Fluid collection assemblies including at least one of a protrusion or at least one expandable material

Information

  • Patent Grant
  • 12257174
  • Patent Number
    12,257,174
  • Date Filed
    Thursday, October 14, 2021
    4 years ago
  • Date Issued
    Tuesday, March 25, 2025
    8 months ago
Abstract
An example female fluid collection assembly includes a fluid impermeable barrier. The fluid impermeable barrier at least defines a chamber and an opening. The female fluid collection assembly also includes at least one porous material disposed in the chamber. The porous material extends across the opening. In an embodiment, the portion of the porous material that extends across the opening include a protrusion that extends outwardly from the opening. In an embodiment, the porous material includes at least one expandable material that is configured to expand (e.g., increase in volume) when the expandable material exposed to one or more bodily fluids (e.g., urine).
Description
BACKGROUND

An individual may have limited or impaired mobility such that typical urination processes are challenging or impossible. For example, the individual may have surgery or a disability that impairs mobility. In another example, the individual may have restricted travel conditions such as those experience by pilots, drivers, and workers in hazardous areas. Additionally, fluid collection from the individual may be needed for monitoring purposes or clinical testing.


Bed pans and urinary catheters, such as a Foley catheter, may be used to address some of these circumstances. However, bed pans and urinary catheters have several problems associated therewith. For example, bed pans may be prone to discomfort, spills, and other hygiene issues. Urinary catheters be may be uncomfortable, painful, and may cause urinary tract infections.


Thus, users and manufacturers of fluid collection assemblies continue to seek new and improved assemblies, systems, and methods to collect urine.


SUMMARY

Embodiments are directed to fluid collection assemblies that include at least one of a protrusion or at least one expandable material, systems including the same, and method of using the same are disclosed herein. In an embodiment, a fluid collection assembly is disclosed. The fluid collection assembly includes a fluid impermeable barrier at least defining a chamber, at least one opening, and a fluid outlet. The fluid collection assembly also includes at least one porous material disposed in the chamber. The at least one porous material includes at least one of a protrusion extending outwardly from the at least one opening or at least one expandable material that expands when exposed to one or more bodily fluids.


In an embodiment, a fluid collection system is disclosed. The fluid collection system includes a fluid collection assembly. The fluid collection assembly includes a fluid impermeable barrier at least defining a chamber, at least one opening, and a fluid outlet. The fluid collection assembly also includes at least one porous material disposed in the chamber. The at least one porous material includes at least one of a protrusion extending outwardly from the at least one opening or at least one expandable material that expands when exposed to one or more bodily fluids. The fluid collection system also includes fluid storage container and a vacuum source. The chamber of the fluid collection assembly, the fluid storage container, and the vacuum source are in fluid communication with each other via one or more conduits.


In an embodiment, a method of forming a fluid collection assembly is disclosed. The method includes providing at least one porous material. The at least one porous material includes at least one of a protrusion extending outwardly from the at least one opening or at least one expandable material that expands when exposed to one or more bodily fluids. The method also includes disposing the at least one porous material in a chamber defined by a fluid impermeable barrier of the fluid collection, the fluid impermeable barrier defining a fluid outlet.


In an embodiment, a method of using a fluid collection assembly is disclosed. The method includes positioning at least one opening of the fluid collection assembly adjacent to a urethral opening of a patient. The fluid collection assembly includes a fluid impermeable barrier defining a chamber, at least one opening, and at least one fluid outlet. The fluid collection assembly also includes at least one porous material disposed in the chamber. The at least one porous material includes at least one of a protrusion extending outwardly from the at least one opening or at least one expandable material that expands when exposed to one or more bodily fluids. The method also includes receiving one or more bodily fluids from the urethral opening into the chamber.


Features from any of the disclosed embodiments may be used in combination with one another, without limitation. In addition, other features and advantages of the present disclosure will become apparent to those of ordinary skill in the art through consideration of the following detailed description and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate several embodiments of the present disclosure, wherein identical reference numerals refer to identical or similar elements or features in different views or embodiments shown in the drawings.



FIG. 1A is an isometric view of a fluid collection assembly, according to an embodiment.



FIGS. 1B and 1C are cross-sectional schematics of the fluid collection assembly taken along planes 1B-1B and 1C-1C, respectively, according to an embodiment.



FIG. 1D is a cross-sectional schematic of the fluid collection assembly after the expandable material is exposed to the bodily fluids, according to an embodiment.



FIG. 2 is a cross-sectional schematic of a fluid collection assembly, according to an embodiment.



FIGS. 3 and 4 are cross-sectional schematics of different fluid collection assemblies that include a fluid permeable support, according to different embodiments.



FIGS. 5-7 are cross-sectional schematics of different fluid collection assemblies that do not include an expandable material, according to different embodiments.



FIG. 8A is an isometric view of a fluid collection assembly, according to an embodiment.



FIG. 8B is a cross-sectional view of the fluid collection assembly of FIG. 8A taken along the plane 8B-8B of FIG. 8A, according to an embodiment.



FIG. 9 is a block diagram of a system for fluid collection, according to an embodiment.





DETAILED DESCRIPTION

Embodiments are directed to fluid collection assemblies that include at least one of a protrusion or at least one expandable material, systems including the same, and method of using the same are disclosed herein. An example female fluid collection assembly includes a fluid impermeable barrier. The fluid impermeable barrier at least defines a chamber, at least one opening, and a fluid outlet. The female fluid collection assembly also includes at least one porous material disposed in the chamber. The porous material extends across the opening. In an embodiment, the porous material includes at least one expandable material that is configured to expand (e.g., increase in volume) when the expandable material exposed to one or more bodily fluids (e.g., urine). In an embodiment, the portion of the porous material that extends across the opening include a protrusion that extends outwardly from the opening.


During use, the female fluid collection assembly is disposed with the opening of the fluid collection assembly adjacent to a urethral opening of a female patient. The urethral opening may discharge one or more bodily fluids, such a urine, blood, or sweat. The bodily fluids may be received by the porous material and wicked away from the urethral opening and into the chamber. The bodily fluids may be removed from the chamber via a fluid outlet defined by the fluid impermeable barrier. For example, a suction force may be applied to a conduit that is at least partially disposed in the fluid outlet and the suction force may pull the bodily fluids into the conduit and out of the chamber.


Some of the bodily fluids that are discharged from the urethral opening may leak from the chamber. The leaked bodily fluids may cause patient (e.g., an individual using the fluid collection assembly) discomfort, embarrassment, and create unsanitary conditions that require cleaning. Poor fit between the female fluid collection assembly and the region about the urethral opening may cause the bodily fluids to leak from the female fluid collection assembly. For example, the poor fit may cause gaps to be present between the porous material that extends across the opening and the region about the urethral opening. These gaps may provide locations through which the bodily fluids may flow without being received by the porous material and/or locations at which bodily fluids may leave the porous material. The gaps may form between the porous material and the region about the urethral opening for a variety of reasons. For example, variations in the size, shape (e.g., curvature), and anatomy (e.g., labia folds) of the region about the urethral opening may cause gaps to form between the porous material and the region about the urethral opening.


In an embodiment, the female fluid collection assemblies disclosed herein include at least one porous material having at least one expandable material. The also expandable material is configured to increase in volume when the expandable material is exposed to the bodily fluids. The increase in volume of the expandable material may at least one of form a protrusion or cause the porous material to conform to the shape of the region about the urethral opening thereby minimizing or eliminating gaps. Further, conforming the porous material to the shape of the region about the urethral opening may also prevent or at least inhibit movement and shape changes of the female fluid collection assembly. When the expandable material forms a protrusion, the protrusion may be able to be positioned at least partially between the labia folds of the patient which minimizes or reduces gaps formed between the labia folds, between the labia folds and the porous material, and between the urethral opening and the porous material through which bodily fluids may leak. In an embodiment, instead of or in addition to the expandable material, the at least one porous material of the fluid collection assemblies disclosed herein includes a protrusion. The protrusion may minimize or prevent the formation of gaps between the porous material and the region about the urethral opening. For example, the protrusion may be able to be positioned at least partially between the labia folds of the patient which minimizes or reduces gaps formed between the labia folds, between the labia folds and the porous material, and between the urethral opening and the porous material through which bodily fluids may leak. Further, the labia folds may also hold the protrusion such that the position and/or shape of the fluid collection assembly does not move, thereby eliminating gaps caused by the fluid collection assembly moving or changing shape.


As will be discussed in more detail with regards to FIGS. 8A and 8B, the expandable material may be used in a male fluid collection assembly. The male fluid collection assembly is configured to receive bodily fluids from a male urethral opening (e.g., penis).



