 134 may be disposed in the chamber 108 via the fluid outlet 112. The fluid outlet 112 may be sized and shaped to form an at least substantially fluid tight seal against the conduit 134 or the at least one tube substantially preventing the bodily fluids from escaping the chamber 108.


The fluid impermeable barrier 102 may include markings thereon, such as one or more markings to aid a user in aligning the fluid collection assembly 100 on the patient. For example, a line on the fluid impermeable barrier 102 (e.g., opposite the opening 110) may allow a healthcare professional to align the opening 110 over the urethral opening of the patient. In examples, the markings may include one or more of alignment guide or an orientation indicator, such as a stripe or hashes. Such markings may be positioned to align the fluid collection assembly 100 to one or more anatomical features such as a pubic bone, etc.


As previously discussed, the fluid collection assembly 100 includes porous material 114 disposed in the chamber 108. The porous material 114 may cover at least a portion (e.g., all) of the opening 110. The porous material 114 is exposed to the environment outside of the chamber 108 through the opening 110. The permeable properties referred to herein may be wicking, capillary action, absorption, diffusion, or other similar properties or processes, and are referred to herein as “permeable” and/or “porous.” The porous material 114 may also wick the bodily fluids generally towards an interior of the chamber 108, as discussed in more detail below. The porous material 114 may include one or more of a fluid permeable membrane 136 or a fluid permeable support 138.


In an embodiment, at least a portion of the porous material 114 may be a wicking material configured to wick and/or enable the bodily fluids to move away from the opening 110, thereby preventing bodily fluids from escaping the chamber 108. The porous material may not include absorption of the bodily fluids into the porous material. Put another way, substantially no absorption of the bodily fluids into the porous material may take place after the wicking material is exposed to the bodily fluids. While no absorption is desired, the term “substantially no absorption” may allow for nominal amounts of absorption of the bodily fluids into the porous material (e.g., absorbency), such as about 30 wt % of the dry weight of the porous material, about 20 wt %, about 10 wt %, about 7 wt %, about 5 wt %, about 3 wt %, about 2 wt %, about 1 wt %, or about 0.5 wt % of the dry weight of the porous material. In an embodiment, the porous material 114 may be at least one of an absorbent material or adsorbent material instead of or in addition to being a wicking material.


The fluid collection assembly 100 may include the fluid permeable membrane 136 disposed in the chamber 108. The fluid permeable membrane 136 may cover at least a portion (e.g., all) of the opening 110. The fluid permeable membrane 136 may be composed to pull/push the bodily fluids away from the opening 110, thereby promoting fluid flow into the chamber 108, prevent fluid remaining on the vulva of the patient, and preventing the bodily fluids from escaping the chamber 108.


The fluid permeable membrane 136 may include any material that may be permeable to the bodily fluids. For example, the fluid permeable membrane 136 may include fabric, such as a gauze (e.g., a silk, linen, or cotton gauze), another soft fabric, or another smooth fabric. Forming the fluid permeable membrane 136 from gauze, soft fabric, and/or smooth fabric may reduce chaffing caused by the fluid collection assembly 100 and makes wearing the fluid collection assembly more comfortable. In an embodiment, the fluid permeable membrane 136 may define a plurality of perforations or may be continuous (e.g., does not define perforations). In an embodiment, the fluid permeable membrane 136 defines at least one hole that is configured to allow the valve 122 to extend through the fluid permeable membrane 136.


The fluid collection assembly 100 may include the fluid permeable support 138 disposed in the chamber 108. The fluid permeable support 138 is configured to support the fluid permeable membrane 136 and maintain the shape of the chamber 108 since the fluid impermeable barrier 102 and the fluid permeable membrane 136 may be formed from a relatively foldable, flimsy, or otherwise easily deformable material. For example, the fluid permeable support 138 may be positioned so the fluid permeable membrane 136 is disposed between the fluid permeable support 138 and the fluid impermeable barrier 102. The fluid permeable support 138 may support and maintain the position of the fluid permeable membrane 136 and the shape of the chamber 108. The fluid permeable support 138 may include any material that may be permeable to the bodily fluids, such as any of the fluid permeable membrane 136 materials disclosed above. For example, the fluid permeable membrane 136 material(s) may be utilized in a more dense or rigid form than in the fluid permeable membrane 136 when used as the fluid permeable support 138. The fluid permeable support 138 may be formed from any fluid porous material that is less deformable than the fluid permeable membrane 136. For example, the fluid permeable support 138 may include a porous polymer (e.g., nylon, polyester, polyurethane, polyethylene, polypropylene, etc.) structure (e.g., spun fibers such as spun nylon fibers) or a foam (e.g., an open cell foam). In some examples, the fluid permeable support 138 may be formed from a natural material, such as cotton, wool, silk, or combinations thereof. In such examples, the material may have a coating to prevent or limit absorption of the bodily fluids into the material, such as a water repellent coating. In some examples, the fluid permeable support 138 may be formed from fabric, felt, gauze, or combinations thereof.


In some examples, the fluid permeable membrane 136 may be omitted. For example, the porous material 114 may include only the fluid permeable support 138. In such examples, the bladder 118 may be positioned within the fluid permeable support 138 since, for instance, at least some materials of the support 138 disclosed herein are flexible enough to accommodate the shape and/or size changes discussed herein. In some examples, the fluid permeable support 138 may be optionally omitted from the fluid collection assembly 100 and the porous material 114 may only include the fluid permeable membrane 136. In such examples, the bladder 118 may be positioned within the fluid permeable membrane 136.


In an embodiment, the fluid permeable membrane 136 and/or the fluid permeable support 138 are wicking materials. In such an embodiment, the fluid permeable support 138 may have a greater ability to wick the bodily fluids than the fluid permeable membrane 136. In some examples, the wicking ability of the fluid permeable support 138 and the fluid permeable membrane 136 may be substantially the same. In an embodiment, the fluid permeable membrane 136 and/or the fluid permeable support 138 are non-wicking materials (e.g., absorbent and/or adsorbent materials).


In an embodiment, not shown, the fluid permeable membrane 136 and the fluid permeable support 138 may at least substantially completely fill the portions of the chamber 108 not occupied by the inflation device 116 and the conduit 134. In an embodiment, as shown in FIG. 1E, the fluid permeable membrane 136 and the fluid permeable support 138 may not substantially completely fill the portions of the chamber 108 not occupied by the inflation device 116 or the conduit 134. In such an embodiment, the fluid collection assembly 100 includes the fluid reservoir 140 disposed in the chamber 108.


The fluid reservoir 140 is a substantially unoccupied portion of the chamber 108. The fluid reservoir 140 may be defined between the fluid impermeable barrier 102 and at least one of the inflation device 116, the fluid permeable membrane 136, or the fluid permeable support 138. The bodily fluids in the chamber 108 may flow through the fluid permeable membrane 136 and/or fluid permeable support 138 to the fluid reservoir 140. The fluid reservoir 140 may retain of the bodily fluids. The bodily fluids in the chamber 108 may flow through the fluid permeable membrane 136 and/or fluid permeable support 138 and, optionally, to the fluid reservoir 140. The fluid impermeable barrier 102 may retain the bodily fluids in the fluid reservoir 140. The fluid reservoir 140 may be in a portion of the chamber 108 designed to be in a gravimetrically low point of the fluid collection assembly 100 when the fluid collection assembly 100 is worn.



FIGS. 2-4 are cross-sectional schematics and FIGS. 5 and 6 are side views of different fluid collection assemblies illustrating different techniques for controlling the expansion rate of the first and second regions of the bladders, according to different embodiments. Except as otherwise disclosed herein, the fluid collection assemblies illustrated in FIGS. 2-6 are the same or substantially similar to any of the fluid collection assemblies disclosed herein. For example, the fluid collection assemblies illustrated in FIGS. 2-6 may include a fluid impermeable barrier defining at least one opening, a chamber, and a fluid outlet. The fluid collection assemblies also include at least one porous material disposed in the chamber and at least one inflation device. The features of the fluid collection assemblies illustrated in FIGS. 2-6 may also be used in any fluid collection assemblies disclosed herein.


Referring to FIG. 2, the inflation device 216 of the fluid collection assembly 200 includes a bladder 218 and a valve 222. The bladder 218 includes one or more walls 217 defining an interior region 220. The bladder 218 includes a first region 224 and a second region 226. In the illustrated embodiment, the first and second regions 224, 226 are formed from the walls 217. The first region 224 and the second region 226 exhibit different thicknesses. The different thicknesses of the 224, 226 cause the first and second regions 224, 226 to exhibit different expansion rates when the bladder 218 switches from the first state to the second state.


The first region 224 exhibits a first thickness and an opposing portion of the second region 226 exhibits a second thickness that is different than the first thickness. For example, the first thickness may be greater than the second thickness, or vice versa, by at least about 1%, at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 7.5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 125%, at least about 150%, at least about 200%, at least about 250%, at least about 300%, at least about 350%, at least about 400%, at least about 500%, or in ranges of about 1% to about 3%, about 2%, to about 4%, about 3% to about 5%, about 4% to about 7.5%, about 5% to about 10%, about 7.5% to about 15%, about 10% to about 20%, about 15% to about 25%, about 20% to about 40%, about 30% to about 50%, about 40% to about 60%, about 50% to about 70%, about 60% to about 80%, about 70% to about 90%, about 80% to about 100%, about 90% to about 125%, about 100% to about 150%, about 125% to about 200%, about 150% to about 250%, about 200% to about 300%, about 250% to about 350%, about 300% to about 400%, or about 350% to about 500%. As will be discussed in more detail below, the different between the first thickness and the second thickness may be selected based on the desired expansion rates of the opposing portions of the first and second regions 224, 226 which, in turn, affects the shape that the bladder 218 assumes when switching between the first and second states.


In an example, as illustrated, the first thickness is greater than the second thickness. The greater thickness of the first region 224 relative to the second region 226 causes the first region 224 to exhibit a smaller expansion rate than the second region 226. As such, the length of the first region 224 increases less than the length of the second region 226 when the bladder 218 switches from the first state to the second state which causes the bladder 218 to bend towards the first region 224. In other words, if the bladder 218 is initially straight, the increased thickness of the first region 224 causes the bladder 218 to form a curved shape with the first region 224 forming the concaved portion of the curved shape. In an example, the first thickness is less than the second thickness. The smaller thickness of the first region 224 relative to the second region 226 causes the first region 224 to exhibit an expansion rate that is greater than the second region 226. In other words, the length of the first region 224 increases more than the length of the second region 226 when the bladder 218 switches from the first state to the second state which causes the bladder 218 to bend towards the second region 226. In other words, if the bladder 218 is initially curved such that the first region 224 is concavely curved, the decreases thickness of the first region 224 causes the bladder 218 to form a more straight shape.


The shape that the bladder 218 forms when switching the bladder 218 between the first and second states may be controlled at least partially based on the thicknesses of the first and second regions 224, 226. In an embodiment, the bladder 218 may form a generally circular arc when each of the thickness of the first region 224 and the thickness of the second region 226 are substantially constant along the length of the bladder 218. In an embodiment, the thickness of at least one of the first region 224 or the second region 226 may be selectively varied which causes the expansion rate of different portions of the first region 224 and/or the second region 226 to vary. In an example, decreasing the thickness of a portion of the first region 224 relative to another portion of the first region 224 may cause the thinner portion of the first region 224 to exhibit a greater expansion rate than the thicker portion of the first region 224. In such an example, using the illustrated embodiment, the thinner portion of the first region 224 may bend more (e.g., exhibit a smaller average radius of curvature) than the thicker portion of the first region 224. In an example, decreasing the thickness of a portion of the second region 226 relative to another portion of the second region 226 may cause the thinner portion of the second region 226 to exhibit an expansion rate that is greater than the thicker portion of the second region 226.


Referring to FIG. 3, the inflation device 316 of the fluid collection assembly 300 includes a bladder 318 and a valve 322. The bladder 318 includes one or more walls 317 defining an interior region 320. The bladder 318 includes a first region 324 and a second region 326. In the illustrated embodiment, the first and second regions 324, 326 are formed from the walls 317. The inflation device 316 also includes at least one additional layer 342 attached to at least a portion of at least one of the first region 324 or the second region 326. The additional layer 342 is distinct from the walls 317.


The additional layer 342 effectively increases the thickness of the portion of the first region 324 and/or the second region 326 to which the additional layer 342 is adjacent. As such, similar to the different thicknesses discussed with regards to FIG. 2, the additional layer 342 may be used to control the shape that the bladder 318 assumes when switching the bladder 318 between the first and second states. In particular, the increased thickness caused by the additional layer 342 may decrease the expansion rate of the portion(s) of the bladder 318 to which the additional layer 342 is adjacent.


In an embodiment, the additional layer 342 may exhibit a Young's modulus (modulus of elasticity) that is greater than the walls 317 of the bladder 318. The increased Young's modulus of the additional layer 342 allows the additional layer 342 to exhibit the same effect as a thicker region of the walls 317 but at a smaller thickness. As such, the additional layer 342 may decrease the amount that the bladder 318 extends from the fluid impermeable barrier 302 than if bladder 318 included a region with increased thickness. The decreased profile of the bladder 318 may make the bladder 318 more comfortable to wear, especially with larger thighs since there is not significant space between the larger thighs in which to position the fluid collection assembly 300. In an example, the additional layer 342 includes a substantially inflexible fabric. In an example, the additional layer 342 includes a wire, a plate, a substantially inflexible polymer, a metal, or a composite.


The shape that the bladder 318 forms when switching the bladder 318 between the first and second states may be controlled based on which portions of the bladder 318 to which the additional layer 342 is adjacent and the Young's modulus of the additional layer 342. In an embodiment, the bladder 318 may form a generally circular arc when the additional layer 342 is adjacent to one or more of the first region 324 or the second region 326 along an entire length thereof. In an embodiment, the additional layer 342 is selectively positioned adjacent to only a portion of the length of one or more of the first region 324 or the second region 326. The portion(s) of the first region 324 and/or second region 326 to which the additional layer 342 is adjacent may exhibit an expansion rate that is less than portion(s) of the first regions 324 and/or second region 326 that are not spaced from the additional layer 342. In an embodiment, the additional layer 342 may be selectively formed form two or more portions, where at least two of the two or more portions exhibit different Young's moduli. Each of the two or more portions may extend along different lengths of the additional layer 342. For instance, the additional layer 342 may include a first portion exhibiting a first Young's modulus and a second portion exhibiting a second Young's modulus that is greater than the first Young's modulus. In such an instance, the portions of the bladder 318 adjacent to the first portion of the additional layer 342 may exhibit an expansion rate that is greater than the portions of the bladder 318 adjacent to the second portion of the additional layer 342.


Referring to FIG. 4, the inflation device 416 of the fluid collection assembly 400 includes a bladder 418 and a valve 422. The bladder 418 includes one or more walls 417. The walls 417 and a portion of the fluid impermeable barrier 402 defines an interior region 420 of the bladder 418. For example, the bladder 418 includes a first region 424 at least partially formed by the fluid impermeable barrier 402 and a second region 426 formed by the walls 417. The walls 417 may be attached to the fluid impermeable barrier 402 in a fluid tight manner such that inflation fluids present in the interior region 420 do not leak from the interior region 420. Inflating the bladder 418 will cause a tensile force to be applied to the portion of the fluid impermeable barrier 402 that defines the interior region 420, thereby causing the portion of the fluid impermeable barrier 402 that defines the interior region 420 to expand.


The fluid impermeable barrier 402 may exhibit an expansion rate that is different than the walls 417. In an example, the fluid impermeable barrier 402 may exhibit an expansion rate that is less than the walls 417. The fluid impermeable barrier 402 may exhibit the lower expansion rate because at least one of the fluid impermeable barrier 402 is thicker than the walls 417, the fluid impermeable barrier 402 exhibits a Young's modulus that is greater than the walls 417, or the portions of the fluid impermeable barrier 402 that do not define the interior region 420 apply a force to the first region 424 that limits expansion of the portions of the fluid impermeable barrier 402 that define the interior region 420. In an example, the fluid impermeable barrier 402 may exhibit an expansion rate that is greater than the walls 417. In such an example, the fluid impermeable barrier 402 may exhibit the larger expansion rate because at least one of the fluid impermeable barrier 402 is thinner than the walls 417 or the fluid impermeable barrier 402 exhibits a Young's modulus that is less than the walls 417.


Referring to FIG. 5, the fluid collection assembly 500 includes a fluid impermeable barrier 502 and at least one inflation device 516. The inflation device 516 includes a bladder 518 and at least one valve 522. The bladder 518 includes one or more walls 517 that completely define an interior region (not shown, obscured). The one or more walls 517 are attached to the fluid impermeable barrier 502 along substantially an entire length of the bladder 518 (attachment is illustrated schematically with a bold line). For example, as illustrated, the bladder 518 includes a first region 524 and a second region 526 and at least substantially all of the first region 524 is attached to the fluid impermeable barrier 502. Attaching substantially an entire length of the bladder 518 effectively increases the thickness of the portion of the bladder 518 that is attached to the fluid impermeable barrier 502. In other words, the fluid impermeable barrier 502 decreases the expansion rate of a surface of the bladder 518 that is attached to the fluid impermeable barrier 502 than if the portion of the bladder 518 was not attached to the fluid impermeable barrier 502.


The bladder 518 may be attached to the fluid impermeable barrier 502 using any suitable technique. For example, the bladder 518 may be attached to the fluid impermeable barrier 502 using an adhesive, radio frequency welding, ultrasonic welding, tape (e.g., double sided tape positioned between bladder 518 and the fluid impermeable barrier 502 or tape that wraps around at least a portion of the bladder 518 and is attached to the fluid impermeable barrier 502), or any other suitable attachment technique.


Referring to FIG. 6, the fluid collection assembly 600 includes a fluid impermeable barrier 602 and at least one inflation device 616. The inflation device 616 includes a bladder 618 and at least one valve 622. The bladder 618 includes one or more walls 617 that completely define an interior region (not shown, obscured). The one or more walls 617 are attached to the fluid impermeable barrier 602 along a portion of the length of the bladder 618 (attachment is illustrated schematically with a bold line). For example, the bladder 618 may include a first region 624 adjacent to the fluid impermeable barrier 602 and a second region 626 spaced from the first region 624. In such an example, the expansion rate of at least the first region 624 of the portion of the bladder 618 that is attached to the fluid impermeable barrier 602 is limited because the fluid impermeable barrier 602 effectively increases the thickness of such portions of the first region 624.


In an embodiment, two or more portions of the bladder 618 are attached to the fluid impermeable barrier 602. For example, as illustrated, two or more portions of the bladder 618 at or near the terminal ends of the bladder 618 are attached to the fluid impermeable barrier 602. The expansion rate of a surface of the bladder 618 that is adjacent to the fluid impermeable barrier 602 (i.e., the first portion 624) and is between two or more portions of the bladder 618 that are attached to the fluid impermeable barrier 602 is limited because the two or more portions that are attached to the bladder 618 exhibits a compressive force that limit the expansion rate. In other words, the surface of the bladder 618 that is adjacent to the fluid impermeable barrier 602 and is between two or more portions of the bladder 618 exhibits an expansion rate that is less than an opposing portion of the bladder 618.


The embodiments illustrated and discussed in FIGS. 1A-6 include a bladder that exhibits a substantially uniform diameter. However, it is noted that any of the bladders disclosed herein may exhibit other shapes. For example, FIG. 7 is side view of a fluid collection assembly 700 that includes a “crinkle” or bellows shaped bladder 718, according to an embodiment. Except as otherwise disclosed herein, the fluid collection assembly 700 is the same or substantially similar to any of the fluid collection assemblies disclosed herein. For example, the fluid collection assembly 700 includes a fluid impermeable barrier 702, at least one porous material 714, and at least one inflation device 716.


The inflation device 716 includes a bladder 718 and at least one valve 722. The bladder 718 includes one or more walls 717 defining an interior region (not shown, obscured). The bladder 718 exhibits a “crinkle” structure (i.e., the bladder 718 is a crinkle shaped bladder). For example, the bladder 718 may include one or more peaks 744 (e.g., a plurality of circumferentially extending peaks 744 or a single helically extending peak 744). The bladder 718 also includes one or more valleys 746 (e.g., a plurality of circumferentially extending valleys 746 or a single helically extending valley 746) disposed between portions of the peaks 744 space apart along a longitudinal direction of the bladder 718. The peaks 744 and the valleys 746 allow the bladder 718 to bend when switching the bladder 718 from the first state to the second state. For example, adding inflation fluids to the bladder 718 may cause the distance between the peaks 744 on the second region 726 to increase while the distance between the peaks 744 on the first region 724 may decrease, remain constant, or increase at a rate that is less than the second region 726.


The inflation device 716 may be attached to the fluid impermeable barrier 702 using any suitable technique (e.g., adhesive, tape, ultrasonic welding, etc.) along at least a portion of a length thereof. In an example, only the terminal ends of the inflation device 716 (e.g., the terminal ends may not include the “crinkle structure”) may be attached to the fluid impermeable barrier 702. In an example, some or all of the peaks 744 may be attached to the fluid impermeable barrier 702. In an example, some or all of the valleys 746 may be attached to the fluid impermeable barrier 702. In an example, two or more of the terminal ends, at least some of the peaks 744, or at least some of the valleys 746 of the inflation device 716 are attached to the fluid impermeable barrier 702.


The embodiments illustrated in FIGS. 1A-7 illustrate that the fluid collection assemblies include a single inflation device. However, any of the fluid collection assemblies may include a plurality of inflation devices. FIG. 8 is a side view of a fluid collection assembly 800 that includes a plurality of inflation devices, according to an embodiment. Except as otherwise disclosed herein, the fluid collection assembly 800 may be the same or substantially similar to any of the fluid collection assemblies disclosed herein. For example, the fluid collection assembly 800 includes a fluid impermeable barrier 402 and at least one porous material 814.


As previously discussed, the fluid collection assembly 800 includes a plurality of inflation devices that may be independently inflated and/or deflated. For example, as illustrated, the fluid collection assembly includes a first inflation device 816a, a second inflation device 816b, and a third inflation device 816c. Each of the first inflation device 816a, the second inflation device 816b, and the third inflation device 816c may be the same or substantially similar to any of the inflation devices disclosed herein. For example, each of the first inflation device 816a, the second inflation device 816b, and the third inflation device 816c may a bladder having one or more walls defining and interior region and at least one valve. In an example, each of the first, second, and third inflation devices 816a, 816b, 816c are the same. In an example, at least two of the first, second, and third inflation devices 816a, 816b, 816c are different (e.g., exhibit different lengths, exhibit different expansion rates, limit the expansion rates thereof using different techniques, etc.).


Each of the first, second, and third inflation devices 816a, 816b, 816c are configured to control the shape of a corresponding portion of the fluid impermeable barrier 802. For example, the first inflation device 816a may be configured to control the shape of a first portion 848a of the fluid collection assembly 800, the second inflation device 816b may be configured to control the shape of a second portion 848b of the fluid collection assembly 800, and the third inflation device 816c may be configured to control the shape of a third portion 848c of the fluid collection assembly 800. As such, the first, second, and third inflation devices 816a, 816b, 816c allow for more control of the shape of the fluid collection assembly 800 that if the fluid collection assembly 800 included a single inflation device. In an example, one or two of the first, second, or third inflation devices 816a, 816b, 816c may be switched from the first state to the second state while the remainder of the first, second, or third inflation devices 816a, 816b, 816c remain in the first state. The inflation device(s) that are switched to the second state cause the corresponding portions of the fluid collection assembly to change shape while the inflation device(s) that remain in the first state cause the corresponding portions of the fluid collection assembly to remain in the original shape thereof. In an example, each of the first, second, or third inflation devices 816a, 816b, 816c are switched from the first state to the second state. In such an example, one or two of the first, second, or third inflation devices 816a, 816b, 816c may include changing (e.g., reducing) an average radius of curvature of a corresponding portion of the fluid collection assembly 800 more than the remaining one or two of the first, second, or third inflation devices 816a, 816b, 816c.


In an embodiment, the fluid collection assembly 800 may include two inflation devices or four or more inflation devices. In other words, the third inflation device 816c may be omitted from the fluid collection assembly 800 or the fluid collection assembly 800 may include one or more additional inflation devices in addition to the first, second, and third inflation devices 816a, 816b, 816c. In an embodiment, as shown, the first, second, and third portions 848a, 848b, 848c of the fluid impermeable barrier 802 may not overlap. However, it is noted that two or more of the first, second, or third portions 848a, 848b, 848c may overlap such that a shape of such overlapped portions may be controlled by two different inflation devices.



FIG. 9 is a schematic side view of a fluid collection system 950 that is configured to control the shape of a fluid collection assembly 900, according to an embodiment. The system 950 includes a fluid collection assembly 900. Except as otherwise disclosed herein, the fluid collection assembly 900 is the same or substantially similar to any of the fluid collection assemblies disclosed herein. For example, the fluid collection assembly 900 may include a fluid impermeable barrier 902 and at least one inflation device 916. The inflation device 916 includes a bladder 918 defining an interior region (not shown, obscured) and a valve 922.


The system 950 also includes at least one pump 952 and at least one inflation fluid reservoir 954 configured to store one or more inflation fluids therein. The inflation fluid reservoir 954 may include a tank that stores the inflation fluids therein or may be the atmosphere (e.g., the inflation fluids are atmospheric air). The pump 952 and the inflation fluid reservoir 954 are in fluid communication to the inflation device 916 via at least one conduit 956. For example, the conduit 956 may extend from the pump 952 and/or the inflation fluid reservoir 954 to a valve 922 of the inflation device 916. In an embodiment, the pump 952 may be configured to provide the inflation fluids to the inflation device 916 from the inflation fluid reservoir 954. The inflation fluids provided to the inflation device 916 may flow through the valve 922 into the interior region defined by the bladder 918 to switch the bladder 918 from the first state to the second state. As such, the pump 952 and the inflation fluid reservoir 954 may change the shape of the fluid collection assembly 900 from a first (e.g., initial) shape to a second shape. In an embodiment, the pump 952 and the inflation fluid reservoir 954 may be configured to remove the inflation fluids from the inflation device 916 instead of or in addition to providing the inflation fluids to the inflation device 916. In such an embodiment, the pump 952 may provide a suction force that removes at least some of the inflation fluids from the interior region of the bladder 918 which switches the bladder 918 from the second state to the first state. Switching the bladder 918 from the second state to the first state may change the fluid collection assembly 900 from the second shape to the first state. The inflation fluids removed from the interior region of the bladder may be deposited in the inflation fluid reservoir 954.


In an embodiment, the system 950 may be controlled responsive to receiving input from a user of the system 950 (e.g., a medical practitioner or a patient). The input may include verbal commands, manipulating one or more actuators (e.g., buttons, levers, etc.), or one or more electronic instructions sent from a computer. The pump 952 and the inflation fluid reservoir 954 may provide and/or remove inflation fluids from the inflation device 916 responsive to receiving the one or more inputs. In an embodiment, the system 950 may be at least partially controlled without receiving one or more inputs from the user of the system 950. In such an embodiment, the system 950 may include one or more sensor 958 that are configured to detect contact between a portion of the fluid collection assembly 900 and the patient. For example, the sensors 958 may include an array of contact sensors arranged around the opening 910 which allows the sensors 958 to detect whether one or more gaps are formed between the portions of the fluid impermeable barrier 902 that define the opening 910. The sensors 958 may be communicably coupled to a controller 960 (e.g., computer) and configured to transmit one or more signals to the control electric circuitry 960. The signals transmitted from the sensors 958 to the control electric circuitry 960 may include the characteristics detected by the sensors 958. The control electric circuitry 960 may control the pump 952 responsive to receiving the one or more signals from the sensors 958. For example, the control electric circuitry 960 may cause the pump 952 to add or remove inflation fluids from the inflation device 916 when the sensor 958 indicate that there are gaps between the fluid impermeable barrier 902 and the patient.


The embodiments illustrated in FIGS. 1A-9 illustrate the inflation device being disposed on an outer surface of the fluid impermeable barrier. However, it is noted that the inflation devices of any of the fluid collection assemblies disclosed herein may be positioned at locations other than the outer surface of the fluid impermeable barrier. FIGS. 10-12 are cross-sectional schematics of fluid collection assemblies having at least one inflation device positioned at locations other than an outer surface of the fluid impermeable barrier, according to different embodiments. Except as otherwise disclosed herein, the fluid collection assemblies illustrated in FIGS. 10-12 are the same or substantially similar to any of the fluid collection assemblies disclosed herein. For example, the fluid collection assemblies may each include a fluid impermeable barrier, at least one porous material, at least one inflation device, and a conduit. The inflation device may include a bladder and at least one valve. The bladder may include one or more walls at least partially defining an interior region. It is noted that the bladders are generally illustrated as being generally positioned between the conduit and a distal surface of the fluid impermeable barrier thereby minimizing the likelihood that switching the bladder from the first state to the second state significantly increases a maximum width of the fluid collection assembly for reasons previously discussed. However, it is noted that the bladders may be positioned between the conduit and a lateral surface of the fluid impermeable barrier.


Referring to FIG. 10, the fluid collection assembly 1000 includes a fluid impermeable barrier 1002. The fluid impermeable barrier 1002 forms the at least a portion of the inflation device (e.g., the fluid impermeable barrier 1002 and at least a portion of an inflation device are integrally formed together). The impermeable barrier 1002 may exhibit any of the properties and functions as any of the fluid impermeable barriers and inflation devices disclosed herein. For example, the impermeable barrier 1002 may define a chamber 1008, at least one opening 1010, and a fluid outlet and may be configured to prevent bodily fluids from leaking from the chamber 1008. The impermeable barrier 1002 may also include a bladder defining an interior region 1020. The impermeable barrier 1002 is configured to switch between one or more states (e.g., a first state and a second state) by adding or removing inflation fluids to the interior region 220 using a valve 1022.


Referring to FIG. 11, the fluid collection assembly 1100 includes a fluid impermeable barrier 1102 and at least one porous material 1114. The fluid collection assembly 1100 also includes at least one inflation device 1116 that is distinct from the fluid impermeable barrier 1102. At least a portion of the inflation device 1116 (e.g., at least the bladder 1118) is positioned between the fluid impermeable barrier 1102 and the porous material 1114. The fluid impermeable barrier 1102 may protect the inflation device 1116 from objects that may puncture the inflation device 1116. The fluid impermeable barrier 1102 may define an aperture through which the valve 1122 may extend. The aperture may be configured to form a fluid tight seal against the valve 1122 to prevent leaks between the aperture and the valve 1122.


Referring to FIG. 12, the fluid collection assembly 1200 includes a fluid impermeable barrier 1202 and at least one porous material 1214. The fluid collection assembly 1200 also include at least one inflation device 1216. At least a portion of the inflation device 1216 (e.g., at least the bladder 1218) is positioned within the porous material 1214. For example, when the porous material 1214 includes a fluid permeable membrane 1236 and a fluid permeable support 1238, at least a portion of the inflation device 1216 may be disposed between the fluid permeable membrane 1236 and the fluid permeable support 1238. As such, the fluid impermeable barrier 1202 and at least a portion of the porous material 1214 may protect the inflation device 1216 from objects that may puncture the inflation device 1216. The fluid impermeable barrier 1202 and at least a portion of the porous material 1214 may define an aperture through which the valve 1222 may extend. The aperture may be configured to form a fluid tight seal against the valve 1222 to prevent leaks between the aperture and the valve 1222.


It is noted that the inflation devices disclosed herein may have positions other that the positions illustrated in FIGS. 1A-12. For example, the inflation devices may be positioned within the fluid permeable membrane, within the fluid permeable support, between the fluid permeable support and the conduit, within the conduit, or integrally formed with the conduit.


In an embodiment, the conduit of any of the fluid collection assemblies disclosed herein (e.g., conduit 134 of FIGS. 1A-1E) may exhibit an initial shape when the conduit is in its relaxed state. The conduit is in its relaxed state when no external forces, such as forces caused by an inflation device (e.g., the inflation device is in a deflated state), are applied to the conduit. The initial shape of the conduit may be a generally cylindrical shape (e.g., the conduit is straight) or a slightly curved generally cylindrical shape. Changing the shape of the inflation device, such as switching the bladder of the inflation device from the first state to the second state, may apply an external force to the conduit that causes the conduit to change the shape thereof. However, the conduit may resist changing the shape thereof when the external force are applied to the conduit which causes the conduit to apply a normal force that is opposite the external force. The normal force from the conduit may cause the conduit to compress a portion of the porous material and/or may cause the formation of detrimental voids in the chamber.


The fluid collection assemblies disclosed herein may include one or more structures that are configured to force the conduit to exhibit the desired shape change and minimize the normal force that is applied to the porous material. FIG. 13A is a cross-sectional view of a fluid collection assembly 1300, according to an embodiment. FIG. 13B is a cross-sectional view of the fluid collection assembly 1300 taken along plane B-B of FIG. 13A, according to an embodiment. Except as otherwise disclosed herein, the fluid collection assembly 1300 is the same or substantially similar at any of the fluid collection assemblies disclosed herein. For example, the fluid collection assembly 1300 includes a fluid impermeable barrier 1302, a porous material 1314, a conduit 1334, and at least one inflation device 1316. In the illustrated embodiment, the fluid collection assembly 1300 is illustrated as being substantially similar to the fluid collection assembly 100 shown in FIGS. 1A-1E. However, as previously discussed, the fluid collection assembly 1300 may be substantially similar to any of the fluid collection assemblies disclosed herein.


The fluid collection assembly 1300 includes at least one brace 1364 that is configured to force the conduit 1334 to exhibit a shape change that corresponds more closely to the shape change of the inflation device 1316 than if the fluid collection assembly 1300 did not include the brace 1364. The brace 1364 also minimizes the normal force applied from the conduit 1334 to the porous material 1314. The brace 1364 is connected to the inflation device 1316 or a component of the fluid collection assembly 1300 that is connected to the inflation device 1316 (e.g., the fluid impermeable barrier 1302 when the inflation device 1316 is attached to an exterior surface of or embedded within the fluid impermeable barrier 1302). The brace 1364 extends from the inflation device 1316 or the component of the fluid collection assembly 1300 that is connected to the inflation device 1316 to the conduit 1334. For example, the brace 1364 may extend around the conduit 1334, as shown in FIG. 13B. It is noted that the brace 1364 may be attached to the conduit 1334 using other suitable techniques, such as with an adhesive. To allow the brace 1364 to extend to the conduit 1334, one or more components of the fluid collection assembly 1300 (e.g., the porous material 1314) may include one or more slits formed therein through which the braces 1364 extend. The brace 1364 may be configured to transfer a shape change in the inflation device 1316 to the conduit 1334 such that the conduit 1334 exhibits a shape change that substantially corresponds to the shape change of the inflation device 1316.


The fluid collection assembly 1300 may include any suitable number of braces 1364, such as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or greater than 10 braces 1364. Generally increasing the number of braces 1364 causes the conduit 1334 to more accurately correspond to the shape of the inflation device 1316 and decreases the normal force that is applied to the porous material 1314.


It is noted that the braces 1364 may not always cause the conduit 1334 to exhibit the same shape change as the inflation device 1316. For example, when the braces 1364 are looped around and are not attached to the conduit 1334 (as shown), the braces 1364 may only cause the conduit 1334 to exhibit the shape change of the inflation device 1316 when the braces 1364 pull (e.g., the braces 1364 are in tension) the conduit 1334 towards the inflation device 1316 but not when the braces 1364 push (e.g., the braces 1364 are in compression) the conduit 1334 away from the inflation device 1316.



FIG. 14 is a block diagram of a system 1401 for fluid collection, according to an embodiment. The system 1401 includes a fluid collection assembly 1400, a fluid storage container 1407, and a vacuum source 1409. The fluid collection assembly 1400, the fluid storage container 1407, and the vacuum source 1409 may be fluidly coupled to each other via one or more conduits 1411. For example, fluid collection assembly 1400 may be operably coupled to one or more of the fluid storage container 1407 or the vacuum source 1409 via the conduit 1411. Fluid (e.g., urine or other bodily fluids) collected in the fluid collection assembly 1400 may be removed from the fluid collection assembly 1400 via the conduit 1411 which protrudes into the fluid collection assembly 1400. For example, an inlet of the conduit 1411 may extend into the fluid collection assembly 1400, such as to a fluid reservoir therein. The outlet of the conduit 1411 may extend into the fluid collection assembly 1400 or the vacuum source 1409. Suction force may be introduced into the chamber of the fluid collection assembly 1400 via the inlet of the conduit 1411 responsive to suction (e.g., vacuum) force applied at the outlet of the conduit 1411.


The suction force may be applied to the outlet of the conduit 1411 by the vacuum source 1409 either directly or indirectly. The suction force may be applied indirectly via the fluid storage container 1407. For example, the outlet of the conduit 1411 may be disposed within the fluid storage container 1407 and an additional conduit 1411 may extend from the fluid storage container 1407 to the vacuum source 1409. Accordingly, the vacuum source 1409 may apply suction to the fluid collection assembly 1400 via the fluid storage container 1407. The suction force may be applied directly via the vacuum source 1409. For example, the outlet of the conduit 1411 may be disposed within the vacuum source 1409. An additional conduit 1411 may extend from the vacuum source 1409 to a point outside of the fluid collection assembly 1400, such as to the fluid storage container 1407. In such examples, the vacuum source 1409 may be disposed between the fluid collection assembly 1400 and the fluid storage container 1407.


The fluid collection assembly 1400 may be similar or identical to any of the fluid collection assemblies disclosed herein in one or more aspects. The fluid collection assembly 1400 may be shaped and sized to be positioned adjacent to a female urethral opening. For example, the fluid collection assembly 1400 may include a fluid impermeable barrier at least partially defining a chamber (e.g., interior region) of the fluid collection assembly 1400. The fluid impermeable barrier also defines at least one opening extending therethrough from the external environment. The opening may be positioned adjacent to the female urethral opening. The fluid collection assembly 1400 may include porous material disposed in the chamber, such as one or more of a fluid permeable support and a fluid permeable membrane. The fluid collection assembly 1400 includes at least one inflation device on or incorporated in one or more components thereof. The inflation device include a bladder that is configured to change a shape thereof when the bladder is switched between the first and second states. The conduit 1411 may extend into the fluid collection assembly 1400 at a first end (e.g., proximal) region, through one or more of the fluid impermeable barrier or the porous material to a second end region of the fluid collection assembly 1400. The conduit 1411 includes an inlet and an outlet, the outlet being fluidly coupled to the fluid storage container and the inlet being positioned in a portion of the chamber selected to be at a gravimetrically low point of the fluid collection assembly when worn.


The fluid storage container 1407 is sized and shaped to retain a fluid therein. The fluid storage container 1407 may include a bag (e.g., drainage bag), a bottle or cup (e.g., collection jar), or any other enclosed container for storing bodily fluid(s) such as urine. In some examples, the conduit 1411 may extend from the fluid collection assembly 1400 and attach to the fluid storage container 1407 at a first point therein. An additional conduit 1411 may attach to the fluid storage container 1407 at a second point thereon and may extend and attach to the vacuum source 1409. Accordingly, a vacuum (e.g., suction) may be drawn through fluid collection assembly 1400 via the fluid storage container 1407. Fluid, such as urine, may be drained from the fluid collection assembly 1400 using the vacuum source 1409.


The vacuum source 1409 may include one or more of a manual vacuum pump, and electric vacuum pump, a diaphragm pump, a centrifugal pump, a displacement pump, a magnetically driven pump, a peristaltic pump, or any pump configured to produce a vacuum. The vacuum source 1409 may provide a vacuum or suction to remove fluid from the fluid collection assembly 1400. In some examples, the vacuum source 1409 may be powered by one or more of a power cord (e.g., connected to a power socket), one or more batteries, or even manual power (e.g., a hand operated vacuum pump). In some examples, the vacuum source 1409 may be sized and shaped to fit outside of, on, or within the fluid collection assembly 1400. For example, the vacuum source 1409 may include one or more miniaturized pumps or one or more micro pumps. The vacuum sources 1409 disclosed herein may include one or more of a switch, a button, a plug, a remote, or any other device suitable to activate the vacuum source 1409.



FIG. 15 is a flow diagram of a method 1500 to collect fluid, according to an embodiment. The method 1500 of collecting fluid may utilize use any of the fluid collection assemblies and/or fluid collection systems disclosed herein. The method 1500 may include act 1510, which recites “positioning at least one opening of a fluid collection assembly adjacent to a female urethral opening.” Act 1510 may be followed by act 1520, which recites “flowing at least one inflation fluid through at least one valve and into an interior region defined by a bladder.” Act 1520 may be followed by act 1530, which recites “receiving one or more bodily fluids from the female urethral opening into a chamber of the fluid collection assembly.”


Acts 1510, 1520, 1530 of the method 1500 are for illustrative purposes. For example, the act 1510, 1520, 1530 of the method 1500 may be performed in different orders, split into multiple acts, modified, supplemented, or combined. In an example, one or more of the acts 1510, 1520, 1530 of the method 1500 may be omitted from the method 1500. Any of the acts 1510, 1520, or 1530 may include using any of the fluid collection assemblies or systems disclosed herein.


Act 1510 recites “positioning at least one opening of a fluid collection assembly adjacent to a female urethral opening.” The act 1510 of positioning the opening of a fluid collection assembly adjacent to a female urethral opening may include utilizing any of the fluid collection assemblies or systems disclosed herein. In some examples, act 1510 may include positioning the opening of a fluid collection assembly such that the fluid permeable membrane of the female fluid collection assembly abuts or is positioned proximate to the female urethral opening. In some examples, positioning an opening of a fluid collection assembly adjacent to a female urethral opening may include positioning the opening over the female urethral opening, such as positioning a longitudinally extending opening of the fluid collection assembly over the female urethral opening.


Act 1520 recites “flowing at least one inflation fluid through at least one valve and into an interior region defined by a bladder.” Flowing the inflation fluid into the interior region may switch the bladder between a first state and at least a second state which, in turn, shapes the bladder and at least a portion of the rest of the fluid collection assembly between a first (e.g., initial) shape and a second shape. For example, switching the bladder from the first state to the second state may include shaping a female fluid collection assembly to contour to the anatomy around the urethral opening. In some embodiments, switching the bladder from the first state to the second state may include forming the (e.g., a longitudinal shape of the) fluid collection assembly into an arcuate shape conforming to the perineal region of the patient. For example, switching the bladder from the first state to the second state may include forming the fluid collection assembly into an arcuate shape conforming to the vaginal and perineal region of a patient.


Act 1530 recites, “receiving one or more bodily fluids from the female urethral opening into a chamber of the fluid collection assembly.” In some examples, receiving bodily fluids from the female urethral opening into a chamber of the fluid collection assembly includes receiving the bodily fluids through the opening of the fluid collection assembly. Receiving bodily fluids from the female urethral opening into a chamber of the fluid collection assembly may include wicking the bodily fluids away from the opening using porous material, such as via a fluid permeable membrane and a fluid permeable support. Receiving bodily fluids from the female urethral opening into a chamber of the fluid collection assembly may include flowing the bodily fluids towards a portion of the chamber that is fluidly coupled to an inlet of a conduit in fluid communication a vacuum source. For instance, receiving bodily fluids from the female urethral opening into a chamber of the fluid collection assembly may include flowing the bodily fluids to a substantially unoccupied portion of the chamber (e.g., a fluid reservoir), to a gravimetrically low point of the chamber, etc., such as via gravity, wicking, or suction force. In some examples, wicking the bodily fluids into the chamber via the fluid permeable membrane and fluid permeable support may include wicking urine into a fluid reservoir in the fluid collection assembly.