FIG. 1A is an isometric view of a fluid collection assembly 100, according to an embodiment. FIGS. 1B and 1C are cross-sectional schematics of the fluid collection assembly 100 taken along planes 1B-1B and 1C-1C, respectively, according to an embodiment. The fluid collection assembly 100 is an example of a female fluid collection assembly for receiving and collecting one or more bodily fluids from a female. The fluid collection assembly 100 includes a fluid impermeable barrier 102 and at least one porous material 104 disposed in the fluid impermeable barrier 102.


The fluid impermeable barrier 102 at least partially defines a chamber 106 (e.g., interior region) and an opening 108. For example, the interior surface(s) 110 of the fluid impermeable barrier 102 at least partially define the chamber 106 within the fluid collection assembly 100. The fluid impermeable barrier 102 temporarily stores the bodily fluids in the chamber 106. The fluid impermeable barrier 102 may be formed of any suitable fluid impermeable material(s), such as a fluid impermeable polymer (e.g., silicone, polypropylene, polyethylene, polyethylene terephthalate, a polycarbonate, neoprene, etc.), a metal film, natural rubber, another suitable material, or combinations thereof. As such, the fluid impermeable barrier 102 substantially prevents the bodily fluids from passing through the fluid impermeable barrier 102. In an example, the fluid impermeable barrier 102 may be air permeable and fluid impermeable. In such an example, the fluid impermeable barrier 102 may be formed of a hydrophobic material that defines a plurality of pores. At least one or more portions of at least an outer surface 112 of the fluid impermeable barrier 102 may be formed from a soft and/or smooth material, thereby reducing chaffing.


In some examples, the fluid impermeable barrier 102 may be tubular (ignoring the opening), such as substantially cylindrical (as shown), oblong, prismatic, or flattened tubes. During use, the outer surface 112 of the fluid impermeable barrier 102 may contact the patient. The fluid impermeable barrier 102 may be sized and shaped to fit in the gluteal cleft between the legs of a female user.


The opening 108 provides an ingress route for the bodily fluids to enter the chamber 106. The opening 108 may be defined by the fluid impermeable barrier 102, such as by an inner edge of the fluid impermeable barrier 102. For example, the opening 108 is formed in and extends through the fluid impermeable barrier 102, from the outer surface 112 to the inner surface 110, thereby enabling the bodily fluids to enter the chamber 106 from outside of the fluid collection assembly 100. The opening 108 may be an elongated hole in the fluid impermeable barrier 102. For example, the opening 108 may be defined as a cut-out in the fluid impermeable barrier 102. The opening 108 may be located and shaped to be positioned adjacent to a female urethral opening.


The fluid collection assembly 100 may be positioned proximate to the female urethral opening and the bodily fluids may enter the chamber of the fluid collection assembly 100 via the opening 108. The fluid collection assembly 100 is configured to receive the bodily fluids into the chamber 106 via the opening 108. When in use, the opening 108 may have an elongated shape that extends from a first location below the urethral opening (e.g., at or near the anus or the vaginal opening) to a second location above the urethral opening (e.g., at or near the top of the vaginal opening or the mons pubis).


The opening 108 may have an elongated shape because the space between the legs of a female is relatively small when the legs of the female are closed, thereby only permitting the flow of the bodily fluids along a path that corresponds to the elongated shape of the opening 108 (e.g., longitudinally extending opening). The opening 108 in the fluid impermeable barrier 102 may exhibit a length that is measured along the longitudinal axis of the fluid collection assembly 100 that may be at least about 10% of the length of the fluid collection assembly 100, such as about 25% to about 50%, about 40% to about 60%, about 50% to about 75%, about 65% to about 85%, or about 75% to about 95% of the length of the fluid collection assembly 100.


The opening 108 in the fluid impermeable barrier 102 may exhibit a width that is measured transverse to the longitudinal axis of the fluid collection assembly 100 that may be at least about 10% of the circumference of the fluid collection assembly 100, such as about 25% to about 50%, about 40% to about 60%, about 50% to about 75%, about 65% to about 85%, or about 75% to about 100% of the circumference of the fluid collection assembly 100. The opening 108 may exhibit a width that is greater than 50% of the circumference of the fluid collection assembly 100 since the vacuum (e.g., suction) through the conduit 116 pulls the bodily fluids through the porous material 104 and into the conduit 116. In some examples, the opening 108 may be vertically oriented (e.g., having a major axis parallel to the longitudinal axis of the fluid collection assembly 100). In some examples (not shown), the opening 108 may be horizontally oriented (e.g., having a major axis perpendicular to the longitudinal axis of the fluid collection assembly 100). In an example, the fluid impermeable barrier 102 may be configured to be attached to the individual, such as adhesively attached (e.g., with a hydrogel adhesive) to the individual. According to an example, a suitable adhesive is a hydrogel layer.


In some examples, the fluid impermeable barrier 102 may define a fluid outlet 114 sized to receive the conduit 116. The at least one conduit 116 may be disposed in the chamber 106 via the fluid outlet 114. The fluid outlet 114 may be sized and shaped to form an at least substantially fluid tight seal against the conduit 116 or the at least one tube thereby substantially preventing the bodily fluids from escaping the chamber 106.


The fluid impermeable barrier 102 may include markings thereon, such as one or more markings to aid a user in aligning the fluid collection assembly 100 on the patient. For example, a line on the fluid impermeable barrier 102 (e.g., opposite the opening 108) may allow a healthcare professional to align the opening 108 over the urethral opening of the patient. In examples, the markings may include one or more of alignment guide or an orientation indicator, such as a stripe or hashes. Such markings may be positioned to align the fluid collection assembly 100 to one or more anatomical features such as a pubic bone, etc.


As previously discussed, the fluid collection assembly 100 includes the porous material 104 disposed in the chamber 106. The porous material 104 may cover at least a portion (e.g., all) of the opening 108. The porous material 104 is exposed to the environment outside of the chamber 106 through the opening 108. In an embodiment, as illustrated, the porous material 104 include at least one expandable material 118 and a fluid permeable membrane 120. However, as will be discussed in more detail below, at least one of the expandable material 118 or the fluid permeable membrane 120 may be omitted from the porous material 104. Further, the porous material 104 may include a fluid permeable support (FIGS. 3-6) instead of or in addition to at least one of the expandable material 118 and the fluid permeable membrane 120.


As previously discussed, the expandable material 118 is configured to increase in volume when the expandable material 118 is exposed to the bodily fluids. For example, the expandable material 118 may include at least one of one or more absorbent materials, one or more adsorbent materials, or one or more hydrophilic materials. Specific examples of the expandable material 118 include hydrogels, super absorbent polymers (e.g., polymers that absorb at least 10 times its weight in bodily fluids, at least 25 times its weight in bodily fluids, at least 50 times its own weight in bodily fluids, at least 100 times its own weight in bodily fluids, or at least 200 times its own weight in bodily fluids), or polymeric sponges. In an embodiment, such expandable materials 118 may retain at least some of the bodily fluids that are received thereby, such as water that is contained within the bodily fluids. The bodily fluids that are retained by the expandable material 118 may increase the volume of the expandable material 118.



FIG. 1B illustrates the expandable material 118 before the expandable material 118 is exposed to the bodily fluids (e.g., the expandable material 118 is dry). In other words, FIG. 1B illustrates the expandable material 118 when the expandable material 118 exhibits a first, initial volume. The expandable material 118 may exhibit a first, initial shape, when the expandable material 118 exhibits the first volume. In the illustrated embodiment, the first shape may exhibit a generally circular cross-sectional shape (e.g., a generally cylindrical shape). However, the initial shape may exhibit a generally triangular cross-sectional shape, a generally trapezoidal cross-sectional shape, a rectangular (e.g., square) cross-sectional shape, an oblong cross-sectional shape, a tear-drop cross-sectional shape, or any other suitable shape. The first shape may generally correspond to the shape of the fluid impermeable barrier 102 and may not include a protrusion.


Exposing the expandable material to the bodily fluids causes the expandable material 118 to expand thereby at least increasing the volume of the expandable material 118. For example, FIG. 1D is a cross-sectional schematic of the fluid collection assembly 100 after the expandable material 118 is exposed to the bodily fluids, according to an embodiment. As illustrated, the expandable material 118 exhibits a second volume after the expandable material 118 is exposed to the bodily fluids. The second volume of the expandable material 118 is greater than the first volume.