The method 1500 may include applying suction with a vacuum source effective to suction the bodily fluids from the chamber via a conduit disposed therein and fluidly coupled to the vacuum source may include using any of the vacuum sources disclosed herein. Applying suction with a vacuum source may include activating the vacuum source (e.g., suction device) in fluid communication with the inlet of the conduit in the fluid collection assembly. In some examples, activating the vacuum source in fluid communication with the inlet of the conduit in the fluid collection assembly may include supplying power to the vacuum source by one or more of flipping an on/off switch, pressing a button, plugging the vacuum source into a power outlet, putting batteries into the vacuum source, etc. In some examples, the vacuum source may include a hand operated vacuum pump and applying suction with a vacuum source may include manually operating the hand operated vacuum pump effective to suction the bodily fluids from the chamber via the conduit disposed therein that is fluidly coupled to the vacuum source.


In some examples, applying suction with a vacuum source effective to suction the bodily fluids from the chamber via a conduit disposed therein and fluidly coupled to the vacuum source may be effective to remove at least some bodily fluids (e.g., urine) from the chamber (e.g., interior region) of the fluid collection assembly. In some examples, applying suction with a vacuum source effective to suction the bodily fluids from the chamber via a conduit disposed therein and fluidly coupled to the vacuum source may be effective to transfer at least some of the bodily fluids from the chamber to a fluid storage container (e.g., a bottle or bag), such as from one or more of a reservoir, fluid permeable support, or fluid permeable membrane.


In some examples, the vacuum source (e.g., suction device) may be disposed on or within the fluid collection assembly and applying suction with the vacuum source may include activating the vacuum source. In some examples, the vacuum source may be spaced from the fluid collection assembly and applying suction with the vacuum source may include activating the vacuum source.


In some examples, applying suction with a vacuum source effective to suction the bodily fluids from the chamber via a conduit disposed therein and fluidly coupled to the vacuum source may include detecting moisture in the chamber (e.g., via one or more moisture sensors) and responsive thereto, activating the vacuum source to provide suction in the chamber. The control of the vacuum source responsive to the signals indicating that moisture or a level thereof is present in the chamber may be automatic, such as via a controller (e.g., computer programmed to perform the operation), or may merely provide an indication that a level of moisture is present that may necessitate removal of fluid from the chamber of the fluid collection assembly. In the latter case, a wearer may receive the indication (e.g., from the controller) and activate the vacuum pump manually.


In an example, the method 1500 may include collecting the bodily fluids that are removed from the fluid collection assembly, such as into a fluid storage container that is spaced from the fluid collection assembly and fluidly coupled to the conduit. The fluid storage container may include any of the fluid storage containers disclosed herein.


The fluid collection assemblies disclosed herein are configured to collect one or more bodily fluids from a female urethral opening. However, it is noted that any of the concepts disclosed herein, such as inflation devices, may be configured to collect one or more bodily fluids from a male urethral opening (e.g., penis). Examples of fluid collection assemblies that are configured to collected bodily fluids from a male urethral opening and methods of using such fluid collection assemblies are disclosed in International Application No. PCT/US20/42262 filed on Jul. 14, 2020, U.S. patent application Ser. No. 14/433,773 filed on Apr. 3, 2020, and U.S. Provisional Patent Application No. 63/047,374 filed on Jul. 2, 2020, the disclosure of each of which is incorporated herein, in its entirety, by this reference.


While various aspects and embodiments have been disclosed herein, other aspects and embodiments are contemplated. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting.


Terms of degree (e.g., “about,” “substantially,” “generally,” etc.) indicate structurally or functionally insignificant variations. In an example, when the term of degree is included with a term indicating quantity, the term of degree is interpreted to mean±10%, ±5%, or ±2% of the term indicating quantity. In an example, when the term of degree is used to modify a shape, the term of degree indicates that the shape being modified by the term of degree has the appearance of the disclosed shape. For instance, the term of degree may be used to indicate that the shape may have rounded corners instead of sharp corners, curved edges instead of straight edges, one or more protrusions extending therefrom, is oblong, is the same as the disclosed shape, etc.

Claims
  • 1. A fluid collection assembly, comprising: a fluid impermeable barrier defining a chamber, at least one opening, and at least one fluid outlet, the fluid impermeable barrier including at least one proximal surface defining the at least one opening and at least one distal surface opposite the proximal surface;at least one porous material disposed in the chamber; andat least one inflation device including: a bladder positioned external the chamber and coupled to the at least one distal surface of the fluid impermeable barrier, the bladder including one or more walls defining at least one interior region, the bladder configured to switch between a first state and at least a second state, wherein a volume of the at least one interior region is greater when the bladder is in the second state than when the bladder is in the first state; andat least one valve configured to selectively permit at least one inflation fluid to flow into and out of the at least one interior region to switch the bladder between the first state and at least the second state, the at least one valve including a two-way valve;wherein switching the bladder between the first state and the second state changes a curvature of at least a portion of the fluid impermeable barrier.
  • 2. The fluid collection assembly of claim 1, wherein the at least one inflation device includes a first region adjacent to the at least one distal surface of the fluid impermeable barrier and a second region opposite the first region, and wherein an expansion rate of the first region is less than an expansion rate of the second region.
  • 3. The fluid collection assembly of claim 2, wherein the at least one inflation device includes at least one additional layer attached to at least a portion of the first region.
  • 4. The fluid collection assembly of claim 3, wherein the at least one additional layer includes a substantially inflexible fabric.
  • 5. The fluid collection assembly of claim 3, wherein the at least one additional layer includes a wire, plate, a substantially inflexible polymer, metal, or composite.
  • 6. The fluid collection assembly of claim 2, wherein at least a portion of the first region exhibits a thickness that is greater than an opposing portion of the second region.
  • 7. The fluid collection assembly of claim 2, wherein at least a portion of the first region is directly attached to the fluid impermeable barrier.
  • 8. The fluid collection assembly of claim 7, wherein the at least a portion of the first region is directly attached to the corresponding portion of the at least one distal surface.
  • 9. The fluid collection assembly of claim 1, wherein the at least one inflation device includes a crinkle shaped bladder.
  • 10. The fluid collection assembly of claim 1, wherein the fluid impermeable barrier includes at least one lateral surface extending between the at least one proximal surface and the at least one distal surface, and wherein the at least one inflation device is not adjacent to the at least one lateral surface or the at least one proximal surface.
  • 11. The fluid collection assembly of claim 1, wherein the at least one inflation device includes a plurality of inflation devices adjacent to the at least one distal surface.
  • 12. The fluid collection assembly of claim 11, wherein each of the plurality of inflation devices are configured to control the curvature of different portions of the rest of the fluid collection assembly.
  • 13. The fluid collection assembly of claim 1, wherein the at least one valve includes a plurality of valves, at least one of the plurality of valves includes a one-way valve.
  • 14. The fluid collection assembly of claim 1, wherein the bladder is configured to substantially prevent a change in a volume of the at least one porous material when the bladder switches between the first and second states.
  • 15. The fluid collection assembly of claim 1, wherein the two-way valve includes at least one of a luer valve or a fluid impermeable membrane with a slit or opening formed therein.
  • 16. A system, comprising: a fluid collection assembly including: a fluid impermeable barrier defining a chamber, at least one opening, and at least one fluid outlet, the fluid impermeable barrier including at least one proximal surface defining the at least one opening and at least one distal surface opposite the proximal surface;at least one porous material disposed in the chamber; andat least one inflation device including: a bladder positioned external the chamber and coupled to the at least one distal surface of the fluid impermeable barrier, the bladder including one or more walls defining at least one interior region, the bladder configured to switch between a first state and at least a second state, wherein a volume of the at least one interior region is greater when the bladder is in the second state than when the bladder is in the first state; andat least one valve configured to selectively permit at least one inflation fluid to flow into and out of the at least one interior region to switch the bladder between the first state and at least the second state, the at least one valve including a two-way valve:wherein switching the bladder between the first state and the second state changes a curvature of at least a portion of the fluid impermeable barrier;a fluid storage container; anda vacuum source;wherein the chamber of the fluid collection assembly, the fluid storage container, and the vacuum source are in fluid communication with each other via one or more conduits.
  • 17. The system of claim 16, further comprising at least one pump in fluid communication with the at least one valve, the at least one pump configured to provide at least one inflation fluid to switch the bladder from the first state to the second state.
  • 18. The system of claim 17, further comprising one or more sensors configured to detect contact between the fluid collection assembly and an patient, the one or more sensors communicably coupled to a control electric circuitry, the control electric circuitry configured to control the pump responsive to receiving one or more signal from the one or more sensors.
  • 19. A method of using a fluid collection assembly, the method comprising: positioning at least one opening of the fluid collection assembly adjacent to a female urethral opening, the fluid collection assembly including: a fluid impermeable barrier defining a chamber, the at least one opening, and at least one fluid outlet, the fluid impermeable barrier including at least one proximal surface defining the at least one opening and at least one distal surface opposite the proximal surface;at least one porous material disposed in the chamber; andat least one inflation device including a bladder positioned external to the chamber and coupled to the at least one distal surface of the fluid impermeable barrier, the bladder including one or more walls defining at least one interior region, the bladder configured to switch between a first state and at least a second state and at least one valve configured to selectively permit at least one inflation fluid to flow into and out of the at least one interior region to switch the bladder between the first state and at least the second state, the at least one valve including a two-way valve; andflowing at least one inflation fluid through the at least one valve and into the at least one interior region of the at least one inflation device to change a curvature of the fluid impermeably barrier.
  • 20. The method of claim 19, wherein the at least one inflation fluid includes at least one gas.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to U.S. Provisional Patent Application No. 63/076,474 filed on Sep. 10, 2020, the disclosure of which is incorporated herein, in its entirety, by this reference.