In an embodiment, as illustrated, exposing the expandable material 118 to the bodily fluids causes the expandable material 118 to change a shape thereof. For example, the increased volume of the expandable material 118 causes the expandable material 118 to apply a force to the fluid impermeable barrier 102. When the fluid impermeable barrier 102 is formed from a relatively flexible material (e.g., silicone, neoprene, etc.), the force applied from the expandable material 118 to the fluid impermeable barrier 102 may cause the fluid impermeable barrier 102 to change a shape thereof (e.g., bow outwardly) and/or stretch. When the fluid impermeable barrier 102 is formed from a relatively stiff material (e.g., a metal), the force applied from the expandable material 118 to the fluid impermeable barrier 102 substantially does not change a shape of the fluid impermeable barrier 102. Regardless if the fluid impermeable barrier 102 is formed from a relatively flexible or relatively rigid material, the fluid impermeable barrier 102 applies a force normal to the force applied from the expandable material 118 to the fluid impermeable barrier 102. The force applied from the fluid impermeable barrier 102 to the expandable material 118 limits the volume increase of portions of the expandable material 118 adjacent to the fluid impermeable barrier 102. However, no force is directly applied from the fluid impermeable barrier 102 to the portions of the expandable material 118 adjacent to the opening 108. Thus, the volume of the portions of the expandable material 118 adjacent to the opening 108 may more freely expand than portions of the expandable material 118 adjacent to the fluid impermeable barrier 102. The difference in the expansion in portions of the expandable material 118 adjacent to the fluid impermeable barrier 102 and adjacent to the opening 108 causes the shape of the expandable material 118 to change (e.g., from a first shape to a second shape). For example, the greater expansion of the portions of the expandable material 118 adjacent to the opening 108 causes the expandable material 118 to protrude outwardly from the opening 108 to form a protrusion 122.


The protrusion 122 may exhibit a generally triangular cross-sectional shape, a generally at least partially semi-circular cross-sectional shape, or any other suitable cross-sectional shape when the protrusion 122 does not abut the region about the urethral opening of the patient. When the protrusion 122 exhibits a generally triangular cross-sectional shape, the protrusion 122 may be facilitate insertion of the protrusion 122 between the labia folds of the patient. For example, the generally triangular cross-sectional shape of the protrusion 122 may form a wedge that may separate and move between the labia folds thereby positioning the protrusion 122 adjacent to the urethral opening of the patient. In a particular embodiment, the porous material 104 (e.g., the expandable material 118) and the fluid collection assembly 100 may exhibit a generally tear-drop shape (e.g., a generally circular cross-sectional shape with a generally triangular cross-sectional shape extending therefrom) when the protrusion 122 exhibits the generally triangular cross-sectional shape. For example, the fluid collection assembly 100 may exhibit a generally circular cross-sectional shape when the expandable material 118 exhibits the first shape. This allows the fluid collection assembly 100 to include a generally cylindrical fluid impermeable barrier 102, as used in some convention fluid collection assemblies. Using a generally cylindrical fluid impermeable barrier 102 allows the use of fluid impermeable barriers that are readily available and does not require the use of specialty parts. In other words, using a generally cylindrical fluid impermeable barrier 102 may prevent logistical issues (e.g., lack of supply) caused by using non-cylindrical fluid impermeable barriers. The generally cylindrical fluid impermeable barriers 102 may be formed from silicone, neoprene, or other relatively flexible polymers. Even though the generally cylindrical fluid impermeable barrier 102 is formed from such relatively flexible materials, the generally cylindrical fluid impermeable barrier 102 may retain the generally circular cross-sectional shape thereof when the volume of the expandable material 118 increases. This may cause the expandable material 118 to extend from the opening 108 to form a protrusion 122 exhibiting the generally triangular cross-sectional shape. In other words, forming the fluid impermeable barrier 102 from readily available generally cylindrical fluid impermeable barriers may cause the fluid collection assembly 100 to exhibit the generally tear-drop shape.


The shape of the expandable material 118 may conform to the shape of the region about the urethral opening of the patient when the porous material 104 comes in contact with the region about the urethral opening. For example, the portions of the expandable material 118 that form the protrusion 122 may press, directly or indirectly, against the region about the urethral opening when the volume of the expandable material 118 increases. Similar to the fluid impermeable barrier 102, the region about the urethral opening applies a force normal to the force that the expandable material 118 applies to the region about the urethral opening which restricts volume increases of the expandable material 118. However, at least initially, only a portion of the region about urethral opening contacts the porous material 104. Thus, at least initially, the region about the urethral opening only restricts the volume increase of the portion of the expandable material 118 that contacts (directly or indirectly) the region about the urethral opening. The portions of the expandable material 118 that does not contact the region about the urethral opening substantially do not have the volume increases thereof restricted which allows such portions the expandable material 118 to expand into gaps between the porous material 104 and the region about the urethral opening. Thus, the expandable material 118, and in particular the portions of the expandable material 118 that form the protrusion 122, conform to the region about the urethral opening and prevent the formation of gaps.


As previously discussed, the fluid collection assembly 100 may include the fluid permeable membrane 120 disposed in the chamber 106. The fluid permeable membrane 120 may cover at least a portion (e.g., all) of the opening 108.


In an embodiment, the fluid permeable membrane 120 is exposed to the environment outside of the chamber 106 through the opening 108. The fluid permeable membrane 120 may be configured to wick any bodily fluids away from the opening 108, thereby preventing the fluid from escaping the chamber 106. The permeable properties referred to herein may be wicking, capillary action, diffusion, or other similar properties or processes, and are referred to herein as “permeable” and/or “wicking.” Such “wicking” may not include absorption of fluid into the wicking material. Put another way, substantially no absorption of fluid into the material may take place after the material is exposed to the fluid and removed from the fluid for a time. While no absorption is desired, the term “substantially no absorption” may allow for nominal amounts of absorption of fluid into the wicking material (e.g., absorbency), such as less than about 30 wt % of the dry weight of the wicking material, less than about 20 wt %, less than about 15 wt %, less than about 10 wt %, less than about 7 wt %, less than about 5 wt %, less than about 3 wt %, less than about 2 wt %, less than about 1 wt %, or less than about 0.5 wt % of the dry weight of the wicking material. Thus, the fluid permeable membrane 120 may remove the bodily fluids away from the region about the urethral opening and inhibit bodily fluids that are present in the expandable material 118 from back flowing to the region about the urethral opening. In other words, the fluid permeable membrane 120 may maintain the region about the urethral opening dry when the fluid permeable membrane 120 is configured to wick the bodily fluids away from the opening 108. The fluid permeable membrane 120 may also wick the fluid generally towards an interior of the chamber 106, as discussed in more detail below.


The fluid permeable membrane 120 may include any material that may wick the bodily fluids. For example, the fluid permeable membrane 120 may include fabric, such as a gauze (e.g., a silk, linen, or cotton gauze), another soft fabric, or another smooth fabric. Forming the fluid permeable membrane 120 from gauze, soft fabric, and/or smooth fabric may reduce chaffing caused by the fluid collection assembly 100. In an example, the fluid permeable membrane 120 may include spun nylon fibers. In an embodiment, the fluid permeable membrane 120 may include at least one absorbent or adsorbent material instead of or in addition to at least one wicking material.


In an embodiment, the fluid permeable membrane 120 may provide structure to the porous material 104. For example, the expandable material 118 may be formed from a material that has no structure. As used herein, “no structure” refers to a material that, in bulk, is substantially unable to resist shear forces. Examples of expandable materials 118 that have no structure include some hydrogels, some super absorbent polymers, powders, and beads. Expandable materials 118 that have no structure may be unable to remain in the chamber 106 when the porous material 104 only includes such expandable materials. However, the fluid permeable membrane 120 may at least partially enclose expandable material 118. Thus, the fluid permeable membrane 120 may maintain the expandable materials 118 that have no structure in the chamber 106.


In an embodiment, the fluid permeable membrane 120 is sufficiently flexible (e.g., the fluid permeable membrane 120 is formed from certain gauzes) that the minimal force applied from the fluid permeable membrane 120 to the expandable material 118 is at most about 50% (e.g., at most about 40%, at most about 30%, at most about 25%, at most about 20%, at most about 15%, at most about 10%, at most about 7.5%, at most about 5%, at most about 2.5%, or at most about 1%) the force applied to the expandable material 118 from the fluid impermeable barrier 102 or the region about the urethral opening of the patient during normal use. For example, the fluid permeable membrane 120 may applied a normal force of 5 N or less to the expandable material 118 if the fluid impermeable barrier 102 applies a normal force of 10 N to the expandable material 118. As such, in such an embodiment, the shape of the expandable material 118 is more controlled by the fluid impermeable barrier 102 and, more particularly, the region about the urethral opening of the patient than the fluid permeable membrane 120 which allows the expandable material 118 to exhibit a shape that corresponds to the shape of the region about the urethral opening when the expandable material 118 expands (e.g., receives the bodily fluids). In other words, the fluid permeable membrane 120 substantially does not prevent the expandable material 118 from conforming to the shape of the region about the urethral opening of the patient.


In an embodiment, the fluid permeable membrane 120 is sufficiently rigid that the minimal normal force applied from the fluid permeable membrane 120 to the expandable material 118 is 50% or greater the force applied to the expandable material 118 from the fluid impermeable barrier 102 or the region about the urethral opening of the patient during normal use. In such an embodiment, the fluid permeable membrane 120 may limit the shape of the expandable material 118 may take as the volume of the expandable material 118 increases. For example, the fluid permeable membrane 120 may exhibit such rigidity when the fluid permeable membrane 120 exhibits a Young's modulus and/or percent elongation that with 10% or greater than the fluid impermeable barrier 102. Limiting the shape of the expandable material 118 with the fluid permeable membrane 120 may prevent over expansion of the expandable material 118 which may push the fluid impermeable barrier 102 and the chamber 106 away from the patient and prevent oversaturation of the expandable material 118, either of which may promote leaks of the bodily fluids.


Regardless if the fluid permeable membrane 120 is configured to apply a force to the expandable material 118 that is less than or greater than 50% the force applied from the fluid impermeable barrier 102 and the region about the urethral opening during normal use, the fluid permeable membrane 120 may at least partially control the shape of the protrusion 122. For example, before the protrusion 122 contacts the urethral opening, the fluid permeable membrane 120 may apply a force to the expandable material 118 that controls the shape of the protrusion 122. In an embodiment, the fluid permeable membrane 120 may be configured to cause the protrusion 122 to exhibit a generally triangular shape.


The porous material 104 may at least substantially completely fill the portions of the chamber 106 that are not occupied by the conduit 116. In some examples, the porous material 104 may not substantially completely fill the portions of the chamber 106 that are not occupied by the conduit 116. In such an example, the fluid collection assembly 100 includes the fluid reservoir 124 (FIG. 1C) disposed in the chamber 106.


The fluid reservoir 124 is a substantially unoccupied portion of the chamber 106. The fluid reservoir 124 may be defined between the fluid impermeable barrier 102 and porous material 104. The bodily fluids that are in the chamber 106 may flow through the porous material 104 to the fluid reservoir 124. The fluid reservoir 124 may retain of the bodily fluids therein.


The bodily fluids that are in the chamber 106 may flow through the porous material 104 to the fluid reservoir 124. The fluid impermeable barrier 102 may retain the bodily fluids in the fluid reservoir 124. While depicted in the distal end region 126, the fluid reservoir 124 may be located in any portion of the chamber 106 such as the proximal end region 128. The fluid reservoir 124 may be located in a portion of the chamber 106 that is designed to be located in a gravimetrically low point of the fluid collection assembly 100 when the fluid collection assembly 100 is worn.


In some examples (not shown), the fluid collection assembly 100 may include multiple reservoirs, such as a first reservoir that is located at the portion of the chamber 106 at the distal end region 126 and a second reservoir that is located at the portion of the of the chamber 106 that at the proximal end region 128. In another example, the porous material 104 is spaced from at least a portion of the conduit, and the fluid reservoir 124 may be the space between the porous material 104 and the conduit 116.


The conduit 116 may be at least partially disposed in the chamber 106. The conduit 116 may be used to remove the bodily fluids from the chamber 106. The conduit 116 (e.g., a tube) includes an inlet and an outlet positioned downstream from the inlet. The outlet may be operably coupled to a suction source, such as a vacuum pump for withdrawing fluid form the chamber through the conduit 116. For example, the conduit 116 may extend into the fluid impermeable barrier 102 from the proximal end region 128 and may extend to the distal end region 126 to a point proximate to the fluid reservoir 124 therein such that the inlet is in fluid communication with the fluid reservoir 124. The conduit 116 fluidly couples the chamber 106 with the fluid storage container (not shown) or the vacuum source (not shown).


The conduit 116 may include a flexible material such as plastic tubing (e.g., medical tubing). Such plastic tubing may include a thermoplastic elastomer, polyvinyl chloride, ethylene vinyl acetate, polytetrafluoroethylene, etc., tubing. In some examples, the conduit 116 may include silicon or latex. In some examples, the conduit 116 may include one or more portions that are resilient, such as to by having one or more of a diameter or wall thickness that allows the conduit to be flexible.


As shown in FIG. 1C, the end of the conduit 116 may extend through a bore in the porous material 104, such as into or adjacent to the fluid reservoir 124. For example, the inlet of the conduit 116 may be extend into or be positioned in the fluid reservoir 124. In some examples, the inlet may not extend into the fluid reservoir 124. In such examples, the inlet may be disposed within the porous material 104 or at a terminal end thereof. For example, an end of the conduit 116 may be coextensive with or recessed within the porous material 104.


Locating the inlet of the conduit 116 at or near a location expected to be the gravimetrically low point of the chamber 106 when worn by a user enables the conduit 116 to receive more of the bodily fluids than if inlet of the conduit 116 was located elsewhere and reduce the likelihood of pooling (e.g., pooling of the bodily fluids may cause microbe growth and foul odors). For instance, the bodily fluids in the porous material 104 may flow in any direction due to capillary forces. However, the bodily fluids may exhibit a preference to flow in the direction of gravity, especially when at least a portion of the porous material 104 is saturated with the bodily fluids. Accordingly, one or more of the inlet of the conduit 116 or the fluid reservoir 124 may be located in the fluid collection assembly 100 in a position expected to be the gravimetrically low point in the fluid collection assembly 100 when worn by a patient, such as the distal end region 126.


In an example, the conduit 116 is configured to be at least insertable into the chamber 106. In such an example, the conduit 116 may include one or more markers (not shown) on an exterior thereof that are located to facilitate insertion of the conduit 116 into the chamber 106. For example, the conduit 116 may include one or more markings thereon that are configured to prevent over or under insertion of the conduit 116, such as when the conduit 116 defines an inlet that is configured to be disposed in or adjacent to the fluid reservoir 124. In another example, the conduit 116 may include one or more markings thereon that are configured to facilitate correct rotation of the conduit 116 relative to the chamber 106. The one or more markings may include a line, a dot, a sticker, or any other suitable marking.


As described in more detail below, the conduit 116 is configured to be coupled to, and at least partially extend between, one or more of the fluid storage container (not shown) and the vacuum source (not shown). In an example, the conduit 116 is configured to be directly connected to the vacuum source. In such an example, the conduit 116 may extend from the fluid impermeable barrier 102 by at least one foot, at least two feet, at least three feet, or at least six feet. In another example, the conduit 116 is configured to be indirectly connected to at least one of the fluid storage container (not shown) and the vacuum source (not shown). In some examples, the conduit is secured to a wearer's skin with a catheter securement device, such as a STATLOCK® catheter securement device available from C. R. Bard, Inc., including but not limited to those disclosed in U.S. Pat. Nos. 6,117,163; 6,123,398; and 8,211,063, the disclosures of which are all incorporated herein by reference in their entirety.


The inlet and the outlet of the conduit 116 are configured to fluidly couple (e.g., directly or indirectly) the vacuum source (not shown) to the chamber 106 (e.g., the fluid reservoir 124). As the vacuum source (FIG. 9) applies a vacuum/suction in the conduit 116, the bodily fluids in the chamber 106 (e.g., in the fluid reservoir 124) may be drawn into the inlet of the conduit 116 and out of the fluid collection assembly 100 via the conduit 116. In some examples, the conduit 116 may be frosted or opaque (e.g., black) to obscure visibility of the bodily fluids therein.


The fluid collection assemblies disclosed herein may exhibit different cross-sectional shapes that the cross-sectional shapes shown in FIGS. 1B and 1D. For example, FIG. 2 is a cross-sectional schematic of a fluid collection assembly 200, according to an embodiment. The fluid collection assembly 200 is an example of a female fluid collection assembly for receiving and collecting one or more bodily fluids from a female. Except as otherwise disclosed herein, the fluid collection assembly 200 may be the same or substantially similar to any of the fluid collection assemblies disclosed herein. For example, the fluid collection assembly 200 may include a fluid impermeable barrier 202 and at least one porous material 204. Also, except as otherwise disclosed herein, the features discussed with regards to FIG. 2 may be used in any of the fluid collection assemblies disclosed herein.


At least a portion of the fluid collection assembly 200 exhibits a generally triangular cross-sectional shape. The fluid collection assembly 200 exhibit a generally triangular cross-sectional shape when the fluid collection assembly 200 form three apex 230 and three edges 232 (e.g., straight or curved edges) extending between adjacent edges 232. The fluid impermeable barrier 202 (ignoring the opening 208) and the porous material 204 (e.g., the expandable material 218 and the fluid permeable membrane 220) may also exhibit a generally triangular cross-sectional shape. The generally triangular cross-sectional shape of the fluid collection assembly 200 may cause the protrusion 222 formed by the porous material 204 to exhibit a generally triangular cross-sectional shape. Further, the apexes 230 that do not form the protrusion 222 may be more likely to contact the thighs of the patient than if the fluid collection assembly 200 exhibited a generally cylindrical shape. In some embodiments, the contact between the fluid impermeable barrier 202 and the thighs of the patient may be used to maintain the shape and position of the fluid collection assembly 200. As such, the generally triangular shape of the fluid collection assembly 200 may help maintain the shape and position of the fluid collection assembly 200.