US Referenced Citations (931)
Number Name Date Kind
737443 Mooers Aug 1903 A
1032841 Koenig Jul 1912 A
1178644 Johnson Apr 1916 A
1742080 Jones Dec 1929 A
1979899 Obrien et al. Nov 1934 A
2241010 Chipley May 1941 A
2262772 Peder Nov 1941 A
2326881 Packer Aug 1943 A
2379346 Farrell Jun 1945 A
2485555 Bester Oct 1949 A
2613670 Edward Oct 1952 A
2616426 Adele Nov 1952 A
2644234 Earl Jul 1953 A
2648335 Chambers Aug 1953 A
2859786 Tupper Nov 1958 A
2944551 Carl Jul 1960 A
2968046 Duke Jan 1961 A
2971512 Reinhardt Feb 1961 A
3032038 Swinn May 1962 A
3077883 Hill Feb 1963 A
3087938 Hans et al. Apr 1963 A
3169528 Knox et al. Feb 1965 A
3171506 Therkel Mar 1965 A
3194238 Breece Jul 1965 A
3198994 Hildebrandt et al. Aug 1965 A
3221742 Egon Dec 1965 A
3312221 Overment Apr 1967 A
3312981 Mcguire et al. Apr 1967 A
3349768 Keane Oct 1967 A
3362590 Gene Jan 1968 A
3366116 Huck Jan 1968 A
3398848 Donovan Aug 1968 A
3400717 Bruce et al. Sep 1968 A
3406688 Bruce Oct 1968 A
3424163 Gravdahl Jan 1969 A
3425471 Yates Feb 1969 A
3511241 Lee May 1970 A
3512185 Ellis May 1970 A
3520300 Flower Jul 1970 A
3528423 Lee Sep 1970 A
3613123 Langstrom Oct 1971 A
3648700 Warner Mar 1972 A
3651810 Ormerod Mar 1972 A
3661155 Lindan May 1972 A
3683918 Pizzella Aug 1972 A
3699815 Holbrook Oct 1972 A
3726277 Hirschman Apr 1973 A
3742952 Magers Jul 1973 A
3757355 Allen et al. Sep 1973 A
3788324 Lim Jan 1974 A
3843016 Bornhorst et al. Oct 1974 A
3863638 Rogers et al. Feb 1975 A
3863798 Kurihara et al. Feb 1975 A
3864759 Horiuchi Feb 1975 A
3881486 Fenton May 1975 A
3881489 Hartwell May 1975 A
3915189 Holbrook et al. Oct 1975 A
3998228 Poidomani Dec 1976 A
3999550 Martin Dec 1976 A
4015604 Csillag Apr 1977 A
4020843 Kanall May 1977 A
4022213 Stein May 1977 A
4027776 Douglas Jun 1977 A
4064962 Hunt Dec 1977 A
4116197 Bermingham Sep 1978 A
4180178 Turner Dec 1979 A
4187953 Turner Feb 1980 A
4194508 Anderson Mar 1980 A
4200102 Duhamel et al. Apr 1980 A
4202058 Anderson May 1980 A
4203503 Bertotti et al. May 1980 A
4209076 Bertotti et al. Jun 1980 A
4233025 Larson et al. Nov 1980 A
4233978 Hickey Nov 1980 A
4246901 Frosch et al. Jan 1981 A
4253542 Ruspa et al. Mar 1981 A
4257418 Hessner Mar 1981 A
4270539 Frosch et al. Jun 1981 A
4281655 Terauchi Aug 1981 A
4292916 Bradley et al. Oct 1981 A
4330239 Gannaway May 1982 A
4352356 Tong Oct 1982 A
4360933 Kimura et al. Nov 1982 A
4365363 Windauer Dec 1982 A
4375841 Vielbig Mar 1983 A
4387726 Denard Jun 1983 A
4425130 Desmarais Jan 1984 A
4446986 Bowen et al. May 1984 A
4453938 Brendling Jun 1984 A
4457314 Knowles Jul 1984 A
4476879 Jackson Oct 1984 A
4526688 Schmidt et al. Jul 1985 A
4528703 Kraus Jul 1985 A
D280438 Wendt Sep 1985 S
4551141 Mcneil Nov 1985 A
4553968 Komis Nov 1985 A
4581026 Schneider Apr 1986 A
4589516 Inoue et al. May 1986 A
4601716 Smith Jul 1986 A
4610675 Triunfol Sep 1986 A
4620333 Ritter Nov 1986 A
4626250 Schneider Dec 1986 A
4627846 Ternstroem Dec 1986 A
4631061 Martin Dec 1986 A
4650477 Johnson Mar 1987 A
4655754 Richmond et al. Apr 1987 A
4656675 Fajnsztajn Apr 1987 A
4681570 Dalton Jul 1987 A
4681577 Stern et al. Jul 1987 A
4692160 Nussbaumer Sep 1987 A
4707864 Ikematsu et al. Nov 1987 A
4713065 Koot Dec 1987 A
4713066 Komis Dec 1987 A
4723953 Rosenbaum Feb 1988 A
4735841 Sourdet Apr 1988 A
4743236 Manschot May 1988 A
4747166 Kuntz May 1988 A
4752944 Conrads et al. Jun 1988 A
4769215 Ehrenkranz Sep 1988 A
4771484 Mozell Sep 1988 A
4772280 Rooyakkers Sep 1988 A
4790830 Hamacher Dec 1988 A
4790835 Elias Dec 1988 A
4791686 Taniguchi et al. Dec 1988 A
4795449 Schneider et al. Jan 1989 A
4798603 Meyer et al. Jan 1989 A
4799928 Crowley Jan 1989 A
4804377 Hanifl et al. Feb 1989 A
4812053 Bhattacharjee Mar 1989 A
4813943 Smith Mar 1989 A
4820297 Kaufman et al. Apr 1989 A
4846818 Keldahl et al. Jul 1989 A
4846909 Klug et al. Jul 1989 A
4865595 Heyden Sep 1989 A
4880417 Yabrov et al. Nov 1989 A
4882794 Stewart Nov 1989 A
4883465 Brennan Nov 1989 A
4886498 Newton Dec 1989 A
4886508 Washington Dec 1989 A
4886509 Mattsson Dec 1989 A
4889532 Metz et al. Dec 1989 A
4889533 Beecher Dec 1989 A
4890691 Ching-ho Jan 1990 A
4903254 Haas Feb 1990 A
4904248 Vaillancourt Feb 1990 A
4905692 More Mar 1990 A
4936838 Cross et al. Jun 1990 A
4955922 Terauchi Sep 1990 A
4957487 Gerow Sep 1990 A
4965460 Tanaka et al. Oct 1990 A
4987849 Sherman Jan 1991 A
5002541 Conkling et al. Mar 1991 A
5004463 Nigay Apr 1991 A
5031248 Kemper Jul 1991 A
5045077 Blake Sep 1991 A
5045283 Patel Sep 1991 A
5049144 Payton Sep 1991 A
5053339 Patel Oct 1991 A
5057092 Webster Oct 1991 A
5058088 Haas et al. Oct 1991 A
5071347 Mcguire Dec 1991 A
5078707 Peter Jan 1992 A
5084037 Barnett Jan 1992 A
5100396 Zamierowski Mar 1992 A
5112324 Wallace May 1992 A
5147301 Ruvio Sep 1992 A
5176667 Debring Jan 1993 A
5195997 Carns Mar 1993 A
5196654 Diflora et al. Mar 1993 A
5203699 Mcguire Apr 1993 A
5244458 Takasu Sep 1993 A
5246454 Peterson Sep 1993 A
5267988 Farkas Dec 1993 A
5275307 Freese Jan 1994 A
5294983 Ersoz et al. Mar 1994 A
5295983 Kubo Mar 1994 A
5300052 Kubo Apr 1994 A
5304749 Crandell Apr 1994 A
5312383 Kubalak May 1994 A
5318550 Cermak et al. Jun 1994 A
5330459 Lavon Jul 1994 A
5340840 Park et al. Aug 1994 A
5382244 Telang Jan 1995 A
5409014 Napoli et al. Apr 1995 A
5411495 Willingham May 1995 A
5423784 Metz Jun 1995 A
5456246 Schmieding et al. Oct 1995 A
5466229 Elson et al. Nov 1995 A
5478334 Bernstein Dec 1995 A
5499977 Marx Mar 1996 A
5543042 Filan et al. Aug 1996 A
D373928 Green Sep 1996 S
5582604 Ahr Dec 1996 A
5592950 Kopelowicz Jan 1997 A
5605161 Cross Feb 1997 A
5618277 Goulter Apr 1997 A
5628735 Skow May 1997 A
5636643 Argenta et al. Jun 1997 A
5637104 Ball et al. Jun 1997 A
5674212 Osborn et al. Oct 1997 A
5678564 Lawrence et al. Oct 1997 A
5678654 Uzawa Oct 1997 A
5687429 Rahlff Nov 1997 A
5695485 Duperret et al. Dec 1997 A
5700254 Mcdowall et al. Dec 1997 A
5705777 Flanigan et al. Jan 1998 A
5752944 Dann et al. May 1998 A
5772644 Bark et al. Jun 1998 A
5792132 Garcia Aug 1998 A
5827243 Palestrant Oct 1998 A
5827247 Kay Oct 1998 A
5827250 Fujioka et al. Oct 1998 A
5827257 Fujioka et al. Oct 1998 A
D401699 Herchenbach et al. Nov 1998 S
5859393 Cummins et al. Jan 1999 A
5865378 Hollinshead et al. Feb 1999 A
5876393 Ahr Mar 1999 A
5887291 Bellizzi Mar 1999 A
5891125 Plumley Apr 1999 A
5894608 Birbara Apr 1999 A
D409303 Oepping May 1999 S
5911222 Lawrence et al. Jun 1999 A
5957904 Holland Sep 1999 A
5968026 Osborn et al. Oct 1999 A
5972505 Phillips et al. Oct 1999 A
6039060 Rower Mar 2000 A
6050983 Moore et al. Apr 2000 A
6059762 Boyer et al. May 2000 A
6063064 Tuckey et al. May 2000 A
6098625 Winkler Aug 2000 A
6105174 Karlsten et al. Aug 2000 A
6113582 Dwork Sep 2000 A
6117163 Bierman Sep 2000 A
6123398 Arai et al. Sep 2000 A
6129718 Wada et al. Oct 2000 A
6131964 Sareshwala Oct 2000 A
6152902 Christian et al. Nov 2000 A
6164569 Hollinshead et al. Dec 2000 A
6177606 Etheredge et al. Jan 2001 B1
6209142 Mattsson et al. Apr 2001 B1
6220050 Cooksey Apr 2001 B1
6244311 Hand et al. Jun 2001 B1
6248096 Dwork et al. Jun 2001 B1
6263887 Dunn Jul 2001 B1
6283246 Nishikawa Sep 2001 B1
6311339 Kraus Nov 2001 B1
6336919 Davis et al. Jan 2002 B1
6338729 Wada et al. Jan 2002 B1
6352525 Wakabayashi Mar 2002 B1
6394988 Hashimoto May 2002 B1
6398742 Kim Jun 2002 B1
6406463 Brown Jun 2002 B1
6409712 Dutari et al. Jun 2002 B1
6416500 Wada et al. Jul 2002 B1
6423045 Wise Jul 2002 B1
6428521 Droll Aug 2002 B1
6428522 DiPalma Aug 2002 B1
6446454 Lee et al. Sep 2002 B1
6475198 Lipman et al. Nov 2002 B1
6479726 Cole et al. Nov 2002 B1
6491673 Palumbo et al. Dec 2002 B1
6508794 Palumbo et al. Jan 2003 B1
6524292 DiPalma Feb 2003 B1
6540729 Wada et al. Apr 2003 B1
6547771 Robertson et al. Apr 2003 B2
6569133 Cheng et al. May 2003 B2
D476518 Doppelt Jul 2003 S
6592560 Snyder et al. Jul 2003 B2
6610038 DiPalma Aug 2003 B1
6618868 Minnick Sep 2003 B2
6620142 Flueckiger Sep 2003 B1
6629651 Male et al. Oct 2003 B1
6635038 Scovel Oct 2003 B2
6652495 Walker Nov 2003 B1
6666850 Ahr Dec 2003 B1
6685684 Falconer Feb 2004 B1
6695828 DiPalma Feb 2004 B1
6700034 Lindsay Mar 2004 B1
6702793 Sweetser et al. Mar 2004 B1
6706027 Harvie et al. Mar 2004 B2
6732384 Scott May 2004 B2
6736977 Hall et al. May 2004 B1
6740066 Wolff et al. May 2004 B2
6764477 Chen et al. Jul 2004 B1
6783519 Samuelsson Aug 2004 B2
6796974 Palumbo et al. Sep 2004 B2
6814547 Childers et al. Nov 2004 B2
6849065 Schmidt et al. Feb 2005 B2
6857137 Otto Feb 2005 B2
6885690 Aggerstam et al. Apr 2005 B2
6888044 Fell et al. May 2005 B2
6893425 Dunn et al. May 2005 B2
6912737 Ernest et al. Jul 2005 B2
6918899 Harvie Jul 2005 B2
6979324 Bybordi et al. Dec 2005 B2
7018366 Easter Mar 2006 B2
7066411 Male et al. Jun 2006 B2
7122023 Hinoki Oct 2006 B1
7125399 Miskie Oct 2006 B2
7131964 Harvie Nov 2006 B2
7135012 Harvie Nov 2006 B2
7141043 Harvie Nov 2006 B2
D533972 La Dec 2006 S
7160273 Greter et al. Jan 2007 B2
7171699 Ernest et al. Feb 2007 B2
7171871 Kozak Feb 2007 B2
7179951 Krishnaswamy-mirle et al. Feb 2007 B2
7181781 Trabold et al. Feb 2007 B1
7186245 Cheng et al. Mar 2007 B1
7192424 Cooper Mar 2007 B2
7219764 Forbes May 2007 B1
7220250 Suzuki et al. May 2007 B2
D562975 Otto Feb 2008 S
7335189 Harvie Feb 2008 B2
7358282 Krueger et al. Apr 2008 B2
7390320 Machida et al. Jun 2008 B2
7438706 Koizumi et al. Oct 2008 B2
7488310 Yang Feb 2009 B2
7491194 Oliwa Feb 2009 B1
D591106 Dominique et al. Apr 2009 S
7513381 Heng et al. Apr 2009 B2
7520872 Biggie et al. Apr 2009 B2
D593801 Wilson et al. Jun 2009 S
7540364 Sanderson Jun 2009 B2
7549512 Newberry Jun 2009 B2
7585293 Vermaak Sep 2009 B2
7588560 Dunlop Sep 2009 B1
7665359 Barber Feb 2010 B2
7682347 Parks et al. Mar 2010 B2
7687004 Allen Mar 2010 B2
7695459 Gilbert et al. Apr 2010 B2
7695460 Wada et al. Apr 2010 B2
7699818 Gilbert Apr 2010 B2
7699831 Bengtson et al. Apr 2010 B2
7722584 Tanaka et al. May 2010 B2
7727206 Gorres Jun 2010 B2
7740620 Gilbert et al. Jun 2010 B2
7749205 Tazoe Jul 2010 B2
7755497 Wada et al. Jul 2010 B2
7766887 Burns et al. Aug 2010 B2
D625407 Koizumi et al. Oct 2010 S
7806879 Brooks et al. Oct 2010 B2
7811272 Lindsay et al. Oct 2010 B2
7815067 Matsumoto et al. Oct 2010 B2
7833169 Hannon Nov 2010 B2
7857806 Karpowicz et al. Dec 2010 B2
7866942 Harvie Jan 2011 B2
7871385 Levinson et al. Jan 2011 B2
7875010 Frazier et al. Jan 2011 B2
7901389 Mombrinie Mar 2011 B2
7927320 Goldwasser et al. Apr 2011 B2
7927321 Marland Apr 2011 B2
7931634 Swiecicki et al. Apr 2011 B2
7939706 Okabe et al. May 2011 B2
7946443 Stull et al. May 2011 B2
7947025 Buglino et al. May 2011 B2
7963419 Burney et al. Jun 2011 B2
7976519 Bubb et al. Jul 2011 B2
7993318 Olsson et al. Aug 2011 B2
8015627 Baker et al. Sep 2011 B2
8016071 Martinus et al. Sep 2011 B1
8028460 Williams Oct 2011 B2
8047398 Dimartino et al. Nov 2011 B2
8083094 Caulfield et al. Dec 2011 B2
8128608 Thevenin Mar 2012 B2
8181651 Pinel May 2012 B2
8181819 Burney et al. May 2012 B2
8211063 Bierman et al. Jul 2012 B2
8221369 Parks et al. Jul 2012 B2
8241262 Mahnensmith Aug 2012 B2
8277426 Wilcox et al. Oct 2012 B2
8287508 Sanchez Oct 2012 B1
8303554 Tsai et al. Nov 2012 B2
8322565 Caulfield et al. Dec 2012 B2
8337477 Parks et al. Dec 2012 B2
D674241 Bickert et al. Jan 2013 S
8343122 Gorres Jan 2013 B2
8353074 Krebs Jan 2013 B2
8353886 Bester et al. Jan 2013 B2
D676241 Merrill Feb 2013 S
8388588 Wada et al. Mar 2013 B2
D679807 Burgess et al. Apr 2013 S
8425482 Khoubnazar Apr 2013 B2
8434586 Pawelski et al. May 2013 B2
8449510 Martini et al. May 2013 B2
D684260 Lund et al. Jun 2013 S
8470230 Caulfield et al. Jun 2013 B2
8479941 Matsumoto et al. Jul 2013 B2
8479949 Henkel Jul 2013 B2
8500719 Simpson et al. Aug 2013 B1
8512301 Ma Aug 2013 B2
8529530 Koch et al. Sep 2013 B2
8535284 Joder et al. Sep 2013 B2
8546639 Wada et al. Oct 2013 B2
8551075 Bengtson Oct 2013 B2
8568376 Delattre et al. Oct 2013 B2
D694404 Burgess et al. Nov 2013 S
8585683 Bengtson et al. Nov 2013 B2
8652112 Johannison et al. Feb 2014 B2
D702973 Norland et al. Apr 2014 S
8703032 Menon et al. Apr 2014 B2
D704330 Cicatelli May 2014 S
D704510 Mason et al. May 2014 S
D705423 Walsh Cutler May 2014 S
D705926 Burgess et al. May 2014 S
8714394 Wulf May 2014 B2
8715267 Bengtson et al. May 2014 B2
8757425 Copeland Jun 2014 B2
8777032 Biesecker et al. Jul 2014 B2
8808260 Koch et al. Aug 2014 B2
8864730 Conway et al. Oct 2014 B2
8881923 Higginson Nov 2014 B2
8882731 Suzuki et al. Nov 2014 B2
8936585 Carson et al. Jan 2015 B2
D729581 Boroski May 2015 S
9028460 Medeiros May 2015 B2
9056698 Noer Jun 2015 B2
9078792 Ruiz Jul 2015 B2
9145879 Pirovano et al. Sep 2015 B2
9173602 Gilbert Nov 2015 B2
9173799 Tanimoto et al. Nov 2015 B2
9187220 Biesecker et al. Nov 2015 B2
9199772 Krippendorf Dec 2015 B2
9233020 Matsumiya Jan 2016 B2
9248058 Conway et al. Feb 2016 B2
9308118 Dupree et al. Apr 2016 B1
9309029 Incorvia et al. Apr 2016 B2
9333281 Giezendanner et al. May 2016 B2
9381108 Longoni et al. Jul 2016 B2
9382047 Schmidtner et al. Jul 2016 B2
9456937 Ellis Oct 2016 B2
9480595 Baham et al. Nov 2016 B2
9517865 Albers et al. Dec 2016 B2
D777941 Piramoon Jan 2017 S
9533806 Ding et al. Jan 2017 B2
9550611 Hodge Jan 2017 B2
9555930 Campbell et al. Jan 2017 B2
9623159 Locke Apr 2017 B2
D789522 Burgess et al. Jun 2017 S
9687849 Bruno et al. Jun 2017 B2
9694949 Hendricks et al. Jul 2017 B2
9709048 Kinjo Jul 2017 B2
9713547 Lee et al. Jul 2017 B2
9732754 Huang et al. Aug 2017 B2
9752564 Arceno et al. Sep 2017 B2
9788992 Harvie Oct 2017 B2
D804907 Sandoval Dec 2017 S
9868564 Mcgirr et al. Jan 2018 B2
D814239 Arora Apr 2018 S
D817484 Lafond May 2018 S
10037640 Gordon Jul 2018 B2
10058470 Phillips Aug 2018 B2
10098990 Koch et al. Oct 2018 B2
D835264 Mozzicato et al. Dec 2018 S
D835779 Mozzicato et al. Dec 2018 S
D840533 Mozzicato et al. Feb 2019 S
D840534 Mozzicato et al. Feb 2019 S
10225376 Perez Martinez Mar 2019 B2
10226376 Sanchez et al. Mar 2019 B2
D848612 Mozzicato et al. May 2019 S
10307305 Hodges Jun 2019 B1
10335121 Desai Jul 2019 B2
D856512 Cowart et al. Aug 2019 S
10376406 Newton Aug 2019 B2
10376407 Newton Aug 2019 B2
10390989 Sanchez et al. Aug 2019 B2
D858144 Fu Sep 2019 S
10406039 Villarreal Sep 2019 B2
10407222 Allen Sep 2019 B2
10478356 Griffin Nov 2019 B2
10538366 Pentelovitch et al. Jan 2020 B2
10569938 Zhao et al. Feb 2020 B2
10577156 Dagnelie et al. Mar 2020 B2
RE47930 Cho Apr 2020 E
10618721 Vazin Apr 2020 B2
D884390 Wang May 2020 S
10669079 Freedman et al. Jun 2020 B2
D892315 Airy Aug 2020 S
10730672 Bertram et al. Aug 2020 B2
10737848 Philip et al. Aug 2020 B2
10765854 Law et al. Sep 2020 B2
10766670 Kittmann Sep 2020 B2
10799386 Harrison Oct 2020 B1
D901214 Hu Nov 2020 S
10857025 Davis et al. Dec 2020 B2
10865017 Cowart et al. Dec 2020 B1
10889412 West et al. Jan 2021 B2
10913581 Stahlecker Feb 2021 B2
D912244 Rehm et al. Mar 2021 S
10952889 Newton et al. Mar 2021 B2
10973378 Ryu et al. Apr 2021 B2
10973678 Newton et al. Apr 2021 B2
10974874 Ragias et al. Apr 2021 B2
11000401 Ecklund et al. May 2021 B2
D923365 Wang Jun 2021 S
11026829 Harvie Jun 2021 B2
11027900 Liu Jun 2021 B2
11045346 Argent et al. Jun 2021 B2
D928946 Sanchez et al. Aug 2021 S
11168420 Kinugasa et al. Nov 2021 B2
11179506 Barr et al. Nov 2021 B2
11226376 Yamauchi et al. Jan 2022 B2
11326586 Milner et al. May 2022 B2
11369508 Ecklund et al. Jun 2022 B2
11376152 Sanchez et al. Jul 2022 B2
11382786 Sanchez et al. Jul 2022 B2
11382788 Hjorth Jul 2022 B2
11389318 Radl et al. Jul 2022 B2
11395871 Radl et al. Jul 2022 B2
11426303 Davis et al. Aug 2022 B2
11504265 Godinez et al. Nov 2022 B2
11529252 Glithero et al. Dec 2022 B2
11547788 Radl et al. Jan 2023 B2
11806266 Sanchez et al. Nov 2023 B2
D1010109 Ecklund et al. Jan 2024 S
11857716 Lee et al. Jan 2024 B2
11890221 Ulreich et al. Feb 2024 B2
11925575 Newton Mar 2024 B2
20010037097 Cheng Nov 2001 A1
20010054426 Knudson et al. Dec 2001 A1
20020019614 Woon Feb 2002 A1
20020026161 Grundke Feb 2002 A1
20020087131 Wolff et al. Jul 2002 A1
20020091364 Prabhakar Jul 2002 A1
20020189992 Schmidt et al. Dec 2002 A1
20020193760 Thompson Dec 2002 A1
20030004436 Schmidt et al. Jan 2003 A1
20030032931 Grundke et al. Feb 2003 A1
20030032944 Cawood Feb 2003 A1
20030073964 Palumbo et al. Apr 2003 A1
20030120178 Heki Jun 2003 A1
20030157859 Ishikawa Aug 2003 A1
20030181880 Schwartz Sep 2003 A1
20030195484 Harvie Oct 2003 A1
20030204173 Burns et al. Oct 2003 A1
20030233079 Parks et al. Dec 2003 A1
20040006321 Cheng et al. Jan 2004 A1
20040015141 Cheng Jan 2004 A1
20040056122 Male et al. Mar 2004 A1
20040084465 Luburic May 2004 A1
20040127872 Petryk et al. Jul 2004 A1
20040128749 Scott Jul 2004 A1
20040143229 Easter Jul 2004 A1
20040147863 Diaz Jul 2004 A1
20040147894 Mizutani et al. Jul 2004 A1
20040158221 Mizutani et al. Aug 2004 A1
20040176731 Cheng et al. Sep 2004 A1
20040176746 Forral Sep 2004 A1
20040191919 Unger et al. Sep 2004 A1
20040207530 Nielsen Oct 2004 A1
20040236292 Tazoe Nov 2004 A1
20040243075 Harvie Dec 2004 A1
20040254547 Okabe et al. Dec 2004 A1
20050010182 Parks et al. Jan 2005 A1
20050033248 Machida et al. Feb 2005 A1
20050065471 Kuntz Mar 2005 A1
20050070861 Okabe et al. Mar 2005 A1
20050070862 Tazoe et al. Mar 2005 A1
20050082300 Modrell et al. Apr 2005 A1
20050097662 Leimkuhler et al. May 2005 A1
20050101924 Elson et al. May 2005 A1
20050119630 Harvie Jun 2005 A1
20050137557 Swiecicki et al. Jun 2005 A1
20050154360 Harvie Jul 2005 A1
20050177070 Levinson et al. Aug 2005 A1
20050197639 Mombrinie Sep 2005 A1
20050273920 Marinas Dec 2005 A1
20050277904 Chase et al. Dec 2005 A1
20050279359 LeBlanc et al. Dec 2005 A1
20060004332 Marx Jan 2006 A1
20060015080 Mahnensmith Jan 2006 A1
20060015081 Suzuki et al. Jan 2006 A1
20060016778 Park Jan 2006 A1
20060069359 Dipalma et al. Mar 2006 A1
20060079854 Kay et al. Apr 2006 A1
20060111648 Vermaak May 2006 A1
20060155214 Wightman Jul 2006 A1
20060171997 Gruenbacher Aug 2006 A1
20060200102 Cooper Sep 2006 A1
20060229575 Boiarski Oct 2006 A1
20060229576 Conway et al. Oct 2006 A1
20060231648 Male et al. Oct 2006 A1
20060235266 Nan Oct 2006 A1
20060235359 Marland Oct 2006 A1