In an embodiment, the fluid collection assembly 200 may exhibit the generally triangular cross-sectional shape before the expandable material 218 is exposed to the one or more bodily fluids. In such an embodiment, the fluid impermeable barrier 202 and the porous material 204 are provided while exhibiting the generally triangular cross-sectional shape. The generally triangular shape of the protrusion 222 may facilitate positioning the protrusion 222 between the labia folds of the patient before the urethral opening discharges the bodily fluids. The expandable material 218 may then expand when the expandable material 218 is exposed to the bodily fluids such that the protrusion 222 increases in volume. The increase in volume of the protrusion 222 may include at least one of increasing the distance the protrusion 222 extends from the opening 208 or causing the protrusion 222 to fill any gaps remaining after positioning the protrusion 222 between the labia folds. It is noted that the fluid collection assembly 200 may be provided while the fluid collection assembly 200 exhibits a generally tear-drop cross-sectional shape (e.g., the porous material 204 exhibits a generally tear-drop cross-sectional shape) or any of the other cross-sectional shapes disclosed herein.


In an embodiment, the fluid collection assembly 200 may exhibit the generally triangular cross-sectional shape only after the expandable material 218 is exposed to the one or more bodily fluids. In an example, at least a portion of the fluid collection assembly 200 is provided exhibiting a generally trapezoidal shape. In such an example, the fluid impermeable barrier 202 may be provided while exhibiting a generally trapezoidal cross-sectional shape or, ignoring the opening 208, a generally triangular cross-sectional shape. Also, the porous material 204 does not initially include the protrusion 222 or the protrusion 222 does not exhibit a generally triangular shape. Instead, the porous material 204 may at least one of extend across the opening 208 in a generally planar manner, extend across the opening 208 in a generally concave manner, or extend outwardly from the opening 208 in a generally non-triangular manner. The expandable material 218 may be exposed to the one or more bodily fluids and expand such that the fluid collection assembly 200 exhibits the generally triangular cross-sectional shape illustrated in FIG. 2. Alternatively, in an example, at least a portion of the fluid collection assembly 200 may be provided while exhibiting a generally circular cross-sectional shape, as shown in FIG. 1B. In such an example, the fluid impermeable barrier 202 (ignoring the opening 208) and the porous material 204 may exhibit a generally circular cross-sectional shape. When the expandable material 218 is exposed to the bodily fluids, the expandable material 218 expands to form the protrusion 222. The expandable material 218 may also press against the fluid impermeable barrier 202 which causes the fluid impermeable barrier 202 to expand and change shape. For instance, as illustrated, the expandable material 218 may cause the fluid impermeable barrier 202 to change from the generally circular cross-sectional shape to the generally triangular cross-sectional shape. The shape change of the fluid impermeable barrier 202 may be controlled by selectively thinning the portion of the fluid impermeable barrier 202 that form the apexes 230 and/or selectively forming the portions of the fluid impermeable barrier 202 that form the apexes 230 from a material that is more flexible (e.g., exhibits a lower Young's modulus) than the rest of the fluid impermeable barrier 202.


As previously discussed, the porous material used in any of the fluid collection assemblies disclosed herein may include a fluid permeable support in addition to the expandable material and, optionally, the permeable membrane. FIGS. 3 and 4 are cross-sectional schematics of different fluid collection assemblies that include a fluid permeable support, according to different embodiments. The fluid collection assemblies illustrated in FIGS. 3 and 4 are examples of female fluid collection assemblies for receiving and collecting one or more bodily fluids from a female. Except as otherwise disclosed herein, the fluid collection assemblies illustrated in FIGS. 3 and 4 are the same or substantially similar to any of the fluid collection assemblies disclosed herein. Further, the features discussed in relation to FIGS. 3 and 4 may be used in any of the fluid collection assemblies disclosed herein.


Referring to FIG. 3, the fluid collection assembly 300 includes a fluid impermeable barrier 302 defining a chamber 306 and at least one porous material 304 disposed in the chamber 306. The porous material 304 includes at least one expandable material 318 and a fluid permeable membrane 320. It is noted that the expandable material 318 and/or the fluid permeable membrane 320 may be omitted from the porous material 304. The porous material 304 may also include a fluid permeable support 334. In an embodiment, the fluid permeable support 334 is configured to support the expandable material 318 and the fluid permeable membrane 320 since expandable material 318 and/or the fluid permeable membrane 320 may be formed from a relatively foldable, flimsy, or otherwise easily deformable material. For example, the fluid permeable support 334 may be positioned such that the expandable material 318 and the fluid permeable membrane 320 are disposed between the fluid permeable support 334 and the fluid impermeable barrier 302. As such, the fluid permeable support 334 may support and maintain the position of the expandable material 318 and the fluid permeable membrane 320.


In an embodiment, the fluid permeable support 334 may include any material that may wick the bodily fluids (e.g., substantially no absorption of fluid into the material may take place after the material is exposed to the fluid and removed from the fluid for a time). Thus, the fluid permeable support 334 may remove the bodily fluids away from the region about the urethral opening and inhibit bodily fluids from back flowing to the region about the urethral opening. In other words, the fluid permeable support 334 may maintain the region about the urethral opening dry. The fluid permeable support 334 may also wick the fluid generally towards an interior of the chamber 306 For example, the expandable material 318 may retain at least some of the bodily fluids therein. However, the wicking properties of the fluid permeable support 334 may induce at least some of the bodily fluids to flow from the expandable material 318 to the fluid permeable support 334, especially when the expandable material 318 is saturated by bodily fluids. The bodily fluids present in the fluid permeable support 334 may flow towards the conduit 316 due to the wicking properties thereof and, thus, the fluid permeable support 334 may prevent the bodily fluids from leaking. The fluid permeable support 334 may be formed from any of the wicking materials disclosed herein, such as any of the fluid permeable membrane materials disclosed herein above. For example, the fluid permeable membrane material(s) may be utilized in a more dense or rigid form than in the fluid permeable membrane 320 when used as the fluid permeable support 334. The fluid permeable support 334 may be formed from any fluid permeable material that is less deformable than the fluid permeable membrane 320. For example, the fluid permeable support 334 may include a porous polymer (e.g., nylon, polyester, polyurethane, polyethylene, polypropylene, etc.) structure or an open cell foam. For instance, the fluid permeable support 334 may be formed from spun nylon fibers. In some examples, the fluid permeable support 334 may be formed from a natural material, such as cotton, wool, silk, or combinations thereof. In such examples, the material may have a coating to prevent or limit absorption of fluid into the material, such as a water repellent coating. In some examples, the fluid permeable support 334 may be formed from fabric, felt, gauze, or combinations thereof. In an embodiment, the fluid permeable support 334 may include any material that absorbs or adsorbs the bodily fluids.


The fluid permeable support 334 may have a greater ability to wick fluids than the fluid permeable membrane 320, such as to move the fluid inwardly from the outer surface of the fluid collection assembly 300. In some examples, the wicking ability of the fluid permeable support 334 and the fluid permeable membrane 320 may be substantially the same.


The expandable material 318, the fluid permeable membrane 320, and the fluid permeable support 334 may be arranged generally concentrically. For example, the fluid permeable support 334 may form an inner layer, the fluid permeable membrane 320 may form an outer layer that extends generally concentrically relative to the fluid permeable support 334, and the expandable material 318 may be positioned between and concentrically relative to the fluid permeable membrane 320 and the fluid permeable support 334. However, it is noted that the expandable material, the fluid permeable membrane, and the fluid permeable support may exhibit other configurations.


Referring to FIG. 4, the fluid collection assembly 400 includes a fluid impermeable barrier 402 and at least one porous material 404 disposed in the fluid impermeable barrier 402. The porous material 404 includes at least one expandable material 418, a fluid permeable membrane 420, and a fluid permeable support 434. The fluid permeable support 434 may form an inner layer of the porous material 404 thereby allowing the fluid permeable support 434 to support the expandable material 418 and the fluid permeable membrane 420. The fluid permeable membrane 420 may form an outer layer of the porous material 404 thereby allowing the permeable membrane 420 to directly contact the skin of the patient. The expandable material 418 may be positioned between a portion of the fluid permeable membrane 420 and a corresponding portion of the fluid permeable support 434. In other words, the expandable material 418 does not extends concentrically relative to the fluid permeable membrane 420 and the fluid permeable support 434.


The expandable material 418 may be in the form of a rod that is positioned between the fluid permeable membrane 420 and the fluid permeable support 434. The expandable material 418 is or includes a rod when the expandable material 418 extends longitudinally and is not concentric relative to the fluid permeable membrane 420 or the fluid permeable support 434. In an example, when the expandable material 418 is a rod, the expandable material 418 may exhibit a generally circular cross-sectional shape, a generally oblong cross-sectional shape (as shown), a generally crescent cross-sectional shape, a generally rectangular (e.g., square) cross-sectional shape, or any other suitable cross-sectional shape.