20060241553 Harvie Oct 2006 A1
20060269439 White Nov 2006 A1
20060277670 Baker et al. Dec 2006 A1
20070006368 Key et al. Jan 2007 A1
20070010797 Nishtala et al. Jan 2007 A1
20070016152 Karpowicz et al. Jan 2007 A1
20070038194 Wada et al. Feb 2007 A1
20070055209 Patel et al. Mar 2007 A1
20070073252 Forgrave Mar 2007 A1
20070117880 Elson et al. May 2007 A1
20070118993 Bates May 2007 A1
20070135786 Schmidt et al. Jun 2007 A1
20070137718 Rushlander et al. Jun 2007 A1
20070149935 Dirico Jun 2007 A1
20070191804 Coley Aug 2007 A1
20070214553 Carromba et al. Sep 2007 A1
20070225663 Watt et al. Sep 2007 A1
20070225666 Otto Sep 2007 A1
20070225668 Otto Sep 2007 A1
20070266486 Ramirez Nov 2007 A1
20070282309 Bengtson et al. Dec 2007 A1
20080004576 Tanaka et al. Jan 2008 A1
20080015526 Reiner et al. Jan 2008 A1
20080015527 House Jan 2008 A1
20080033386 Okabe et al. Feb 2008 A1
20080041869 Backaert Feb 2008 A1
20080091153 Harvie Apr 2008 A1
20080091158 Yang Apr 2008 A1
20080114327 Barge May 2008 A1
20080167634 Kouta et al. Jul 2008 A1
20080183157 Walters Jul 2008 A1
20080215031 Belfort et al. Sep 2008 A1
20080234642 Patterson et al. Sep 2008 A1
20080269703 Collins Oct 2008 A1
20080281282 Finger et al. Nov 2008 A1
20080287894 Van Den Heuvel et al. Nov 2008 A1
20080312550 Nishtala et al. Dec 2008 A1
20090025717 Pinel Jan 2009 A1
20090048570 Jensen Feb 2009 A1
20090056003 Ivie et al. Mar 2009 A1
20090069761 Vogel Mar 2009 A1
20090069765 Wortham Mar 2009 A1
20090192482 Dodge et al. Jul 2009 A1
20090234312 Otoole et al. Sep 2009 A1
20090251510 Noro et al. Oct 2009 A1
20090264840 Virginio Oct 2009 A1
20090270822 Medeiros Oct 2009 A1
20090281510 Fisher Nov 2009 A1
20100004612 Thevenin Jan 2010 A1
20100058660 Williams Mar 2010 A1
20100121289 Parks et al. May 2010 A1
20100160882 Lowe Jun 2010 A1
20100174250 Hu Jul 2010 A1
20100185168 Graauw et al. Jul 2010 A1
20100198172 Wada et al. Aug 2010 A1
20100211032 Tsai et al. Aug 2010 A1
20100234820 Tsai et al. Sep 2010 A1
20100241104 Gilbert Sep 2010 A1
20100263113 Shelton et al. Oct 2010 A1
20100310845 Bond et al. Dec 2010 A1
20110028920 Johannison Feb 2011 A1
20110028922 Kay et al. Feb 2011 A1
20110034889 Smith Feb 2011 A1
20110036837 Shang Feb 2011 A1
20110040267 Wada et al. Feb 2011 A1
20110040271 Rogers et al. Feb 2011 A1
20110054426 Stewart et al. Mar 2011 A1
20110060299 Wada et al. Mar 2011 A1
20110060300 Weig et al. Mar 2011 A1
20110077495 Gilbert Mar 2011 A1
20110077606 Wilcox et al. Mar 2011 A1
20110087337 Forsell Apr 2011 A1
20110145993 Rader et al. Jun 2011 A1
20110152802 Dicamillo et al. Jun 2011 A1
20110164147 Takahashi et al. Jul 2011 A1
20110172620 Khambatta Jul 2011 A1
20110172625 Wada et al. Jul 2011 A1
20110202024 Cozzens Aug 2011 A1
20110238023 Slayton Sep 2011 A1
20110240648 Tucker Oct 2011 A1
20110251572 Nishtala et al. Oct 2011 A1
20110265889 Tanaka et al. Nov 2011 A1
20110276020 Mitsui Nov 2011 A1
20120035577 Tomes et al. Feb 2012 A1
20120041400 Christensen Feb 2012 A1
20120059328 Dikeman et al. Mar 2012 A1
20120066825 Birbara et al. Mar 2012 A1
20120103347 Wheaton et al. May 2012 A1
20120137420 Gordon et al. Jun 2012 A1
20120165768 Sekiyama et al. Jun 2012 A1
20120165786 Chappa et al. Jun 2012 A1
20120210503 Anzivino et al. Aug 2012 A1
20120233761 Huang Sep 2012 A1
20120245541 Suzuki et al. Sep 2012 A1
20120245542 Suzuki et al. Sep 2012 A1
20120245547 Wilcox et al. Sep 2012 A1
20120253303 Suzuki et al. Oct 2012 A1
20120271259 Ulert Oct 2012 A1
20120296305 Barraza Khaled et al. Nov 2012 A1
20120316522 Carter et al. Dec 2012 A1
20120330256 Wilcox et al. Dec 2012 A1
20130006206 Wada et al. Jan 2013 A1
20130045651 Esteves et al. Feb 2013 A1
20130053804 Soerensen et al. Feb 2013 A1
20130096523 Chang et al. Apr 2013 A1
20130138064 Stroebech et al. May 2013 A1
20130150813 Gordon et al. Jun 2013 A1
20130245496 Wells et al. Sep 2013 A1
20130245586 Jha Sep 2013 A1
20130292537 Dirico Nov 2013 A1
20140005647 Shuffler et al. Jan 2014 A1
20140031774 Bengtson Jan 2014 A1
20140039432 Dunbar et al. Feb 2014 A1
20140157499 Suzuki et al. Jun 2014 A1
20140171889 Hopman et al. Jun 2014 A1
20140182051 Tanimoto et al. Jul 2014 A1
20140196189 Lee et al. Jul 2014 A1
20140303582 Wright et al. Oct 2014 A1
20140316381 Reglin Oct 2014 A1
20140325746 Block Nov 2014 A1
20140348139 Gomez Martinez Nov 2014 A1
20140352050 Yao et al. Dec 2014 A1
20140371628 Desai Dec 2014 A1
20150045757 Lee et al. Feb 2015 A1
20150047114 Ramirez Feb 2015 A1
20150048089 Robertson Feb 2015 A1
20150135423 Sharpe et al. May 2015 A1
20150157300 Ealovega et al. Jun 2015 A1
20150209194 Heyman Jul 2015 A1
20150290425 Macy et al. Oct 2015 A1
20150320583 Harvie Nov 2015 A1
20150329255 Rzepecki Nov 2015 A1
20150342799 Michiels et al. Dec 2015 A1
20150359660 Harvie Dec 2015 A1
20150366699 Nelson Dec 2015 A1
20160029998 Brister et al. Feb 2016 A1
20160030228 Jones Feb 2016 A1
20160038356 Yao et al. Feb 2016 A1
20160058322 Brister et al. Mar 2016 A1
20160060001 Wada et al. Mar 2016 A1
20160100976 Conway et al. Apr 2016 A1
20160106604 Timm Apr 2016 A1
20160113809 Kim Apr 2016 A1
20160183689 Miner Jun 2016 A1
20160256022 Le Sep 2016 A1
20160270982 Raycheck et al. Sep 2016 A1
20160278662 Brister et al. Sep 2016 A1
20160357400 Penha et al. Dec 2016 A1
20160366699 Zhang et al. Dec 2016 A1
20160367226 Newton et al. Dec 2016 A1
20160367411 Justiz et al. Dec 2016 A1
20160374848 Sanchez Dec 2016 A1
20170007438 Harvie Jan 2017 A1
20170014560 Minskoff et al. Jan 2017 A1
20170100276 Joh Apr 2017 A1
20170128638 Giezendanner et al. May 2017 A1
20170143534 Sanchez May 2017 A1
20170165405 Muser et al. Jun 2017 A1
20170189225 Voorhees et al. Jul 2017 A1
20170202692 Laniado Jul 2017 A1
20170216081 Accosta Aug 2017 A1
20170246026 Laniado Aug 2017 A1
20170252014 Siller Gonzalez et al. Sep 2017 A1
20170252202 Sanchez et al. Sep 2017 A9
20170266031 Sanchez Sep 2017 A1
20170266658 Bruno et al. Sep 2017 A1
20170281399 Vanmiddendorp et al. Oct 2017 A1
20170312116 Laniado Nov 2017 A1
20170325788 Ealovega et al. Nov 2017 A1
20170333244 Laniado Nov 2017 A1
20170042748 Griffin Dec 2017 A1
20170348139 Newton et al. Dec 2017 A1
20170354532 Holt Dec 2017 A1
20170367873 Grannum Dec 2017 A1
20180002075 Lee Jan 2018 A1
20180008451 Stroebech Jan 2018 A1
20180008804 Laniado Jan 2018 A1
20180021218 Brosch et al. Jan 2018 A1
20180028349 Newton et al. Feb 2018 A1
20180037384 Archeny et al. Feb 2018 A1
20180049910 Newton Feb 2018 A1
20180064572 Wiltshire Mar 2018 A1
20180104131 Killian Apr 2018 A1
20180127187 Sewell May 2018 A1
20180193215 Davies et al. Jul 2018 A1
20180200101 Su Jul 2018 A1
20180228642 Davis Aug 2018 A1
20180256384 Kasirye Sep 2018 A1
20180271694 Fernandez et al. Sep 2018 A1
20180317892 Catlin Nov 2018 A1
20190001030 Braga et al. Jan 2019 A1
20190021899 Vlet Jan 2019 A1
20190038451 Harvie Feb 2019 A1
20190046102 Kushnir et al. Feb 2019 A1
20190100362 Meyers et al. Apr 2019 A1
20190133814 Tammen et al. May 2019 A1
20190142624 Sanchez et al. May 2019 A1
20190224036 Sanchez et al. Jul 2019 A1
20190247222 Ecklund et al. Aug 2019 A1
20190247223 Brun Aug 2019 A1
20190282391 Johannes et al. Sep 2019 A1
20190314189 Acosta Oct 2019 A1
20190314190 Sanchez et al. Oct 2019 A1
20190321587 Mcmenamin et al. Oct 2019 A1
20190344934 Faerber et al. Nov 2019 A1
20190365307 Laing et al. Dec 2019 A1
20190365561 Newton et al. Dec 2019 A1
20200008985 Nguyen et al. Jan 2020 A1
20200030595 Boukidjian Jan 2020 A1
20200046544 Godinez et al. Feb 2020 A1
20200055638 Lau et al. Feb 2020 A1
20200070392 Huber et al. Mar 2020 A1
20200085609 Schelch et al. Mar 2020 A1
20200085610 Cohn et al. Mar 2020 A1
20200086090 Von Weymarn-schärli et al. Mar 2020 A1
20200129322 Leuckel Apr 2020 A1
20200171217 Braga et al. Jun 2020 A9
20200216989 Kinugasa et al. Jul 2020 A1
20200229964 Staali et al. Jul 2020 A1
20200231343 Freedman et al. Jul 2020 A1
20200232841 Satish et al. Jul 2020 A1
20200246172 Ho Aug 2020 A1
20200255189 Liu Aug 2020 A1
20200261280 Heyman Aug 2020 A1
20200276046 Staali et al. Sep 2020 A1
20200306075 Newton et al. Oct 2020 A1
20200315837 Radl et al. Oct 2020 A1
20200315838 Eckert Oct 2020 A1
20200331672 Bertram et al. Oct 2020 A1
20200345332 Duval Nov 2020 A1
20200353135 Gregory et al. Nov 2020 A1
20200367677 Silsby et al. Nov 2020 A1
20200369444 Silsby et al. Nov 2020 A1
20200375781 Staali et al. Dec 2020 A1
20200385179 Mccourt Dec 2020 A1
20200390591 Glithero et al. Dec 2020 A1
20200390592 Merrill Dec 2020 A1
20200405521 Glasroe Dec 2020 A1
20210008771 Huber et al. Jan 2021 A1
20210009323 Markarian et al. Jan 2021 A1
20210020072 Moehring et al. Jan 2021 A1
20210059853 Davis et al. Mar 2021 A1
20210061523 Bytheway Mar 2021 A1
20210069005 Sanchez et al. Mar 2021 A1
20210069008 Blabas et al. Mar 2021 A1
20210069009 Im Mar 2021 A1
20210077993 Nazareth et al. Mar 2021 A1
20210113749 Radl et al. Apr 2021 A1
20210121318 Pinlac Apr 2021 A1
20210137724 Ecklund et al. May 2021 A1
20210138190 Erbey et al. May 2021 A1
20210154055 Villarreal May 2021 A1
20210170079 Radl et al. Jun 2021 A1
20210178390 Oueslati et al. Jun 2021 A1
20210186742 Newton et al. Jun 2021 A1
20210212865 Wallajapet et al. Jul 2021 A1
20210220162 Jamison Jul 2021 A1
20210220163 Mayrand Jul 2021 A1
20210228400 Glithero Jul 2021 A1
20210228401 Becker et al. Jul 2021 A1
20210228795 Hughett et al. Jul 2021 A1
20210229877 Ragias et al. Jul 2021 A1
20210236323 Austermann et al. Aug 2021 A1
20210236324 Sweeney Aug 2021 A1
20210267787 Nazemi Sep 2021 A1
20210275343 Sanchez et al. Sep 2021 A1
20210315727 Jiang Oct 2021 A1
20210353450 Sharma et al. Nov 2021 A1
20210361469 Liu et al. Nov 2021 A1
20210369495 Cheng Dec 2021 A1
20210386925 Hartwell et al. Dec 2021 A1
20210393433 Godinez et al. Dec 2021 A1
20220023091 Ecklund et al. Jan 2022 A1
20220039995 Johannes et al. Feb 2022 A1
20220047410 Walthall Feb 2022 A1
20220062027 Mitchell et al. Mar 2022 A1
20220062028 Mitchell et al. Mar 2022 A1
20220062029 Johannes et al. Mar 2022 A1
20220066825 Saraf et al. Mar 2022 A1
20220071811 Cheng et al. Mar 2022 A1
20220071826 Kulkarni et al. Mar 2022 A1
20220104965 Vaninetti et al. Apr 2022 A1
20220104981 Jones Apr 2022 A1
20220117773 Davis et al. Apr 2022 A1
20220117774 Meyer et al. Apr 2022 A1
20220117775 Jones et al. Apr 2022 A1
20220133524 Davis May 2022 A1
20220151817 Mann May 2022 A1
20220160949 Simiele et al. May 2022 A1
20220193312 Lee et al. Jun 2022 A1
20220211536 Johannes et al. Jul 2022 A1
20220218510 Metzger et al. Jul 2022 A1
20220229053 Levin et al. Jul 2022 A1
20220241106 Johannes et al. Aug 2022 A1
20220247407 Yamamoto et al. Aug 2022 A1
20220248836 Cagle et al. Aug 2022 A1
20220257407 Johannes et al. Aug 2022 A1
20220265460 Coker Aug 2022 A1
20220265462 Alder et al. Aug 2022 A1
20220270711 Feala et al. Aug 2022 A1
20220273482 Johannes et al. Sep 2022 A1
20220280357 Jagannathan et al. Sep 2022 A1
20220287689 Johannes Sep 2022 A1
20220296408 Evans et al. Sep 2022 A1
20220305191 Joseph et al. Sep 2022 A1
20220313222 Austermann et al. Oct 2022 A1
20220313474 Kriscovich et al. Oct 2022 A1
20220331170 Erdem et al. Oct 2022 A1
20220339024 Johannes et al. Oct 2022 A1
20220354685 Davis et al. Nov 2022 A1
20220362049 Austermann et al. Nov 2022 A1
20220370231 Wang et al. Nov 2022 A1
20220370234 Hughett et al. Nov 2022 A1
20220370235 Johannes et al. Nov 2022 A1
20220370237 Parmar et al. Nov 2022 A1
20220387001 Askenazi et al. Dec 2022 A1
20220395390 Brooks Dec 2022 A1
20220395391 Saunders et al. Dec 2022 A1
20230018845 Lee Jan 2023 A1
20230020563 Sharma et al. Jan 2023 A1
20230031640 Hughett et al. Feb 2023 A1
20230037159 Brennan et al. Feb 2023 A1
20230052238 Oluwasogo Feb 2023 A1
20230062994 Ecklund et al. Mar 2023 A1
20230070347 Watson et al. Mar 2023 A1
20230073708 Xu et al. Mar 2023 A1
20230089032 Hughett et al. Mar 2023 A1
20230099821 Radl et al. Mar 2023 A1
20230105001 Whittome et al. Apr 2023 A1
20230138269 Abdelal et al. May 2023 A1
20230145365 Martin et al. May 2023 A1
20230210504 Kuroda et al. Jul 2023 A1
20230218426 Hughett Jul 2023 A1
20230248562 Sanchez et al. Aug 2023 A1
20230255812 Sanchez et al. Aug 2023 A1
20230255813 Sanchez et al. Aug 2023 A1
20230255815 Newton Aug 2023 A1
20230263650 Sanchez et al. Aug 2023 A1
20230263655 Johannes et al. Aug 2023 A1
20230277362 Davis et al. Sep 2023 A1
20230293339 James Sep 2023 A1
20230301846 Greenwood Sep 2023 A1
20230355423 Stevenson et al. Nov 2023 A1
20230404791 Ecklund et al. Dec 2023 A1
20240009023 Johannes et al. Jan 2024 A1
20240041638 Johannes et al. Feb 2024 A1
20240058161 Ulreich et al. Feb 2024 A1
Foreign Referenced Citations (398)
Number Date Country
2018216821 Aug 2018 AU
2021299304 Feb 2023 AU
2165286 Sep 1999 CA
2354132 Jun 2000 CA
2488867 Aug 2007 CA
3050918 Aug 2018 CA
3098571 Nov 2019 CA
2269203 Dec 1997 CN
1332620 Jan 2002 CN
1533755 Oct 2004 CN
1602825 Apr 2005 CN
1720888 Jan 2006 CN
2936204 Aug 2007 CN
101262836 Sep 2008 CN
101522148 Sep 2009 CN
102159159 Aug 2011 CN
202184840 Apr 2012 CN
102481441 May 2012 CN
202463712 Oct 2012 CN
103533968 Jan 2014 CN
103717180 Apr 2014 CN
204562697 Aug 2015 CN
105411783 Mar 2016 CN
105451693 Mar 2016 CN
105534632 May 2016 CN
205849719 Jan 2017 CN
106726089 May 2017 CN
107847384 Mar 2018 CN
107920912 Apr 2018 CN
209285902 Aug 2019 CN
110381883 Oct 2019 CN
211198839 Aug 2020 CN
112566550 Mar 2021 CN
112603184 Apr 2021 CN
114007493 Feb 2022 CN
114375187 Apr 2022 CN
116096332 May 2023 CN
1516466 Jun 1969 DE
2721330 Nov 1977 DE
2742298 Mar 1978 DE
9407554.9 May 1995 DE
4443710 Jun 1995 DE
4416094 Nov 1995 DE
4236097 Oct 1996 DE
19619597 Nov 1997 DE
102005037762 Sep 2006 DE
102011103783 Dec 2012 DE
202015104597 Jul 2016 DE
9600118 Nov 1996 DK
0032138 Jul 1981 EP
0066070 Dec 1982 EP
0140470 May 1985 EP
0140471 May 1988 EP
0274753 Jul 1988 EP
0119143 Nov 1988 EP
0483592 May 1992 EP
0610638 Aug 1994 EP
0613355 Sep 1994 EP
0613355 Jan 1997 EP
0787472 Aug 1997 EP
0966936 Dec 1999 EP
0987293 Mar 2000 EP
1063953 Jan 2001 EP
0653928 Oct 2002 EP
1332738 Aug 2003 EP
1382318 Jan 2004 EP
1089684 Oct 2004 EP
1616542 Jan 2006 EP
1382318 May 2006 EP
1063953 Jan 2007 EP
1872752 Jan 2008 EP
2180907 May 2010 EP
2380532 Oct 2011 EP
2389908 Nov 2011 EP
2601916 Jun 2013 EP
2676643 Dec 2013 EP
2997950 Mar 2016 EP
2879534 Mar 2017 EP
3424471 Jan 2019 EP
3169292 Nov 2019 EP
3787570 Mar 2020 EP
3753492 Dec 2020 EP
3788992 Mar 2021 EP
3576689 Mar 2022 EP
3752110 Mar 2022 EP
4025163 Jul 2022 EP
3463180 Mar 2023 EP
1011517 Dec 1965 GB
1467144 Mar 1977 GB
2106395 Apr 1983 GB
2106784 Apr 1983 GB
2148126 May 1985 GB
2171315 Aug 1986 GB
2181953 May 1987 GB
2148126 Jul 1987 GB
2191095 Dec 1987 GB
2199750 Jul 1988 GB
2260907 May 1993 GB
2462267 Feb 2010 GB
2469496 Oct 2010 GB
2490327 Oct 2012 GB
2507318 Apr 2014 GB
2612752 May 2023 GB
201800009129 Apr 2020 IT
S5410596 Jan 1979 JP
S5410596 May 1979 JP
S55155618 Dec 1980 JP
S5888596 Jun 1983 JP
S63107780 Jul 1988 JP
H0267530 Mar 1990 JP
H02103871 Apr 1990 JP
H02131422 May 1990 JP
H02131422 Nov 1990 JP
H0460220 Feb 1992 JP
H05123349 May 1993 JP
H05123350 May 1993 JP
3087938 Oct 1995 JP
H085630 Jan 1996 JP
H1040141 Feb 1998 JP
H10225430 Aug 1998 JP
H11113946 Apr 1999 JP
H11290365 Oct 1999 JP
2000116690 Apr 2000 JP
2000185068 Jul 2000 JP
2001054531 Feb 2001 JP
2001070331 Mar 2001 JP
2001224616 Aug 2001 JP
2001276107 Oct 2001 JP
2001276108 Oct 2001 JP
2002028173 Jan 2002 JP
2003505152 Feb 2003 JP
2003180722 Jul 2003 JP
2004130056 Apr 2004 JP
2004267530 Sep 2004 JP
2005066011 Mar 2005 JP
2005066325 Mar 2005 JP
2005518237 Jun 2005 JP
3749097 Dec 2005 JP
2006026108 Feb 2006 JP
3123547 Jun 2006 JP
2006136492 Jun 2006 JP
2006204868 Aug 2006 JP
2007044494 Feb 2007 JP
3132659 May 2007 JP
4039641 Nov 2007 JP
2009509570 Mar 2009 JP
2010081981 Apr 2010 JP
4640772 Dec 2010 JP
2010536439 Dec 2010 JP
4747166 May 2011 JP
2011087823 May 2011 JP
4801218 Aug 2011 JP
2011218130 Nov 2011 JP
2011224070 Nov 2011 JP
2012523869 Oct 2012 JP
2013238608 Nov 2013 JP
2014521960 Aug 2014 JP
2015092945 May 2015 JP
3198994 Jul 2015 JP
2019525811 Sep 2019 JP
2021120686 Aug 2021 JP
2021522009 Aug 2021 JP
7129493 Aug 2022 JP
2023532132 Jul 2023 JP
200290061 Sep 2002 KR
20030047451 Jun 2003 KR
20140039485 Apr 2014 KR
101432639 Aug 2014 KR
20180106659 Oct 2018 KR
20180108774 Oct 2018 KR
2068717 Jun 2013 PT
8101957 Jul 1981 WO
8804558 Jun 1988 WO
9104714 Apr 1991 WO
9104714 Jun 1991 WO
9220299 Feb 1993 WO
9307839 Apr 1993 WO
9309736 May 1993 WO
9309736 Jun 1993 WO
9514448 Jun 1995 WO
9600096 Jan 1996 WO
9634636 Nov 1996 WO
9817211 Apr 1998 WO
9830336 Jul 1998 WO
0000112 Jan 2000 WO
0000113 Jan 2000 WO
0025651 May 2000 WO
0033773 Jun 2000 WO
0057784 Oct 2000 WO
0069377 Nov 2000 WO
0079497 Dec 2000 WO
0145618 Jun 2001 WO
0145621 Jun 2001 WO
02094160 Nov 2002 WO
03013967 Feb 2003 WO
03024824 Mar 2003 WO
03055423 Jul 2003 WO
03071931 Sep 2003 WO
03079942 Oct 2003 WO
03071931 Feb 2004 WO
2004019836 Mar 2004 WO
2004024046 Mar 2004 WO
2005051252 Jun 2005 WO
2005074571 Sep 2005 WO
2005089687 Sep 2005 WO
2005107661 Nov 2005 WO
2006021220 Mar 2006 WO
2006037140 Apr 2006 WO
2007005851 Jan 2007 WO
2007007845 Jan 2007 WO
2007042823 Apr 2007 WO
2007055651 May 2007 WO
2006098950 Nov 2007 WO
2007128156 Feb 2008 WO
2008026106 Mar 2008 WO
2008078117 Jul 2008 WO
2008104019 Sep 2008 WO
2008141471 Nov 2008 WO
2009004368 Jan 2009 WO
2009004369 Jan 2009 WO
2009052496 Apr 2009 WO
2009052502 Apr 2009 WO
2009007702 Jul 2009 WO
2009101738 Aug 2009 WO
2010058192 May 2010 WO
2010030122 Jul 2010 WO
2010101915 Jan 2011 WO
2011018132 Feb 2011 WO
2011018133 Feb 2011 WO
2011024864 Mar 2011 WO
2011054118 May 2011 WO
2011079132 Jun 2011 WO
2011107972 Sep 2011 WO
2011108972 Sep 2011 WO
2011117292 Sep 2011 WO
2011123219 Oct 2011 WO
2011132043 Oct 2011 WO
2012012908 Feb 2012 WO
2012065274 May 2012 WO
2012097462 Jul 2012 WO
2012098796 Jul 2012 WO
2012101288 Aug 2012 WO
2012175916 Dec 2012 WO
2013018435 Feb 2013 WO
2013033429 Mar 2013 WO
2013055434 Apr 2013 WO
2013082397 Jun 2013 WO
2013103291 Jul 2013 WO
2013131109 Sep 2013 WO
2013167478 Nov 2013 WO
2013177716 Dec 2013 WO
2014041534 Mar 2014 WO
2014046420 Mar 2014 WO
2014118518 Aug 2014 WO
2014160852 Oct 2014 WO
2015023599 Feb 2015 WO
2015052348 Apr 2015 WO