Forming the expandable material 418 as a rod allows the expandable material 418 to be easily positioned between the fluid permeable membrane 420 and the fluid permeable support 434. In an example, some conventional porous materials include a fluid permeable membrane disposed concentrically around the fluid permeable support. The rod-shape expandable material 418 may be inserted between the fluid permeable membrane and the fluid permeable support of such conventional porous materials to form the porous material 404 shown in FIG. 4. In an example, the expandable material 418 may be co-extruded with the fluid permeable membrane 420 and the fluid permeable support 434 when the expandable material 418 is a rod. In an embodiment, the expandable material 418 may include a plurality of distinct portions (e.g., distinct beads) that are disposed between the fluid permeable membrane 420 and the fluid permeable support 434.


In an embodiment, the expandable material 418 is disposed between a portion of the fluid permeable membrane 420 and a corresponding portion of the fluid permeable support 434 that are adjacent to the opening 408. In such an embodiment, the expandable material 418 may cause the porous material 404 to form a protrusion 422 before the expandable material 418 is exposed to the bodily fluids. When the fluid impermeable barrier 402 exhibits a generally circular cross-sectional shape, ignoring the opening 408, the expandable material 418 may cause the fluid collection assembly 400 to exhibit a generally tear-drop cross-sectional shape. Further, positioning the expandable material 418 adjacent to the opening 408 may cause the expandable material 418 to not press against or minimize a magnitude that the expandable material 418 presses against the fluid impermeable barrier 402 as the expandable material 418 increases in volume. As such, the force applied from the fluid impermeable barrier 402 to the expandable material 418 is minimized or non-existent.


As previously discussed, the expandable material may be omitted from the porous materials disclosed herein. FIGS. 5-7 are cross-sectional schematics of different fluid collection assemblies that do not include an expandable material, according to different embodiments. The fluid collection assemblies illustrated in FIGS. 5-7 are examples of female fluid collection assemblies for receiving and collecting one or more bodily fluids from a female. Except as otherwise disclosed herein, the fluid collection assemblies of FIGS. 5-7 may be the same or substantially similar to any of the fluid collection assemblies disclosed herein. Further, the principles discussed in relation to FIGS. 5-7 may be used in any of the fluid collection assemblies disclosed herein.


Referring to FIG. 5, the fluid collection assembly 500 includes a fluid impermeable barrier 502 and at least one porous material 504 disposed in the fluid impermeable barrier 502. The porous material 504 may include a fluid permeable membrane 520 and a fluid permeable support 534. However, as previously discussed, one of the fluid permeable membrane 520 or the fluid permeable support 534 may be omitted from the fluid collection assembly 500.


The fluid collection assembly 500 may exhibit a generally tear-drop cross-sectional shape. For example, the fluid impermeable barrier 502, ignoring the opening 508, may exhibit a generally circular cross-sectional shape. The portion of the porous material 504 that is disposed in the chamber 506 defined by the fluid impermeable barrier 502 may also exhibit a generally circular cross-sectional shape. The porous material 504 includes a protrusion 522 extending outwardly from the opening 508. The protrusion 522 may exhibit a generally triangular cross-sectional shape.


In an embodiment, the porous material 504 exhibits the generally tear-drop cross-sectional shape without having one or more external forces applied thereto. In an embodiment, the porous material 504 may be molded (e.g., one or more external forces are applied thereto) to exhibit the generally tear-drop shape. For example, the porous material 504 may be provided while exhibiting a generally circular cross-sectional shape. The portion of the porous material 504 may be pitched (i.e., one or more external forces are applied thereto) to form the protrusion 522. It has been unexpectedly found that pinching the portion of the porous material 504 that extend across the opening 508 forms the protrusion 522 and the protrusion 522 remains after pinching the porous material 504. In an example, the protrusion 522 may remain after pinching the porous material 504 because the pinching action plastically deforms one or more portions of the porous material 504. In an example, the protrusion 522 may remain after pinching the porous material 504 because friction between the individual layers of the porous material 504 and between the porous material 504 and the fluid impermeable barrier 502 maintains the protrusion 522. In such an example, pinching the porous material 504 may cause at least some of the portions of the porous material 504 that form the protrusion 522 to be in compression while at least some of the portions of the porous material 504 that do not form the protrusion 522 to be in tension. However, the compressive and tensile forces applied to different portions of the porous material 504 are not sufficient to overcome the kinetic friction forces and, thus, the friction maintains the protrusion 522.


Referring to FIG. 6, the fluid collection assembly 600 includes a fluid impermeable barrier 602 and at least one porous material 604 disposed in the fluid impermeable barrier 602. The porous material 604 may include a fluid permeable membrane 620 and a fluid permeable support 634. However, as previously discussed, one of the fluid permeable membrane 620 or the fluid permeable support 634 may be omitted from the fluid collection assembly 600.


The fluid collection assembly 600 includes at least one additional material 636 that is distinct from the fluid impermeable barrier 602, the fluid permeable membrane 620, and the fluid permeable support 634. The additional material 636 may be formed from at least one of a wicking material, an absorbent and/or adsorbent non-expandable material, or a fluid impermeable material (e.g., non-porous polymer or metal).


The additional material 636 is configured to affect the shape of the fluid collection assembly 600. In an embodiment, the additional material 636 is shaped and positioned to cause the porous material 604 to exhibit a protrusion 622. For example, the additional material 636 may cause the fluid collection assembly 600 to exhibit a generally tear-drop cross-sectional shape (as shown), a triangular cross-sectional shape, or any other suitable cross-sectional shape. The additional material 636 may include a rod or a plurality of distinct portions (e.g., beads). The additional material 636 may positioned within the porous material 604 to be adjacent to the opening 608 to form the protrusion 622. For example, the additional material 636 may be positioned between the fluid permeable membrane 620 and the fluid permeable support 634 which allows the additional material 636 to be easily inserted into some conventional porous materials or co-extruded, similar to the expandable material 418 of FIG. 4. Alternatively, the additional material 636 may be positioned within the fluid permeable membrane 620 or the fluid permeable support 634.


Referring to FIG. 7, the fluid collection assembly 700 includes a fluid impermeable barrier 702 and a porous material 704 disposed in the fluid impermeable barrier 702. The porous material 704 is illustrated as including a fluid permeable membrane 720 and a fluid permeable support 734 but, as previously indicated, one of the fluid permeable membrane 720 or the fluid permeable support 734 may be omitted from the porous material 704. The fluid collection assembly 700 exhibits a generally triangular cross-sectional shape that includes a protrusion 722 extending outwardly from the opening 708. For example, the fluid impermeable barrier 702 (ignoring the opening 708) and the porous material 804 may exhibit the generally triangular cross-sectional shape. The generally triangular cross-sectional shape of the fluid collection assembly 700 may exhibit the same benefits and features as the generally cross-sectional shape of the fluid collection assembly 200 of FIG. 2. In an embodiment, not shown, the fluid collection assembly 700 may include at least one additional material disposed in the porous material 704 adjacent to the opening 708 to form the protrusion 722.


The fluid collection assemblies shown in FIGS. 1A-7 are examples of female fluid collection assemblies that are configured to collect bodily fluids from females (e.g., collect urine from a female urethral opening). However, the fluid collection assemblies, systems, and methods disclosed herein may include male fluid collection assemblies shaped, sized, and otherwise configured to collect bodily fluids from males (e.g., collect urine from a male urethral opening). FIG. 8A is an isometric view of a fluid collection assembly 800, according to an embodiment. FIG. 8B is a cross-sectional view of the fluid collection assembly 800 of FIG. 8A taken along the plane 8B-8B of FIG. 8A. The fluid collection assembly 800 includes a receptacle 850 and a sheath 852. The receptacle 850 is sized, shaped, and made of a material to be coupled to skin that surrounds the male urethral opening and have the male urethral opening positioned therethrough. For example, the receptacle 850 may include an annular base 854 that defines an opening 856 in the receptacle 850. The annular base 854 is sized and shaped to be positioned around the male urethral opening (e.g., positioned around and/or over the penis) and the opening 856 may be configured to have the male urethral opening positioned therethrough. The annular base 854 may also be sized, shaped, made of a material, or otherwise configured to be coupled (e.g., adhesively attached, such as with a hydrogel adhesive) to the skin around the male urethral opening (e.g., around the penis). In an example, the annular base 854 may exhibit the general shape or contours of the skin surface that the annular base 854 is selected to be coupled with. The annular base 854 may be flexible thereby allowing the annular base 854 to conform to any shape of the skin surface. The annular base 854 may include a laterally extending flange 855. The receptacle 850 also defines a hollowed region that is configured to receive (e.g., seal against) the sheath 852. For example, the receptacle 850 may include a longitudinally extending flange 860 that extends upwardly from the annular base 854. The longitudinally extending flange 860 may be tall enough to prevent the sheath 852 from being accidentally removed from the receptacle 850 (e.g., at least 0.25 cm tall, 1 cm tall, at least 8 cm tall, or at least 5 cm tall). The receptacle 850 is located at a proximal region 828 (with respect to a wearer) of the fluid collection assembly 800.


The sheath 852 includes (e.g., may be formed from) a fluid impermeable barrier 802 that is sized and shaped to fit into the hollowed region of the receptacle 850. For example, the sheath 852 may be generally tubular or cup-shaped, as shown. The generally tubular or cup-shaped fluid impermeable barrier 102 may at least partially define the outer surface 812 of the sheath 852. The fluid impermeable barrier 802 may be similar or identical to any of the fluid impermeable barriers disclosed herein, in one or more aspects. For example, the fluid impermeable barrier 802 may be constructed of any of the fluid impermeable materials disclosed herein. The fluid impermeable barrier 802 at least partially defines the chamber 806. For example, the inner surface 810 of the fluid impermeable barrier 802 at least partially defines the perimeter of the chamber 806. The chamber 806 may at least temporarily retain fluids therein. As shown, the fluid collection assembly 800 may include the porous material 804 therein. The porous material 804 may be similar or identical to the porous materials disclosed herein in one or more aspects. For example, the porous material 804 may include one or more of at least one expandable material 818, a fluid permeable membrane 820, or a fluid permeable support (not shown). The fluid impermeable barrier 802 may also define an opening 808 extending through the fluid impermeable barrier 802 that is configured to have a male urethral opening positioned therethrough.


The sheath 852 and fluid impermeable barrier 802 may also include at least one aperture 862 (e.g., vacuum relief hole) that allows the chamber 806 to remain substantially at atmospheric pressure. The at least one aperture 862 may be located at any point on the sheath 852, such as near or nearer the opening 856. In some examples (not shown), the aperture 862 may extend through the cap 866 or be disposed beneath the cap 866. In some examples, the fluid collection assembly 800 may not include the aperture 862, such as when a more complete seal as desired for the chamber 806.


The sheath 852 also includes at least a portion of the conduit 816 therein, such as at least partially disposed in the chamber 806. The bodily fluid may be removed from the chamber 806 via the conduit 816.


In an example, portions of the chamber 806 may be substantially empty due to the varying sizes and rigidity of the male penis. However, in some examples, the outermost regions of the chamber 806 (e.g., periphery of the interior regions of the sheath 852) may include porous material 804 (e.g., one or more of the fluid permeable membrane 820 and fluid permeable support). For example, the porous material 804 may be bonded to the inner surface 810 of the fluid impermeable barrier 802. The porous material 804 may be positioned (e.g., at the distal end of the chamber 806) to blunt a stream of urine from the male urethral opening thereby limiting splashing and/or to direct the bodily fluids to a selected region of the chamber 806. Since the chamber 806 is substantially empty (e.g., substantially all of the chamber 806 forms a reservoir), the bodily fluids are likely to pool at a gravimetrically low point of the chamber 806. The gravimetrically low point of the chamber 806 may be at an intersection of the skin of an individual and the fluid collection assembly 800, a corner formed in the sheath 852, or another suitable location depending on the orientation of the patient.


As previously discussed, the porous material 804 may include one or more of at least one expandable material 818, the fluid permeable membrane 820, or the fluid permeable support (now shown). The expandable material 818, the fluid permeable membrane 818 and the fluid permeable support may be similar or identical to any of the expandable materials, the fluid permeable membranes, or the fluid permeable supports, respectively, disclosed herein, in one or more aspects such as material make-up or wicking ability. One or more of expandable material 818, the fluid permeable membrane 820, or the fluid permeable support may be disposed between the fluid impermeable barrier 802 and a penis inserted into the chamber 806. The fluid permeable membrane 820 may be positioned between the fluid impermeable barrier 802 and a penis inserted into the chamber 806, such as between the expandable material 818 and penis of a patient, as shown. The expandable material 818 may be positioned between the fluid permeable membrane 820 and the fluid impermeable barrier 802. The inner surface 810, optionally including the end of the chamber 806 substantially opposite the opening 808, may be covered with the fluid permeable membrane 820.


As previously discussed, the expandable material 818 is configured to increase in volume when the expandable material 818 is exposed to the bodily fluids. Increasing the volume of the expandable material 818 may substantially fill at least some of the space in the chamber 806 that is not occupied by the porous material 804 and the penis. Filling such space with the expandable material 818 may reduce pooling of the bodily fluids in the chamber 806. Such pooling of the bodily fluids may cause body odor, skin degradation, and patient discomfort.


In some examples, the fluid collection assembly 800 includes a cap 866 at a distal region 826. The cap 866 defines an interior channel through which the fluids may be removed from the fluid collection assembly 800. The interior channel is in fluid communication with the chamber 806. The cap 866 may be disposed over at least a portion of a distal region 826 of one or more of the fluid impermeable barrier 802 or the porous material 804. The cap 866 may be made of a polymer, rubber, or any other fluid impermeable material. The cap 866 may be attached to one or more of the fluid impermeable barrier 802, the porous material 804, or the conduit 816. The cap 866 may have a laterally extending flange 870 and a longitudinally extending flange 872. The laterally extending flange 870 may cover at least a portion of the distal region 826 of the fluid collection assembly 800. The longitudinally extending flange 872 may laterally extend a distance from the sheath 852. The longitudinally extending flange 872 is sized and configured to receive and fluidly seal against the conduit 816, such as within the interior channel. The conduit 816 may extend a distance within or through the cap 866, such as to the porous material 804, through the porous material 804, or to a point set-off from the porous material 804. In the latter example, as depicted in FIG. 8B, the interior channel of the cap 866 may define a fluid reservoir 824 therein.


The reservoir 824 is an unoccupied portion of fluid collection assembly 800 such as in the cap 866 and is void of other material. In some examples, the reservoir 824 is defined at least partially by the porous material 804 and the cap 866. During use, the fluids that are in the chamber 806 may flow through the porous material 804 to the reservoir 824. The reservoir 824 may store at least some of the fluids therein and/or position the fluids for removal by the conduit 816. In some examples, at least a portion of the porous material 804 may extend continuously between at least a portion of the opening of the interior channel and chamber 806 to wick any fluid from the opening directly to the reservoir 824.


In some examples (not shown), the fluid impermeable barrier 802 may be disposed on or over the cap 866, such as enclosing the cap 866 within the chamber 806.


In some examples, the sheath 852 may include at least a portion of the conduit 816 therein, such as at least partially disposed in the chamber 806. For example, the conduit 816 may extend from the sheath 852 to a region at least proximate to the opening 856. The inlet of the conduit 816 may be positioned adjacent to the annular base 854. The inlet of the conduit 816 may be positioned to be adjacent or proximate to the gravimetrically low point of the chamber 806, such as adjacent to the annular base 854. For example, the inlet may be co-extensive with or offset from the opening 856. In examples, the inlet may be positioned adjacent to the distal region 826 of the sheath 852 (e.g., substantially opposite the opening).


The proximal region 828 may be disposed near or on the skin around the male urethral opening (e.g., around the penis) and the inlet of the conduit 816 may be positioned in the proximal region 842. The outlet of the conduit 816 may be directly or indirectly coupled to a vacuum source. Accordingly, fluid may be removed from the proximal region 842 of the chamber 806 via the conduit 816.


The receptacle 850, the sheath 852, the cap 866, and the conduit 816 may be attached together using any suitable method. For example, at least two of the receptacle 850, the sheath 852, the cap 866, or the conduit 816 may be attached together using at least one of an interference fit, an adhesive, stitching, welding (e.g., ultrasonic welding), tape, any other suitable method, or combinations thereof.


In some examples (not shown), the fluid collection assembly 800 may have a one piece design, with one or more of the sheath 852, the receptacle 850, and the cap 866 being a single, integrally formed piece.


Also as shown, the conduit 816 may be at least partially disposed with the chamber 806 of a fluid collection assembly 800. The conduit 816 may extend from the distal region 826 to the proximal region 828. For example, the conduit 816 may extend through the cap 866 to a point adjacent to the receptacle 850. The conduit 816 is sized and positioned to be coupled to a fluid storage container or the vacuum source (FIG. 9). An outlet of the conduit 816 may be operably coupled to the vacuum source, directly or indirectly. The inlet of the conduit 816 may be positioned within the chamber 806 such as at a location expected to be at the gravimetrically low point of the fluid collection assembly during use. By positioning the inlet in a location expected to be at the gravimetrically low point of the fluid collection assembly when worn by the user, fluids introduced into the chamber 806 may be removed via the conduit 816 to prevent pooling or stagnation of the fluid within the chamber 806.