2015068384 May 2015 WO
2015169403 Nov 2015 WO
2015170307 Nov 2015 WO
2015197462 Dec 2015 WO
2016051385 Apr 2016 WO
2016055989 Apr 2016 WO
2016071894 May 2016 WO
2016103242 Jun 2016 WO
2016116915 Jul 2016 WO
2016124203 Aug 2016 WO
2016139448 Sep 2016 WO
2016166562 Oct 2016 WO
2016167535 Oct 2016 WO
2016191574 Dec 2016 WO
2016200088 Dec 2016 WO
2016200361 Dec 2016 WO
2016204731 Dec 2016 WO
2017001532 Jan 2017 WO
2017075226 May 2017 WO
2017152198 Sep 2017 WO
2017153357 Sep 2017 WO
2017162559 Sep 2017 WO
2017205446 Nov 2017 WO
2017209779 Dec 2017 WO
2017210524 Dec 2017 WO
2018022414 Feb 2018 WO
2018044781 Mar 2018 WO
2018056953 Mar 2018 WO
2018090550 Mar 2018 WO
2018138513 Aug 2018 WO
2018144318 Aug 2018 WO
2018144463 Aug 2018 WO
2018150263 Aug 2018 WO
2018150268 Aug 2018 WO
2018152156 Aug 2018 WO
2018183791 Oct 2018 WO
2018150267 Nov 2018 WO
2018235026 Dec 2018 WO
2018235065 Dec 2018 WO
2019004404 Jan 2019 WO
2019041005 Mar 2019 WO
2019044217 Mar 2019 WO
2019044218 Mar 2019 WO
2019044219 Mar 2019 WO
2019065541 Apr 2019 WO
2019096845 May 2019 WO
2019150385 Aug 2019 WO
2019161094 Aug 2019 WO
2019188566 Oct 2019 WO
2019190593 Oct 2019 WO
2019212949 Nov 2019 WO
2019212950 Nov 2019 WO
2019212951 Nov 2019 WO
2019212952 Nov 2019 WO
2019212955 Nov 2019 WO
2019212956 Nov 2019 WO
2019214787 Nov 2019 WO
2019214788 Nov 2019 WO
2019226826 Nov 2019 WO
WO-2019239433 Dec 2019 WO
2020000994 Jan 2020 WO
2020020618 Jan 2020 WO
2020038822 Jan 2020 WO
2020088409 May 2020 WO
2020049394 Jun 2020 WO
2020120657 Jun 2020 WO
2020152575 Jul 2020 WO
2020182923 Sep 2020 WO
2020204967 Oct 2020 WO
2020205939 Oct 2020 WO
2020209898 Oct 2020 WO
2020242790 Dec 2020 WO
2020251893 Dec 2020 WO
2020256865 Dec 2020 WO
2021007144 Jan 2021 WO
2021007345 Jan 2021 WO
2021010844 Jan 2021 WO
2021016026 Jan 2021 WO
2021016300 Jan 2021 WO
2021025919 Feb 2021 WO
2021034886 Feb 2021 WO
2021041123 Mar 2021 WO
2021046501 Mar 2021 WO
2021086868 May 2021 WO
2021094352 May 2021 WO
2021094639 May 2021 WO
2021102296 May 2021 WO
2021107025 Jun 2021 WO
2021138411 Jul 2021 WO
2021138414 Jul 2021 WO
2021154686 Aug 2021 WO
2021155206 Aug 2021 WO
2021173436 Sep 2021 WO
2021188817 Sep 2021 WO
2021195384 Sep 2021 WO
2021205995 Oct 2021 WO
2021207621 Oct 2021 WO
2021211568 Oct 2021 WO
2021211801 Oct 2021 WO
2021216419 Oct 2021 WO
2021216422 Oct 2021 WO
2021231532 Nov 2021 WO
2021247523 Dec 2021 WO
2021257202 Dec 2021 WO
2022006256 Jan 2022 WO
2022031943 Feb 2022 WO
2022035745 Feb 2022 WO
2022051360 Mar 2022 WO
2022054613 Mar 2022 WO
2022066704 Mar 2022 WO
2022076427 Apr 2022 WO
2022086898 Apr 2022 WO
2022098536 May 2022 WO
2022115692 Jun 2022 WO
2022125685 Jun 2022 WO
2022140545 Jun 2022 WO
2022150360 Jul 2022 WO
2022150463 Jul 2022 WO
2022159392 Jul 2022 WO
2022170182 Aug 2022 WO
2022182385 Sep 2022 WO
2022187152 Sep 2022 WO
2022192188 Sep 2022 WO
2022192347 Sep 2022 WO
2022216507 Oct 2022 WO
2022222030 Oct 2022 WO
2023014639 Feb 2023 WO
2023014641 Feb 2023 WO
2023018475 Feb 2023 WO
2023034453 Mar 2023 WO
2023038945 Mar 2023 WO
2023038950 Mar 2023 WO
2023049109 Mar 2023 WO
2023049175 Mar 2023 WO
2023086394 May 2023 WO
2023149884 Aug 2023 WO
2023149902 Aug 2023 WO
2023149903 Aug 2023 WO
2023154390 Aug 2023 WO
2023191764 Oct 2023 WO
2023244238 Dec 2023 WO
Non-Patent Literature Citations (713)
Entry
US 9,908,683 B2, 03/2018, Sandhausen et al. (withdrawn)
Advisory Action for U.S. Appl. No. 14/722,613 mailed Mar. 4, 2019.
Advisory Action for U.S. Appl. No. 14/952,591 mailed Jun. 1, 2018.
Advisory Action for U.S. Appl. No. 15/238,427 mailed Apr. 10, 2019.
Advisory Action for U.S. Appl. No. 16/899,956 mailed Jul. 9, 2021.
Advisory Action for U.S. Appl. No. 16/904,868 mailed Jul. 2, 2021.
Advisory Action for U.S. Appl. No. 16/905,400 mailed Jun. 9, 2021.
Corrected International Search Report and Written Opinion for International Application No. PCT/US2017/043025 mailed Jan. 11, 2018.
Corrected Notice of Allowability for U.S. Appl. No. 15/221,106 mailed Jul. 2, 2019.
Corrected Notice of Allowability for U.S. Appl. No. 15/612,325 mailed Mar. 17, 2021.
Final Office Action for U.S. Appl. No. 14/722,613 mailed on Nov. 29, 2018.
Final Office Action for U.S. Appl. No. 14/947,759 mailed Apr. 8, 2016.
Final Office Action for U.S. Appl. No. 14/952,591 mailed Feb. 23, 2018.
Final Office Action for U.S. Appl. No. 14/952,591 mailed Nov. 1, 2019.
Final Office Action for U.S. Appl. No. 14/952,591 mailed Nov. 27, 2020.
Final Office Action for U.S. Appl. No. 15/171,968 mailed Feb. 14, 2020.
Final Office Action for U.S. Appl. No. 15/171,968 mailed Mar. 19, 2019.
Final Office Action for U.S. Appl. No. 15/221,106 mailed Jan. 23, 2019.
Final Office Action for U.S. Appl. No. 15/238,427 mailed Jan. 2, 2019.
Final Office Action for U.S. Appl. No. 15/260,103 mailed Feb. 14, 2019.
Final Office Action for U.S. Appl. No. 15/612,325 mailed Sep. 17, 2020.
Final Office Action for U.S. Appl. No. 16/899,956 mailed Apr. 19, 2021.
Final Office Action for U.S. Appl. No. 16/904,868 mailed Mar. 26, 2021.
Final Office Action for U.S. Appl. No. 16/905,400 mailed Apr. 6, 2021.
Final Office Action for U.S. Appl. No. 17/088,272 mailed May 25, 2021.
Final Office Action for U.S. Appl. No. 29/624,661 mailed Feb. 18, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2016/049274 mailed Dec. 1, 2016.
International Search Report and Written Opinion from International Application No. PCT/US2017/035625 mailed Aug. 15, 2017.
International Search Report and Written Opinion from International Application No. PCT/US2017/043025 mailed Oct. 18, 2017.
International Search Report and Written Opinion from International Application No. PCT/US2018/015968 mailed Apr. 6, 2018.
International Search Report and Written Opinion from International Application No. PCT/US2019/029608 mailed Sep. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029609 mailed Sep. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029610 mailed Sep. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029611 mailed Jul. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029613 mailed Jul. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029614 mailed Sep. 26, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029616 mailed Aug. 30, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2020/023572 mailed Jul. 6, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/033064 mailed Aug. 31, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/033122 mailed Aug. 31, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/040860 mailed Oct. 2, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/041242 mailed Nov. 17, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/041249 mailed Oct. 2, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/042262 mailed Oct. 14, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/043059 mailed Oct. 6, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/044024 mailed Nov. 12, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/046914 mailed Dec. 1, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/055680 mailed Dec. 15, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/061563 mailed Feb. 19, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/065234 mailed Apr. 12, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/067451 mailed Mar. 25, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/067454 mailed Mar. 29, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/067455 mailed Mar. 26, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/015787 mailed May 27, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/023001 mailed Jun. 21, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027061 mailed Jul. 19, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027104 mailed Jul. 6, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027314 mailed Jul. 6, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027422 mailed Aug. 12, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027425 mailed Aug. 11, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027913 mailed Jul. 12, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027917 mailed Aug. 19, 2021.
Issue Notification for U.S. Appl. No. 14/952,591 mailed Jul. 28, 2021.
Issue Notification for U.S. Appl. No. 15/171,968 mailed Mar. 3, 2021.
Issue Notification for U.S. Appl. No. 15/221,106 mailed Jul. 24, 2019.
Issue Notification for U.S. Appl. No. 15/238,427 mailed Jul. 24, 2019.
Issue Notification for U.S. Appl. No. 15/260,103 mailed Aug. 7, 2019.
Issue Notification for U.S. Appl. No. 15/611,587 mailed Feb. 20, 2019.
Issue Notification for U.S. Appl. No. 15/612,325 mailed Mar. 24, 2021.
Issue Notification for U.S. Appl. No. 29/624,661 mailed Aug. 4, 2021.
Non-Final Office Action for U.S. Appl. No. 14/592,591 mailed Mar. 20, 2020.
Non-Final Office Action for U.S. Appl. No. 14/722,613 mailed Jun. 13, 2019.
Non-Final Office Action for U.S. Appl. No. 14/947,759 mailed Mar. 17, 2016.
Non-Final Office Action for U.S. Appl. No. 14/952,591 mailed Aug. 1, 2017.
Non-Final Office Action for U.S. Appl. No. 14/952,591 mailed Mar. 20, 2020.
Non-Final Office Action for U.S. Appl. No. 14/952,591 mailed Mar. 21, 2019.
Non-Final Office Action for U.S. Appl. No. 14/952,591 mailed Sep. 28, 2018.
Non-Final Office Action for U.S. Appl. No. 15/171,968 mailed May 11, 2020.
Non-Final Office Action for U.S. Appl. No. 15/171,968 mailed Aug. 20, 2019.
Non-Final Office Action for U.S. Appl. No. 15/171,968 mailed Jun. 12, 2018.
Non-Final Office Action for U.S. Appl. No. 15/221,106 mailed Jun. 5, 2018.
Non-Final Office Action for U.S. Appl. No. 15/238,427 mailed Aug. 8, 2018.
Non-Final Office Action for U.S. Appl. No. 15/260,103 mailed Sep. 26, 2018.
Non-Final Office Action for U.S. Appl. No. 15/611,587 mailed Dec. 29, 2017.
Non-Final Office Action for U.S. Appl. No. 15/611,587 mailed Jul. 13, 2018.
Non-Final Office Action for U.S. Appl. No. 15/612,325 mailed Mar. 19, 2020.
Non-Final Office Action for U.S. Appl. No. 16/899,956 mailed Oct. 16, 2020.
Non-Final Office Action for U.S. Appl. No. 16/899,956 mailed Sep. 2, 2021.
Non-Final Office Action for U.S. Appl. No. 16/904,868 mailed Nov. 25, 2020.
Non-Final Office Action for U.S. Appl. No. 16/905,400 mailed Dec. 2, 2020.
Non-Final Office Action for U.S. Appl. No. 16/905,400 mailed Jul. 22, 2021.
Non-Final Office Action for U.S. Appl. No. 17/088,272 mailed Jan. 25, 2021.
Non-Final Office Action for U.S. Appl. No. 29/624,661 mailed Jul. 18, 2019.
Non-Final Office Action for U.S. Appl. No. 29/694,002 mailed Jun. 24, 2020.
Notice of Allowance for U.S. Appl. No. 14/952,591 mailed Apr. 5, 2021.
Notice of Allowance for U.S. Appl. No. 14/952,591 mailed Jul. 8, 2021.
Notice of Allowance for U.S. Appl. No. 15/171,968 mailed Feb. 16, 2021.
Notice of Allowance for U.S. Appl. No. 15/171,968 mailed Nov. 6, 2020.
Notice of Allowance for U.S. Appl. No. 15/221,106 mailed May 1, 2019.
Notice of Allowance for U.S. Appl. No. 15/238,427 mailed May 23, 2019.
Notice of Allowance for U.S. Appl. No. 15/260,103 mailed Jun. 7, 2019.
Notice of Allowance for U.S. Appl. No. 15/611,587 mailed Dec. 21, 2018.
Notice of Allowance for U.S. Appl. No. 15/612,325 mailed Feb. 19, 2021.
Notice of Allowance for U.S. Appl. No. 15/612,325 mailed Jan. 21, 2021.
Notice of Allowance for U.S. Appl. No. 17/088,272 mailed Aug. 5, 2021.
Notice of Allowance for U.S. Appl. No. 29/624,661 mailed Apr. 28, 2021.
Notice of Allowance for U.S. Appl. No. 29/624,661 mailed Jul. 10, 2020.
Notice of Allowance for U.S. Appl. No. 29/624,661 mailed May 14, 2020.
Notice of Allowance for U.S. Appl. No. 29/624,661 mailed Sep. 29, 2020.
Notice of Allowance for U.S. Appl. No. 29/694,002 mailed Apr. 29, 2021.
Notice of Allowance for U.S. Appl. No. 29/694,002 mailed Jan. 29, 2021.
Notice of Allowance for U.S. Appl. No. 29/694,002 mailed Oct. 16, 2020.
Notice to File Missing Parts for U.S. Appl. No. 17/179,116 mailed Mar. 3, 2021.
Restriction Requirement for U.S. Appl. No. 16/478,180 mailed May 25, 2021.
U.S. Appl. No. 15/171,968, filed Jun. 2, 2016.
U.S. Appl. No. 15/221,106, filed Jul. 27, 2016.
U.S. Appl. No. 15/260,103, filed Sep. 8, 2016.
U.S. Appl. No. 15/611,587, filed Jun. 1, 2017.
U.S. Appl. No. 15/612,325, filed Jun. 2, 2017.
U.S. Appl. No. 16/369,676, filed Mar. 29, 2019.
U.S. Appl. No. 16/433,773, filed Jun. 6, 2019.
U.S. Appl. No. 16/449,039, filed Jun. 21, 2019.
U.S. Appl. No. 16/452,145, filed Jun. 25, 2019.
U.S. Appl. No. 16/452,258, filed Jun. 25, 2019.
U.S. Appl. No. 16/478,180, filed Jul. 16, 2019.
U.S. Appl. No. 16/904,868, filed Jun. 18, 2020.
U.S. Appl. No. 16/905,400, filed Jun. 18, 2020.
U.S. Appl. No. 17/051,550, filed Oct. 29, 2020.
U.S. Appl. No. 17/051,554, filed Oct. 29, 2020.
U.S. Appl. No. 17/051,585, filed Oct. 29, 2020.
U.S. Appl. No. 17/051,600, filed Oct. 29, 2020.
U.S. Appl. No. 17/088,272, filed Nov. 3, 2020.
U.S. Appl. No. 17/179,116, filed Feb. 18, 2021.
U.S. Appl. No. 17/330,657, filed May 26, 2021.
U.S. Appl. No. 17/378,015, filed Jul. 16, 2021.
U.S. Appl. No. 17/444,825, filed Aug. 10, 2021.
U.S. Appl. No. 17/446,256, filed Aug. 27, 2021.
U.S. Appl. No. 17/446,654, filed Sep. 1, 2021.
U.S. Appl. No. 17/461,036 mailed Aug. 30, 2021.
U.S. Appl. No. 29/741,751, filed Jul. 15, 2020.
U.S. Appl. No. 62/452,437, filed Jan. 31, 2017.
U.S. Appl. No. 62/665,297, filed May 1, 2018.
U.S. Appl. No. 62/665,302, filed May 1, 2018.
U.S. Appl. No. 62/665,317, filed May 1, 2018.
U.S. Appl. No. 62/665,321, filed May 1, 2018.
U.S. Appl. No. 62/665,331, filed May 1, 2018.
U.S. Appl. No. 62/665,335, filed May 1, 2018.
U.S. Appl. No. 62/853,279, filed May 28, 2019.
U.S. Appl. No. 62/853,889, filed May 29, 2019.
U.S. Appl. No. 62/864,656, filed Jun. 21, 2019.
U.S. Appl. No. 62/873,045, filed Jul. 11, 2019.
U.S. Appl. No. 62/873,048, filed Jul. 11, 2019.
U.S. Appl. No. 62/876,500, filed Jul. 19, 2019.
U.S. Appl. No. 62/877,558, filed Jul. 23, 2019.
U.S. Appl. No. 62/883,172, filed Aug. 6, 2019.
U.S. Appl. No. 62/889,149, filed Aug. 20, 2019.
U.S. Appl. No. 62/938,447, filed Nov. 21, 2019.
U.S. Appl. No. 62/949,187, filed Dec. 17, 2019.
U.S. Appl. No. 62/956,756, filed Jan. 3, 2020.
U.S. Appl. No. 62/956,767, filed Jan. 3, 2020.
U.S. Appl. No. 62/956,770, filed Jan. 3, 2020.
U.S. Appl. No. 62/994,912, filed Mar. 26, 2020.
U.S. Appl. No. 63/011,445, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,487, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,571, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,657, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,760, filed Apr. 17, 2020.
U.S. Appl. No. 63/012,347, filed Apr. 20, 2020.
U.S. Appl. No. 63/012,384, filed Apr. 20, 2020.
U.S. Appl. No. 63/030,685, filed May 27, 2020.
U.S. Appl. No. 63/061,241, filed Aug. 5, 2020.
U.S. Appl. No. 63/061,244, filed Aug. 5, 2020.
U.S. Appl. No. 63/061,834, filed Aug. 6, 2020.
U.S. Appl. No. 63/064,017, filed Aug. 11, 2020.
U.S. Appl. No. 63/064,126, filed Aug. 11, 2020.
U.S. Appl. No. 63/067,542, filed Aug. 19, 2020.
U.S. Appl. No. 63/071,438, filed Aug. 28, 2020.
U.S. Appl. No. 63/073,545, filed Sep. 2, 2020.
U.S. Appl. No. 63/074,051, filed Sep. 3, 2020.
U.S. Appl. No. 63/074,066, filed Sep. 3, 2020.
U.S. Appl. No. 63/076,032, filed Sep. 9, 2020.
U.S. Appl. No. 63/076,474, filed Sep. 10, 2020.
U.S. Appl. No. 63/076,477, filed Sep. 10, 2020.
U.S. Appl. No. 63/082,261, filed Sep. 23, 2020.
U.S. Appl. No. 63/088,506, filed Oct. 7, 2020.
U.S. Appl. No. 63/088,511, filed Oct. 7, 2020.
U.S. Appl. No. 63/094,464, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,498, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,594, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,608, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,626, filed Oct. 21, 2020.
U.S. Appl. No. 63/109,066, filed Nov. 3, 2020.
U.S. Appl. No. 63/112,417, filed Nov. 11, 2020.
U.S. Appl. No. 63/119,161, filed Nov. 30, 2020.
U.S. Appl. No. 63/124,271, filed Dec. 11, 2020.
U.S. Appl. No. 63/134,287, filed Jan. 6, 2021.
U.S. Appl. No. 63/134,450, filed Jan. 6, 2021.
U.S. Appl. No. 63/134,631, filed Jan. 7, 2021.
U.S. Appl. No. 63/134,632, filed Jan. 7, 2021.
U.S. Appl. No. 63/134,754, filed Jan. 7, 2021.
U.S. Appl. No. 63/146,946, filed Feb. 8, 2021.
U.S. Appl. No. 63/147,013, filed Feb. 8, 2021.
U.S. Appl. No. 63/147,299, filed Feb. 9, 2021.
U.S. Appl. No. 63/148,723, filed Feb. 12, 2021.
U.S. Appl. No. 63/154,248, filed Feb. 26, 2021.
U.S. Appl. No. 63/155,395, filed Mar. 2, 2021.
U.S. Appl. No. 63/157,007, filed Mar. 5, 2021.
U.S. Appl. No. 63/157,014, filed Mar. 5, 2021.
U.S. Appl. No. 63/159,142, filed Mar. 10, 2021.
U.S. Appl. No. 63/159,210, filed Mar. 10, 2021.
U.S. Appl. No. 63/165,273, filed Mar. 24, 2021.
U.S. Appl. No. 63/165,384, filed Mar. 24, 2021.
U.S. Appl. No. 63/171,165, filed Apr. 6, 2021.
U.S. Appl. No. 63/172,975, filed Apr. 9, 2021.
U.S. Appl. No. 63/181,695, filed Apr. 29, 2021.
U.S. Appl. No. 63/192,274, filed May 24, 2021.
U.S. Appl. No. 63/193,235, filed May 26, 2021.
U.S. Appl. No. 63/193,406, filed May 26, 2021.
U.S. Appl. No. 63/214,551, filed Jun. 24, 2021.
U.S. Appl. No. 63/214,570, filed Jun. 24, 2021.
U.S. Appl. No. 63/228,252, filed Aug. 2, 2021.
U.S. Appl. No. 63/228,258, filed Aug. 2, 2021.
U.S. Appl. No. 63/230,894, filed Aug. 9, 2021.
U.S. Appl. No. 63/241,562, filed Sep. 8, 2021.
U.S. Appl. No. 63/241,564, filed Sep. 8, 2021.
U.S. Appl. No. 63/241,575, filed Sep. 8, 2021.
Defendant and Counterclaim Plaintiff Sage Products, LLC's Answer, Defenses, and Counterclaims to Plaintiff's Amended Complaint, Nov. 1, 2019.
Memorandum Order, Feb. 2021, 14 pgs.
Sage's Initial Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508; 10,226,375; and 10,390,989, May 29, 2020, 193 pages.
Sage's Supplemental and Initial Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508; 10,226,375; 10,390,989 and Initial Invalidity Contentions Regarding U.S. Pat. No. 10,376,407, Aug. 21, 2020, 277 pages.
Sage's Second Supplemental Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508, 10,226,375, 10,390,989, and 10,376,407, 292 pages.
Boehringer CareDry System—Second Generation for Non-Invasive Urinary Management for Females, Mar. 2021, 3 pgs
Excerpts from the 508 (U.S. Pat. No. 8,278,508) Patent's Prosecution History, 2020, 99 pages.
Plaintiff's Opening Claim Construction Brief, Case No. 19-1508-MN, Oct. 16, 2020, 26 pages.
Plaintiff's Identification of Claim Terms and Proposed Constructions, Case No. 19-1508-MN, 3 pages.
PureWick's Response to Interrogatory No. 9 in PureWick, LLC v. Sage Products, LLC, Case No. 19-1508-MN, Mar. 23, 2020, 6 pages.
Sage's Preliminary Identification of Claim Elements and Proposed Constructions for U.S. Pat. Nos. 8,287,508, 10,226,376, 10,390,989 and 10,376,407, Case No. 19-1508-MN, 7 pages.
Decision Granting Institution of Inter Partes Review for U.S. Pat. No. 8,287,508, Case No. 2020-01426, Feb. 17, 2021, 39 pages.
Corrected Certificate of Service, Case No. IPR2020-01426, U.S. Pat. No. 8,287,508, 2020, 2 pages.
Declaration of Diane K. Newman Curriculum Vitae, Petition for Interparties Review, 2020, pp. 1-199.
“3 Devices Take Top Honors in Dare-To-Dream Medtech Design Contest”, R+D Digest, Nov. 2013, 1 page.
“Advanced Mission Extender Device (AMDX) Products”, Omni Medical Systems, Inc., 15 pages.
“AMXD Control Starter Kit Brochure”, https://www.omnimedicalsys.com/index.php?page=products, Omni Medical, 8 pages.
“AMXDmax In-Flight Bladder Relief”, Omni Medical; Omni Medical Systems, Inc., 2015.
“AMXDX—Advanced Mission Extender Device Brochure”, Omni Medical, Omni Brochure—http://www.omnimedicalsys.com/uploads/AMXDFixedWing.pdf, 2 pages.
“External Urine Management for Female Anatomy”, https://www.stryker.com/us/en/sage/products/sage-primafit.html, Jul. 2020, 4 pages.
“High Absorbancy Cellulose Acetate Electrospun Nanofibers for Feminine Hygiene Application”, https://www.sciencedirect.com/science/article/abs/pii/S2352940716300701?via%3Dihub, Jul. 2016, 3 pages.
“How Period Panties Work”, www.shethinx.com/pages/thinx-itworks, 2020, 10 pages.
“Hydrogel properties of electrospun polyvinylpyrrolidone and polyvinylpyrrolidone/poly(acrylic acid) blend nanofibers”, https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra07514a#!divAbstract, 2015, 5 pages.
“In Flight Bladder Relief”, Omni Medical, Omni Presentation https://www.omnimedicalsys.com/uploads/AMXDmax_HSD.pdf, 14 pages.
“Making Women's Sanitary Products Safer and Cheaper”, https://www.elsevier.com/connect/making-womens-sanitary-products-safer-and-cheaper, Sep. 2016, 10 pages.
“Novel Nanofibers Make Safe and Effective Absorbent for Sanitary Products”, https://www.materialstoday.com/nanomaterials/news/nanofibers-make-safe-and-effective-absorbent/, Oct. 2016, 3 pages.
“Research and Development Work Relating to Assistive Technology 2005-06”, British Department of Health, Nov. 2006, 40 pages.
“Step by Step How Ur24 WorksHome”, http://medicalpatentur24.com, last accessed Dec. 6, 2017, Aug. 30, 2017, 4 pages.
“Underwear that absorbs your period”, Thinx!, https://www.shethinx.com/pages/thinx-it-works last accessed Jun. 24, 2020, 7 pages.
“User & Maintenance Guide”, Omni Medical, 2007, 16 pages.
“Winners Announced for Dare-to-Dream Medtech Design Challenge”, https://www.mddionline.com/design-engineering/winners-announced-dare-dream-medtech-design-challenge, MD&DI, 2014, 4 pages.
Hollister, Female Urinary and Pouch and Male Urinary Pouch Brochure, 2011, 1 page.
Hollister, “Male Urinary Pouch External Collection Device”, http://www.hollister.com/en/products/Continence-Care-Products/Urine-Collectors/Urine-Collection-Accessories/Male-Urinary-Pouch-External-Collection-Device, last accessed Feb. 8, 2018.
Hollister, “Retracted Penis Pouch by Hollister”, Vitality Medical.com, https://www.vitalitymedical.com/hollister-retracted-penis-pouch.html last accessed Jun. 24, 2020, 6 pages.
Macaulay, et al., “A Noninvasive Continence Management System: Development and Evaluation of a Novel Toileting Device for Women”, The Wound, Ostomy and Continence Nurses Society, vol. 34 No. 6, 2007, pp. 641-648.
Newman, et al., “The Urinary Incontinence Sourcebook”, Petition for Interparties Review, 1997, 23 pages.
Newton, et al., “Measuring Safety, Effectiveness and Ease of Use of PureWick in the Management of Urinary Incontinence in Bedbound Women: Case Studies”, Jan. 8, 2016, 11 pages.
Parmar, “10 Finalists Chosen for Dare-to-Dream Medtech Design Challenge (PureWick)”, Design Services, Nov. 10, 2014, 3 pages.
Purewick, “Incontinence Relief for Women”, Presentation, Sep. 23, 2015, 7 pages.
Pytlik, “Super Absorbent Polymers”, University of Buffalo, http://www.courses.sens.buffalo.edu/ce435/Diapers/Diapers.html, accessed on Feb. 17, 2017.
Sachtman, “New Relief for Pilots? It Depends”, Wired, https://www.wired.com/2008/05/pilot-relief/, 2008, 2 pages.
Advisory Action for U.S. Appl. No. 16/245,726 mailed Apr. 19, 2023.
Advisory Action for U.S. Appl. No. 16/369,676 mailed Mar. 24, 2023.
Advisory Action for U.S. Appl. No. 16/433,773 mailed Dec. 29, 2023.
Advisory Action for U.S. Appl. No. 16/433,773 mailed Feb. 15, 2023.
Advisory Action for U.S. Appl. No. 16/449,039 mailed Jan. 25, 2024.
Advisory Action for U.S. Appl. No. 16/452,258 mailed Apr. 8, 2024.
Advisory Action for U.S. Appl. No. 16/452,258 mailed Oct. 26, 2022.
Advisory Action for U.S. Appl. No. 16/478,180 mailed Sep. 21, 2022.
Advisory Action for U.S. Appl. No. 16/478,180 mailed Sep. 7, 2023.
Advisory Action for U.S. Appl. No. 16/904,868 mailed Jan. 2, 2024.
Advisory Action for U.S. Appl. No. 16/904,868 mailed Jun. 15, 2022.
Advisory Action for U.S. Appl. No. 16/905,400 mailed Feb. 16, 2022.
Advisory Action for U.S. Appl. No. 17/051,550 mailed Sep. 8, 2023.
Advisory Action for U.S. Appl. No. 17/051,585 mailed Oct. 17, 2023.
Advisory Action for U.S. Appl. No. 17/179,116 mailed Jan. 8, 2024.
Advisory Action for U.S. Appl. No. 17/444,792 mailed Aug. 25, 2023.
Advisory Action for U.S. Appl. No. 17/446,256 mailed Dec. 8, 2023.
Advisory Action for U.S. Appl. No. 17/446,654 mailed Apr. 15, 2024.
Advisory Action for U.S. Appl. No. 17/448,811 mailed Nov. 15, 2023.
Advisory Action for U.S. Appl. No. 17/450,864 mailed on Mar. 21, 2024.
Advisory Action for U.S. Appl. No. 17/451,345 mailed Oct. 20, 2023.
Advisory Action for U.S. Appl. No. 17/451,354 mailed Jan. 30, 2024.
Advisory Action for U.S. Appl. No. 17/453,260 mailed Dec. 22, 2023.
Advisory Action for U.S. Appl. No. 17/501,591 mailed Feb. 22, 2024.
Advisory Action for U.S. Appl. No. 17/646,771 mailed Feb. 29, 2024.
Advisory Action for U.S. Appl. No. 17/653,137 mailed Dec. 1, 2023.
Advisory Action for U.S. Appl. No. 17/655,464 mailed Dec. 13, 2023.
Advisory Action for U.S. Appl. No. 17/661,090 mailed Feb. 26, 2024.
Advisory Action for U.S. Appl. No. 17/662,700 mailed Jan. 30, 2023.
Advisory Action for U.S. Appl. No. 17/663,330 mailed Feb. 27, 2024.
Advisory Action for U.S. Appl. No. 17/664,487 mailed Mar. 13, 2024.
Advisory Action for U.S. Appl. No. 18/164,800 mailed Feb. 12, 2024.
Communication of Notice of Opposition of European Application No. 17807547.9 mailed Jan. 5, 2024.
Corrected Notice of Allowability for U.S. Appl. No. 16/369,676 mailed Dec. 7, 2023.
Corrected Notice of Allowability for U.S. Appl. No. 17/326,980 mailed Feb. 8, 2024.
Corrected Notice of Allowability for U.S. Appl. No. 17/330,657 mailed Dec. 9, 2021.
Corrected Notice of Allowability for U.S. Appl. No. 17/657,474 mailed Mar. 13, 2024.
Final Office Action for U.S. Appl. No. 16/245,726 mailed Nov. 25, 2022.
Final Office Action for U.S. Appl. No. 16/369,676 mailed Aug. 31, 2023.
Final Office Action for U.S. Appl. No. 16/369,676 mailed Dec. 5, 2022.
Final Office Action for U.S. Appl. No. 16/433,773 mailed Oct. 10, 2023.
Final Office Action for U.S. Appl. No. 16/433,773 mailed Oct. 25, 2022.
Final Office Action for U.S. Appl. No. 16/449,039 mailed Aug. 1, 2022.
Final Office Action for U.S. Appl. No. 16/449,039 mailed Nov. 21, 2023.
Final Office Action for U.S. Appl. No. 16/452,145 mailed Mar. 25, 2022.
Final Office Action for U.S. Appl. No. 16/452,258 mailed Dec. 21, 2023.
Final Office Action for U.S. Appl. No. 16/452,258 mailed Jun. 14, 2022.
Final Office Action for U.S. Appl. No. 16/478,180 mailed Feb. 28, 2024.
Final Office Action for U.S. Appl. No. 16/478,180 mailed Jun. 22, 2022.
Final Office Action for U.S. Appl. No. 16/478,180 mailed May 31, 2023.
Final Office Action for U.S. Appl. No. 16/904,868 mailed Mar. 10, 2022.
Final Office Action for U.S. Appl. No. 16/904,868 mailed Nov. 2, 2023.
Final Office Action for U.S. Appl. No. 16/905,400 mailed Dec. 9, 2021.
Final Office Action for U.S. Appl. No. 17/051,399 mailed Jan. 8, 2024.
Final Office Action for U.S. Appl. No. 17/051,399 mailed Mar. 9, 2023.
Final Office Action for U.S. Appl. No. 17/051,550 mailed May 23, 2023.
Final Office Action for U.S. Appl. No. 17/051,585 mailed Jul. 27, 2023.
Final Office Action for U.S. Appl. No. 17/179,116 mailed Oct. 31, 2023.
Final Office Action for U.S. Appl. No. 17/444,792 mailed Apr. 3, 2024.
Final Office Action for U.S. Appl. No. 17/444,792 mailed Jun. 15, 2023.
Final Office Action for U.S. Appl. No. 17/446,256 mailed Sep. 19, 2023.
Final Office Action for U.S. Appl. No. 17/446,654 mailed Jan. 31, 2024.
Final Office Action for U.S. Appl. No. 17/448,811 mailed Aug. 3, 2023.
Final Office Action for U.S. Appl. No. 17/450,864 mailed Dec. 28, 2023.
Final Office Action for U.S. Appl. No. 17/451,345 mailed May 3, 2023.
Final Office Action for U.S. Appl. No. 17/451,354 mailed Oct. 30, 2023.
Final Office Action for U.S. Appl. No. 17/453,260 mailed Oct. 5, 2023.
Final Office Action for U.S. Appl. No. 17/501,591 mailed Nov. 14, 2023.
Final Office Action for U.S. Appl. No. 17/645,821 mailed Apr. 3, 2024.
Final Office Action for U.S. Appl. No. 17/646,771 mailed Dec. 21, 2023.
Final Office Action for U.S. Appl. No. 17/653,137 mailed Sep. 21, 2023.
Final Office Action for U.S. Appl. No. 17/655,464 mailed Sep. 1, 2023.
Final Office Action for U.S. Appl. No. 17/661,090 mailed Dec. 11, 2023.
Final Office Action for U.S. Appl. No. 17/662,700 mailed Sep. 30, 2022.
Final Office Action for U.S. Appl. No. 17/663,330 mailed Dec. 12, 2023.
Final Office Action for U.S. Appl. No. 17/664,487 mailed Jan. 4, 2024.
Final Office Action for U.S. Appl. No. 17/808,354 mailed Apr. 10, 2024.
Final Office Action for U.S. Appl. No. 18/139,523 mailed Dec. 22, 2023.
Final Office Action for U.S. Appl. No. 18/140,163 mailed Mar. 27, 2024.
Final Office Action for U.S. Appl. No. 18/140,751 mailed Jan. 17, 2024.
Final Office Action for U.S. Appl. No. 18/164,800 mailed Dec. 6, 2023.
International Search Report and Written Opinion from International Application No. PCT/IB2021/057173 mailed Nov. 5, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/057562 mailed Jan. 27, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/015024 mailed May 18, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/024162 mailed Jul. 8, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/026607 mailed Jul. 29, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/039866 mailed Oct. 7, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/043893 mailed Nov. 22, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/044699 mailed Nov. 22, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/045188 mailed Jan. 26, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/047536 mailed Dec. 23, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/048211 mailed Dec. 22, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/048661 mailed Feb. 14, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/049404 mailed Jan. 18, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/051456 mailed Jan. 19, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/053593 mailed Apr. 11, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/055515 mailed Jan. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/056566 mailed Feb. 11, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/060993 mailed Mar. 18, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/062440 mailed Mar. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011108 mailed Apr. 22, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011281 mailed Apr. 25, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011419 mailed Jun. 7, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011421 mailed Jun. 13, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/012794 mailed May 3, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/014285 mailed Sep. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/014749 mailed Sep. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015026 mailed Oct. 31, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015045 mailed Sep. 9, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015073 mailed Sep. 8, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015418 mailed Nov. 11, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015420 mailed Nov. 18, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015471 mailed May 16, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015492 mailed Apr. 26, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015781 mailed May 6, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/016942 mailed Jun. 8, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/018159 mailed Dec. 12, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/018170 mailed May 31, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/019254 mailed Jun. 7, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/019480 mailed Jun. 13, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/021103 mailed Jun. 23, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/022111 mailed Oct. 26, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/023594 mailed Jul. 12, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/026667 mailed Aug. 22, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/030685 mailed Oct. 31, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/031032 mailed Sep. 9, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/032424 mailed Oct. 11, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/034457 mailed Oct. 12, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/034744 mailed Dec. 9, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/039018 mailed Jan. 10, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/039022 mailed Jan. 10, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/039711 mailed Jan. 12, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/039714 mailed Nov. 22, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/041085 mailed Mar. 16, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/041688 mailed Nov. 21, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/042719 mailed Dec. 5, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/042725 mailed Dec. 19, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/043818 mailed Mar. 24, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/044107 mailed Dec. 23, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/044208 mailed May 8, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/044212 mailed Jan. 20, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/044243 mailed Feb. 24, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/049300 mailed Jun. 6, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/050909 mailed Jul. 24, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2023/012696 mailed Jul. 6, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2023/018474 mailed Sep. 11, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2023/024805 mailed Dec. 14, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2023/025192 mailed Feb. 7, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/025939 mailed Feb. 7, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/030373 mailed Mar. 13, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/031433 mailed Mar. 4, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/031740 mailed Mar. 4, 2024.
Issue Notification for U.S. Appl. No. 16/245,726 mailed Oct. 18, 2023.
Issue Notification for U.S. Appl. No. 16/899,956 mailed Mar. 29, 2023.
Issue Notification for U.S. Appl. No. 16/905,400 mailed Nov. 30, 2022.
Issue Notification for U.S. Appl. No. 17/051,550 mailed Mar. 13, 2024.
Issue Notification for U.S. Appl. No. 17/051,554 mailed Mar. 6, 2024.
Issue Notification for U.S. Appl. No. 17/088,272 mailed Jun. 15, 2022.
Issue Notification for U.S. Appl. No. 17/330,657 mailed Jun. 22, 2022.
Issue Notification for U.S. Appl. No. 17/461,036 mailed Oct. 11, 2023.
Issue Notification for U.S. Appl. No. 17/663,046 mailed Dec. 20, 2023.
Issue Notification for U.S. Appl. No. 18/299,788 mailed Feb. 21, 2024.
Non-Final Office Action for U.S. Appl. No. 16/245,726 mailed Jan. 21, 2022.
Non-Final Office Action for U.S. Appl. No. 16/369,676 mailed Feb. 29, 2024.
Non-Final Office Action for U.S. Appl. No. 16/369,676 mailed Mar. 31, 2022.
Non-Final Office Action for U.S. Appl. No. 16/433,773 mailed Apr. 11, 2023.
Non-Final Office Action for U.S. Appl. No. 16/433,773 mailed Apr. 21, 2022.
Non-Final Office Action for U.S. Appl. No. 16/433,773 mailed Feb. 26, 2024.
Non-Final Office Action for U.S. Appl. No. 16/449,039 mailed Apr. 27, 2023.
Non-Final Office Action for U.S. Appl. No. 16/449,039 mailed Dec. 8, 2021.
Non-Final Office Action for U.S. Appl. No. 16/452,145 mailed Mar. 28, 2023.
Non-Final Office Action for U.S. Appl. No. 16/452,145 mailed Nov. 2, 2023.
Non-Final Office Action for U.S. Appl. No. 16/452,145 mailed Sep. 28, 2021.
Non-Final Office Action for U.S. Appl. No. 16/452,258 mailed Apr. 26, 2023.
Non-Final Office Action for U.S. Appl. No. 16/452,258 mailed Sep. 28, 2021.
Non-Final Office Action for U.S. Appl. No. 16/478,180 mailed Dec. 20, 2022.
Non-Final Office Action for U.S. Appl. No. 16/478,180 mailed Nov. 7, 2023.
Non-Final Office Action for U.S. Appl. No. 16/478,180 mailed Oct. 22, 2021.
Non-Final Office Action for U.S. Appl. No. 16/904,868 mailed Mar. 12, 2024.
Non-Final Office Action for U.S. Appl. No. 16/904,868 mailed Mar. 15, 2023.
Non-Final Office Action for U.S. Appl. No. 16/904,868 mailed Oct. 5, 2021.
Non-Final Office Action for U.S. Appl. No. 16/905,400 mailed Apr. 27, 2022.
Non-Final Office Action for U.S. Appl. No. 17/051,399 mailed Aug. 18, 2023.
Non-Final Office Action for U.S. Appl. No. 17/051,550 mailed Dec. 15, 2022.
Non-Final Office Action for U.S. Appl. No. 17/051,550 mailed Oct. 24, 2023.
Non-Final Office Action for U.S. Appl. No. 17/051,585 mailed Jan. 8, 2024.
Non-Final Office Action for U.S. Appl. No. 17/051,585 mailed Mar. 29, 2023.
Non-Final Office Action for U.S. Appl. No. 17/051,600 mailed Jan. 17, 2024.
Non-Final Office Action for U.S. Appl. No. 17/179,116 mailed Feb. 26, 2024.
Non-Final Office Action for U.S. Appl. No. 17/179,116 mailed Mar. 24, 2023.
Non-Final Office Action for U.S. Appl. No. 17/326,980 mailed Jul. 11, 2023.
Non-Final Office Action for U.S. Appl. No. 17/330,657 mailed Aug. 11, 2021.
Non-Final Office Action for U.S. Appl. No. 17/444,792 mailed Feb. 10, 2023.
Non-Final Office Action for U.S. Appl. No. 17/444,792 mailed Nov. 17, 2023.
Non-Final Office Action for U.S. Appl. No. 17/446,256 mailed Apr. 13, 2023.
Non-Final Office Action for U.S. Appl. No. 17/446,256 mailed Feb. 13, 2024.
Non-Final Office Action for U.S. Appl. No. 17/446,654 mailed Sep. 8, 2023.
Non-Final Office Action for U.S. Appl. No. 17/448,811 mailed Jan. 17, 2024.
Non-Final Office Action for U.S. Appl. No. 17/448,811 mailed Mar. 1, 2023.
Non-Final Office Action for U.S. Appl. No. 17/450,864 mailed May 10, 2023.
Non-Final Office Action for U.S. Appl. No. 17/451,345 mailed Dec. 7, 2022.
Non-Final Office Action for U.S. Appl. No. 17/451,345 mailed Jan. 17, 2024.
Non-Final Office Action for U.S. Appl. No. 17/451,354 mailed Apr. 4, 2024.
Non-Final Office Action for U.S. Appl. No. 17/451,354 mailed May 3, 2023.
Non-Final Office Action for U.S. Appl. No. 17/453,260 mailed Mar. 14, 2023.
Non-Final Office Action for U.S. Appl. No. 17/453,560 mailed Oct. 16, 2023.
Non-Final Office Action for U.S. Appl. No. 17/501,591 mailed Apr. 25, 2023.
Non-Final Office Action for U.S. Appl. No. 17/597,673 mailed Mar. 20, 2024.
Non-Final Office Action for U.S. Appl. No. 17/645,821 mailed Oct. 25, 2023.
Non-Final Office Action for U.S. Appl. No. 17/646,771 mailed Jul. 5, 2023.
Non-Final Office Action for U.S. Appl. No. 17/653,137 mailed Apr. 7, 2023.
Non-Final Office Action for U.S. Appl. No. 17/653,137 mailed Jan. 18, 2024.
Non-Final Office Action for U.S. Appl. No. 17/653,920 mailed Mar. 15, 2024.
Non-Final Office Action for U.S. Appl. No. 17/655,464 mailed Mar. 14, 2023.
Non-Final Office Action for U.S. Appl. No. 17/655,464 mailed Mar. 26, 2024.
Non-Final Office Action for U.S. Appl. No. 17/657,474 mailed Sep. 12, 2023.
Non-Final Office Action for U.S. Appl. No. 17/661,090 mailed Jul. 6, 2023.
Non-Final Office Action for U.S. Appl. No. 17/662,700 mailed Jul. 22, 2022.
Non-Final Office Action for U.S. Appl. No. 17/663,330 mailed Jun. 29, 2023.
Non-Final Office Action for U.S. Appl. No. 17/664,487 mailed Jun. 8, 2023.
Non-Final Office Action for U.S. Appl. No. 17/664,914 mailed Jan. 31, 2024.
Non-Final Office Action for U.S. Appl. No. 17/808,354 mailed Nov. 28, 2023.
Non-Final Office Action for U.S. Appl. No. 18/003,029 mailed Mar. 26, 2024.
Non-Final Office Action for U.S. Appl. No. 18/134,857 mailed Jan. 25, 2024.
Non-Final Office Action for U.S. Appl. No. 18/139,523 mailed Aug. 17, 2023.
Non-Final Office Action for U.S. Appl. No. 18/140,163 mailed Nov. 9, 2023.
Non-Final Office Action for U.S. Appl. No. 18/140,751 mailed Sep. 14, 2023.
Non-Final Office Action for U.S. Appl. No. 18/164,800 mailed Mar. 22, 2024.
Non-Final Office Action for U.S. Appl. No. 18/198,464 mailed Dec. 7, 2023.
Non-Final Office Action for U.S. Appl. No. 29/741,751 mailed Jan. 18, 2022.
Notice of Allowance for U.S. Appl. No. 16/245,726 mailed Jul. 6, 2023.
Notice of Allowance for U.S. Appl. No. 16/369,676 mailed Nov. 14, 2023.
Notice of Allowance for U.S. Appl. No. 16/449,039 mailed Dec. 15, 2022.
Notice of Allowance for U.S. Appl. No. 16/449,039 mailed Mar. 28, 2024.
Notice of Allowance for U.S. Appl. No. 16/899,956 mailed Apr. 19, 2022.
Notice of Allowance for U.S. Appl. No. 16/899,956 mailed Aug. 10, 2022.
Notice of Allowance for U.S. Appl. No. 16/899,956 mailed Dec. 1, 2022.
Notice of Allowance for U.S. Appl. No. 16/899,956 mailed Dec. 29, 2021.
Notice of Allowance for U.S. Appl. No. 16/905,400 mailed Aug. 17, 2022.
Notice of Allowance for U.S. Appl. No. 17/051,550 mailed Feb. 7, 2024.
Notice of Allowance for U.S. Appl. No. 17/051,554 mailed Jul. 6, 2023.
Notice of Allowance for U.S. Appl. No. 17/051,554 mailed Oct. 18, 2023.
Notice of Allowance for U.S. Appl. No. 17/088,272 mailed Mar. 4, 2022.
Notice of Allowance for U.S. Appl. No. 17/088,272 mailed Nov. 24, 2021.
Notice of Allowance for U.S. Appl. No. 17/326,980 mailed Apr. 5, 2024.
Notice of Allowance for U.S. Appl. No. 17/326,980 mailed Jan. 29, 2024.
Notice of Allowance for U.S. Appl. No. 17/330,657 mailed Mar. 16, 2022.
Notice of Allowance for U.S. Appl. No. 17/330,657 mailed Nov. 26, 2021.
Notice of Allowance for U.S. Appl. No. 17/453,260 mailed Apr. 8, 2024.
Notice of Allowance for U.S. Appl. No. 17/453,560 mailed Jan. 31, 2024.
Notice of Allowance for U.S. Appl. No. 17/461,036 mailed Feb. 22, 2023.
Notice of Allowance for U.S. Appl. No. 17/461,036 mailed Jun. 30, 2023.
Notice of Allowance for U.S. Appl. No. 17/461,036 mailed Oct. 6, 2022.
Notice of Allowance for U.S. Appl. No. 17/657,474 mailed Mar. 5, 2024.
Notice of Allowance for U.S. Appl. No. 17/662,700 mailed Jul. 28, 2023.
Notice of Allowance for U.S. Appl. No. 17/662,700 mailed Mar. 28, 2023.
Notice of Allowance for U.S. Appl. No. 17/662,700 mailed Mar. 6, 2024.
Notice of Allowance for U.S. Appl. No. 17/662,700 mailed Nov. 15, 2023.
Notice of Allowance for U.S. Appl. No. 17/663,046 mailed Jan. 30, 2023.
Notice of Allowance for U.S. Appl. No. 18/299,788 mailed Jul. 24, 2023.
Notice of Allowance for U.S. Appl. No. 18/299,788 mailed Nov. 6, 2023.
Notice of Allowance for U.S. Appl. No. 29/741,751 mailed Jun. 9, 2022.
Restriction Requirement for U.S. Appl. No. 16/433,773 mailed Dec. 7, 2021.
Restriction Requirement for U.S. Appl. No. 17/051,600 mailed Sep. 21, 2023.
Restriction Requirement for U.S. Appl. No. 17/326,980 mailed Mar. 20, 2023.
Restriction Requirement for U.S. Appl. No. 17/446,256 mailed Jan. 23, 2023.
Restriction Requirement for U.S. Appl. No. 17/645,821 mailed Jul. 12, 2023.
Restriction Requirement for U.S. Appl. No. 17/646,771 mailed Apr. 6, 2023.
Restriction Requirement for U.S. Appl. No. 17/657,474 mailed Jun. 30, 2023.
Restriction Requirement for U.S. Appl. No. 17/667,097 mailed Mar. 20, 2024.
Restriction Requirement for U.S. Appl. No. 18/134,857 mailed Oct. 23, 2023.
Submission in Opposition Proceedings for European Application No. 17807547.9 filed Jan. 10, 2024.
Supplemental Notice of Allowance for U.S. Appl. No. 17/051,550 mailed Feb. 21, 2024.
Supplemental Notice of Allowance for U.S. Appl. No. 17/051,554 mailed Feb. 14, 2024.
Text Messages to Lorena Eckert Re Prototype PureWick Holder dated Apr. 16, 2022.
U.S. Appl. No. 14/625,469, filed Feb. 28, 2015.
U.S. Appl. No. 14/947,759, filed Nov. 20, 2015.
U.S. Appl. No. 14/952,591, filed Nov. 25, 2015.
U.S. Appl. No. 15/384,196, filed Dec. 19, 2016.
U.S. Appl. No. 16/245,726, filed Jan. 11, 2019.
U.S. Appl. No. 17/394,055, filed Aug. 4, 2021.
U.S. Appl. No. 17/444,792, filed Aug. 10, 2021.
U.S. Appl. No. 17/450,864, filed Oct. 14, 2021.
U.S. Appl. No. 17/451,345, filed Oct. 19, 2021.
U.S. Appl. No. 17/451,354, filed Oct. 19, 2021.
U.S. Appl. No. 17/451,719, filed Oct. 19, 2021.
U.S. Appl. No. 17/453,260, filed Nov. 2, 2021.
U.S. Appl. No. 17/453,560, filed Nov. 4, 2021.
U.S. Appl. No. 17/501,591, filed Oct. 14, 2021.
U.S. Appl. No. 17/595,747, filed Nov. 23, 2021.
U.S. Appl. No. 17/597,408, filed Jan. 5, 2022.
U.S. Appl. No. 17/597,673, filed Jan. 18, 2022.
U.S. Appl. No. 17/614,173, filed Nov. 24, 2021.
U.S. Appl. No. 17/631,619, filed Jan. 31, 2022.
U.S. Appl. No. 17/645,821, filed Dec. 23, 2021.
U.S. Appl. No. 17/646,771, filed Jan. 3, 2022.
U.S. Appl. No. 17/653,314, filed Mar. 3, 2022.
U.S. Appl. No. 17/653,920, filed Mar. 8, 2022.
U.S. Appl. No. 17/655,464, filed Mar. 18, 2022.
U.S. Appl. No. 17/657,474, filed Mar. 31, 2022.
U.S. Appl. No. 17/661,090, filed Apr. 28, 2022.
U.S. Appl. No. 17/662,700, filed May 10, 2022.
U.S. Appl. No. 17/663,046, filed May 12, 2022.
U.S. Appl. No. 17/664,487, filed May 23, 2022.
U.S. Appl. No. 17/664,914, filed May 25, 2022.
U.S. Appl. No. 17/749,340, filed May 20, 2022.
U.S. Appl. No. 17/754,736, filed Apr. 11, 2022.
U.S. Appl. No. 17/756,201, filed May 19, 2022.
U.S. Appl. No. 17/758,152, filed Jun. 29, 2022.
U.S. Appl. No. 17/758,316, filed Jul. 1, 2022.
U.S. Appl. No. 17/759,697, filed Jul. 28, 2022.
U.S. Appl. No. 17/878,268, filed Aug. 1, 2022.
U.S. Appl. No. 17/907,125, filed Sep. 23, 2022.
U.S. Appl. No. 17/912,147, filed Sep. 16, 2022.
U.S. Appl. No. 17/929,887, filed Sep. 6, 2022.
U.S. Appl. No. 17/930,238, filed Sep. 7, 2022.
U.S. Appl. No. 17/933,590, filed Sep. 20, 2022.
U.S. Appl. No. 17/996,064, filed Oct. 12, 2022.
U.S. Appl. No. 17/996,155, filed Oct. 13, 2022.
U.S. Appl. No. 17/996,253, filed Oct. 14, 2022.
U.S. Appl. No. 17/996,468, filed Oct. 18, 2022.
U.S. Appl. No. 17/996,556, filed Oct. 19, 2022.
U.S. Appl. No. 18/003,029, filed Dec. 22, 2022.
U.S. Appl. No. 18/006,807, filed Jan. 25, 2023.
U.S. Appl. No. 18/007,105, filed Jan. 27, 2023.
U.S. Appl. No. 18/041,109, filed Feb. 9, 2023.
U.S. Appl. No. 18/042,842, filed Feb. 24, 2023.
U.S. Appl. No. 18/043,618, filed Mar. 1, 2023.
U.S. Appl. No. 18/115,444, filed Feb. 28, 2023.
U.S. Appl. No. 18/134,857, filed Apr. 14, 2023.
U.S. Appl. No. 18/140,163, filed Apr. 27, 2023.
U.S. Appl. No. 18/140,751, filed Apr. 28, 2023.
U.S. Appl. No. 18/164,800, filed Feb. 6, 2023.
U.S. Appl. No. 18/198,464, filed May 17, 2023.
U.S. Appl. No. 18/246,121, filed Mar. 21, 2023.
U.S. Appl. No. 18/247,986, filed Apr. 5, 2023.
U.S. Appl. No. 18/249,577, filed Oct. 19, 2021.
U.S. Appl. No. 18/259,626, filed Jun. 28, 2023.
U.S. Appl. No. 18/260,122, filed Jun. 30, 2023.
U.S. Appl. No. 18/260,391, filed Jul. 5, 2023.
U.S. Appl. No. 18/260,394, filed Jul. 5, 2023.
U.S. Appl. No. 18/263,800, filed Aug. 1, 2023.
U.S. Appl. No. 18/264,004, filed Aug. 2, 2023.
U.S. Appl. No. 18/265,736, filed Jun. 7, 2023.
U.S. Appl. No. 18/294,370, filed Feb. 1, 2024.
U.S. Appl. No. 18/294,403, filed Feb. 1, 2024.
U.S. Appl. No. 18/299,788, filed Apr. 13, 2023.
U.S. Appl. No. 18/335,579, filed Jun. 15, 2023.
U.S. Appl. No. 18/373,424, filed Sep. 27, 2023.
U.S. Appl. No. 18/376,274, filed Oct. 3, 2023.
U.S. Appl. No. 18/389,009, filed Nov. 13, 2023.
U.S. Appl. No. 18/415,080, filed Jan. 17, 2024.
U.S. Appl. No. 18/426,795, filed Jan. 30, 2024.
U.S. Appl. No. 18/548,152, filed Aug. 28, 2023.
U.S. Appl. No. 18/549,387, filed Sep. 7, 2023.
U.S. Appl. No. 18/549,658, filed Sep. 8, 2023.
U.S. Appl. No. 18/553,625, filed Oct. 2, 2023.
U.S. Appl. No. 18/556,945, filed Oct. 24, 2023.
U.S. Appl. No. 18/558,502, filed Nov. 1, 2023.
U.S. Appl. No. 18/562,626, filed Nov. 20, 2023.
U.S. Appl. No. 18/563,672, filed Nov. 22, 2023.
U.S. Appl. No. 18/569,711, filed Dec. 13, 2023.
U.S. Appl. No. 18/569,778, filed Dec. 13, 2023.
U.S. Appl. No. 18/584,002, filed Feb. 22, 2024.
U.S. Appl. No. 18/610,523, filed Mar. 20, 2024.
U.S. Appl. No. 18/681,987, filed Feb. 7, 2024.
U.S. Appl. No. 18/682,006, filed Feb. 7, 2024.
U.S. Appl. No. 18/687,117, filed Feb. 27, 2024.
U.S. Appl. No. 18/688,023, filed Feb. 29, 2024.
U.S. Appl. No. 18/693,638, filed Mar. 20, 2024.
U.S. Appl. No. 18/694,090, filed Mar. 21, 2024.
U.S. Appl. No. 61/955,537, filed Mar. 19, 2014.
U.S. Appl. No. 62/082,279, filed Nov. 20, 2014.
U.S. Appl. No. 62/084,078, filed Nov. 25, 2014.
U.S. Appl. No. 62/414,963, filed Oct. 31, 2016.
U.S. Appl. No. 62/485,578, filed Apr. 14, 2017.
U.S. Appl. No. 62/923,279, filed Oct. 18, 2019.
U.S. Appl. No. 62/926,767, filed Oct. 28, 2019.
U.S. Appl. No. 62/935,337, filed Nov. 14, 2019.
U.S. Appl. No. 62/967,158, filed Jan. 26, 2020.
U.S. Appl. No. 62/967,977, filed Jan. 30, 2020.
U.S. Appl. No. 62/991,754, filed Mar. 19, 2020.
U.S. Appl. No. 63/008,112, filed Apr. 10, 2020.
U.S. Appl. No. 63/047,374, filed Jul. 2, 2020.
U.S. Appl. No. 63/073,553, filed Sep. 2, 2020.
U.S. Appl. No. 63/094,646, filed Oct. 21, 2020.
U.S. Appl. No. 63/109,084, filed Nov. 3, 2020.
U.S. Appl. No. 63/133,892, filed Jan. 5, 2021.
U.S. Appl. No. 63/138,878, filed Jan. 19, 2021.
U.S. Appl. No. 63/150,640, filed Feb. 18, 2021.
U.S. Appl. No. 63/159,186, filed Mar. 10, 2021.
U.S. Appl. No. 63/191,558, filed May 21, 2021.
U.S. Appl. No. 63/192,289, filed May 24, 2021.
U.S. Appl. No. 63/193,891, filed May 27, 2021.
U.S. Appl. No. 63/208,262, filed Jun. 8, 2021.
U.S. Appl. No. 63/215,017, filed Jun. 25, 2021.
U.S. Appl. No. 63/228,244, filed Aug. 2, 2021.
U.S. Appl. No. 63/230,897, filed Aug. 9, 2021.
U.S. Appl. No. 63/238,457, filed Aug. 30, 2021.
U.S. Appl. No. 63/238,477, filed Aug. 30, 2021.
U.S. Appl. No. 63/241,328, filed Sep. 7, 2021.
U.S. Appl. No. 63/246,972, filed Sep. 22, 2021.
U.S. Appl. No. 63/247,375, filed Sep. 23, 2021.
U.S. Appl. No. 63/247,478, filed Sep. 23, 2021.
U.S. Appl. No. 63/247,491, filed Sep. 23, 2021.
U.S. Appl. No. 63/299,208, filed Jan. 13, 2022.
U.S. Appl. No. 63/308,190, filed Feb. 9, 2022.
U.S. Appl. No. 63/561,893, filed Dec. 11, 2023.
U.S. Appl. No. 63/596,012, filed Nov. 3, 2023.
U.S. Appl. No. 63/608,553, filed Dec. 11, 2023.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 2, Mar. 29, 2022.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 3, Mar. 30, 2022.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 4, Mar. 31, 2022.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 5, Apr. 1, 2022.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 1, Mar. 28, 2022.
“AMXD Control Starter Kit”, Omni Medical Systems, Inc., 1 page.
“AMXDmax Advanced Mission Extender Device User & Maintenance Guide”, Omni Medical, Jan. 11, 2010, 10 pages.
“AMXDmax Development History 2002-2014”, Omni Medical Systems, Inc., 2 pages.
“Combat Force Multiplier in Flight Bladder Relief Cockpit Essential Equipment Brochure”, Omni Medical, 20 pages.
“GSA Price List”, Omni Medical, Apr. 2011, 2 pages.
“How is Polypropylene Fiber Made”, https:www.yarnsandfibers.com/textile-resources/synthetic-fibers/polypropylene-fiber/polypropylene-fiber-production-raw-materials/how-is-polypropylene-fiber-made/ last accessed 2020, Oct. 7, 2020, 3 pages.
“Letter to Mark Harvie of Omni Measurement Systems”, Department of Veterans Affairs, Nov. 1, 2007, 11 pages.
“Revised AMXDmax Advanced Mission Extender Device User & Maintenance Guide”, Omni Medical Systems, Oct. 8, 2019, 52 pages.
“Rising Warrior Insulated Gallon Jug Cover”, https://www.amazon.com/Rising-Warrior-Insulated-Sleeve, 2021, 2 pages.
“Urine Bag Cover—Catheter Bag Cover 2000 ml Volume—Medline Style—Multiple Sclerosis—Spine Injury—Suprapublic Catheter—Bladder Incontinence”, https://www.etsy.com/listing/1142934658/urine-bag-cover-caatheter-bag-cover-2000, 2022, 1 page.
“Vinyl Dust Cover, Janome #741811000, Janome, Sewing Parts Online”, https://www.sewingpartsonline.com/vinyl-dust-cover-janome-74181000, 2020, 2 pages.
Ali, “Sustainability Assessment: Seventh Generation Diapers versus gDiapers”, The University of Vermont, Dec. 6, 2011, pp. 1-31.
Autumn, et al., “Frictional adhesion: a new angle on gecko attachment”, The Journal of Experimental Biology, 2006, pp. 3569-3579.
Cañas, et al., “Effect of nano- and micro-roughness on adhesion of bioinspired micropatterned surfaces”, Acta Biomaterialia 8, 2012, pp. 282-288.
Chaudhary, et al., “Bioinspired dry adhesive: Poly(dimethylsiloxane) grafted with poly(2-ethylhexyl acrylate) brushes”, European Polymer Journal, 2015, pp. 432-440.
Dai, et al., “Non-sticky and Non-slippery Biomimetic Patterned Surfaces”, Journal of Bionic Engineering, Mar. 2020, pp. 326-334.
Espinoza-Ramirez, “Nanobiodiversity and Biomimetic Adhesives Development: From Nature to Production and Application”, Journal of Biomaterials and Nanobiotechnology, pp. 78-101, 2019.
Hwang, et al., “Multifunctional Smart Skin Adhesive Patches for Advanced Health Care”, Adv. Healthcare Mater, 2018, pp. 1-20.
Jagota, et al., “Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces”, Materials Science and Engineering, 2011, pp. 253-292.
Jeong, et al., “A nontransferring dry adhesive with hierarchical polymer nanohairs”, PNAS, Apr. 7, 2009, pp. 5639-5644.
Jeong, et al., “Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives”, Science Direct, 2009, pp. 335-346.
Karp, et al., “Dry solution to a sticky problem”, Nature., 2011, pp. 42-43.
Lee, et al., “Continuous Fabrication of Wide-Tip Microstructures for Bio-Inspired Dry Adhesives via Tip Inking Process”, Journal of Chemistry, Jan. 2, 2019, pp. 1-5.
Merriam-Webster Dictionary, “Embed Definition & Meaning”, https://www.merriam-webster.com/dictionary/embed last accessed Aug. 3, 2023, 2003.
Parness, et al., “A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality”, J.R. Soc. Interface, 2009, pp. 1223-1232.
Pieper, et al., “An external urine-collection device for women: A clinical trial”, Journal of ER Nursing, vol. 20, No. 2, Mar./Apr. 1993, pp. 51-55.
Tsipenyuk, et al., “Use of biomimetic hexagonal surface texture in friction against lubricated skin”, Journal of The Royal Society—Interface, 2014, pp. 1-6.
Vinas, “A Solution For An Awkward—But Serious—Subject”, http://www.aero-news.net/index.cfm?do=main.textpost&id=69ae2bb1-838b-4098-a7b5-7flbb2505688 last accessed Feb. 8, 2021.
Wikipedia Article, “Decibel”, https://web.archive.org/web/2020041521917/https://en.wikipedia/org/wiki/Decibel last accessed Mar. 11, 2024, 21 pages.
Wikipedia Article, “Fiberglass”, https://web.archive.org.web/20200309194847/https://en.wikipedia.org/wiki/Fiberglass last accessed Mar. 11, 2024.
Wikipedia Article, “Zylinder (Geometrie)”, https://de.wikipedia.org/w/index.php?title=Zylinder (Geometrie)&oldid=154862081, version of Jun. 1, 2016, 7 pages.
Related Publications (1)
Number Date Country
20220071811 A1 Mar 2022 US
Provisional Applications (1)
Number Date Country
63076474 Sep 2020 US