In some examples, the vacuum source may be remotely located from the fluid collection assembly 800. In such examples, the conduit 816 may be fluidly connected to the fluid storage container, which may be disposed between the vacuum source and the fluid collection assembly 800.


During operation, a male using the fluid collection assembly 800 may discharge the bodily fluids (e.g., urine) into the chamber 806. The bodily fluids may pool or otherwise be collected in the chamber 806. At least some of the bodily fluids may be pulled through the interior of the conduit 816 via the inlet. The bodily fluids may be drawn out of the fluid collection assembly 800 via the vacuum/suction provided by the vacuum source. During operation, the aperture 862 may substantially maintain the pressure in the chamber 806 at atmospheric pressure even though fluid is introduced into and subsequently removed from the chamber 806.


Other examples of male fluid collection assemblies that may include at least one expandable material are disclosed in International Application No. WO 2021/016026 filed on Jul. 16, 2020, U.S. patent application Ser. No. 16/433,773 filed on Apr. 3, 2020, and International Application No. PCT/2021/039866 filed on Jun. 30, 2021, the disclosure of each of which is incorporated herein, in its entirety, by this reference.



FIG. 9 is a block diagram of a system 901 for fluid collection, according to an embodiment. The system 901 includes a fluid collection assembly 900, a fluid storage container 907, and a vacuum source 909. The fluid collection assembly 900, the fluid storage container 907, and the vacuum source 909 may be fluidly coupled to each other via one or more conduits 916. For example, fluid collection assembly 900 may be operably coupled to one or more of the fluid storage container 907 or the vacuum source 909 via the conduit 916. Fluid (e.g., urine or other bodily fluids) collected in the fluid collection assembly 900 may be removed from the fluid collection assembly 900 via the conduit 916 which protrudes into the fluid collection assembly 900. For example, an inlet of the conduit 916 may extend into the fluid collection assembly 900, such as to a reservoir therein. The outlet of the conduit 916 may extend into the fluid collection assembly 900 or the vacuum source 909. Suction force may be introduced into the chamber of the fluid collection assembly 900 via the inlet of the conduit 916 responsive to suction (e.g., vacuum) force applied at the outlet of the conduit 916.


The suction force may be applied to the outlet of the conduit 916 by the vacuum source 909 either directly or indirectly. The suction force may be applied indirectly via the fluid storage container 907. For example, the outlet of the conduit 916 may be disposed within the fluid storage container 907 and an additional conduit 916 may extend from the fluid storage container 907 to the vacuum source 909. Accordingly, the vacuum source 909 may apply suction to the fluid collection assembly 900 via the fluid storage container 907. The suction force may be applied directly via the vacuum source 909. For example, the outlet of the conduit 916 may be disposed within the vacuum source 909. An additional conduit 916 may extend from the vacuum source 909 to a point outside of the fluid collection assembly 900, such as to the fluid storage container 907. In such examples, the vacuum source 909 may be disposed between the fluid collection assembly 900 and the fluid storage container 907.


The fluid collection assembly 900 may be similar or identical to any of the fluid collection assemblies disclosed herein (e.g., 100 and 300-1300) in one or more aspects. The fluid collection assembly 900 may be shaped and sized to be positioned adjacent to a female urethral opening or have a male urethral opening positioned therethrough (e.g., receive a penis therein). For example, the fluid collection assembly 900 may include a fluid impermeable barrier at least partially defining a chamber (e.g., interior region) of the fluid collection assembly 900. The fluid impermeable barrier also defines an opening extending therethrough from the external environment. The opening may be positioned adjacent to a female urethral opening or have a male urethral opening positioned therethrough. The fluid collection assembly 900 may include a fluid permeable membrane disposed within the fluid impermeable barrier. The fluid collection assembly 900 may include wicking material disposed in the chamber such as one or more of a fluid permeable support and a fluid permeable membrane. The fluid collection assembly 900 includes the shape memory material on or incorporated in one or more components thereof. The shape memory material is sized, shaped, and positioned to retain a selected geometric configuration as disclosed herein. The conduit 916 may extend into the fluid collection assembly 900 at a first end (e.g., proximal) region, through one or more of the fluid impermeable barrier, fluid permeable membrane, or the fluid permeable support to a second end (e.g., distal) region of the fluid collection assembly 900. The conduit 916 includes an inlet and an outlet, the outlet being fluidly coupled to the fluid storage container and the inlet being positioned in a portion of the chamber selected to be at a gravimetrically low point of the fluid collection assembly when worn.


The fluid storage container 907 is sized and shaped to retain a fluid therein. The fluid storage container 907 may include a bag (e.g., drainage bag), a bottle or cup (e.g., collection jar), or any other enclosed container for storing bodily fluid(s) such as urine. In some examples, the conduit 916 may extend from the fluid collection assembly 900 and attach to the fluid storage container 907 at a first point therein. An additional conduit 916 may attach to the fluid storage container 907 at a second point thereon and may extend and attach to the vacuum source 909. Accordingly, a vacuum (e.g., suction) may be drawn through fluid collection assembly 900 via the fluid storage container 907. Fluid, such as urine, may be drained from the fluid collection assembly 900 using the vacuum source 909.


The vacuum source 909 may include one or more of a manual vacuum pump, and electric vacuum pump, a diaphragm pump, a centrifugal pump, a displacement pump, a magnetically driven pump, a peristaltic pump, or any pump configured to produce a vacuum. The vacuum source 909 may provide a vacuum or suction to remove fluid from the fluid collection assembly 900. In some examples, the vacuum source 909 may be powered by one or more of a power cord (e.g., connected to a power socket), one or more batteries, or even manual power (e.g., a hand operated vacuum pump). In some examples, the vacuum source 909 may be sized and shaped to fit outside of, on, or within the fluid collection assembly 900. For example, the vacuum source 909 may include one or more miniaturized pumps or one or more micro pumps. The vacuum sources 909 disclosed herein may include one or more of a switch, a button, a plug, a remote, or any other device suitable to activate the vacuum source 909.


While various aspects and embodiments have been disclosed herein, other aspects and embodiments are contemplated. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting.


Terms of degree (e.g., “about,” “substantially,” “generally,” etc.) indicate structurally or functionally insignificant variations. In an example, when the term of degree is included with a term indicating quantity, the term of degree is interpreted to mean±10%, ±5%, or +2% of the term indicating quantity. In an example, when the term of degree is used to modify a shape, the term of degree indicates that the shape being modified by the term of degree has the appearance of the disclosed shape. For instance, the term of degree may be used to indicate that the shape may have rounded corners instead of sharp corners, curved edges instead of straight edges, one or more protrusions extending therefrom, is oblong, is the same as the disclosed shape, etc.

Claims
  • 1. A fluid collection assembly, comprising: a fluid impermeable barrier at least defining a chamber, at least one opening, and a fluid outlet; andat least one porous material disposed in the chamber, the at least one porous material including at least one of: a protrusion extending outwardly from the at least one opening, the protrusion exhibiting a shape that does not correspond to a shape of the fluid impermeable barrier and a shape of a majority of the porous material, wherein the at least one porous material includes the protrusion before the at least one porous material is exposed to one or more bodily fluids; ora fluid permeable membrane, a fluid permeable support, and at least one expandable material that expands when exposed to the one or more bodily fluids, the fluid permeable membrane extending across the at least one opening, the fluid permeable membrane positioned between the at least one expandable material and at least a portion of the fluid impermeable barrier, the at least one expandable material positioned between at least a portion of the fluid permeable membrane and the fluid permeable support, wherein an expanded portion of the at least one porous material exhibits a shape that does not correspond to a shape of the fluid impermeable barrier and a shape of the majority of a porous material when the at least one expandable material is expanded.
  • 2. The fluid collection assembly of claim 1, wherein the at least one porous material extends across the at least one opening and includes the protrusion.
  • 3. The fluid collection assembly of claim 1, wherein the at least one porous material includes the fluid permeable membrane, the fluid permeable support, and the at least one expandable material, and wherein the at least one expandable material forms an expandable material protrusion after the at least one expandable material is exposed to the one or more bodily fluids.
  • 4. The fluid collection assembly claim 2, wherein at least one of the protrusion or the expanded portion of the at least one porous material exhibits a generally triangular cross-sectional shape.
  • 5. The fluid collection assembly of claim 1, wherein the at least one porous material includes the fluid permeable membrane, the fluid permeable support, and the at least one expandable material.
  • 6. The fluid collection assembly of claim 5, wherein the at least one expandable material includes at least one hydrogel.
  • 7. The fluid collection assembly of claim 5, wherein the at least one expandable material include a sponge.
  • 8. The fluid collection assembly of claim 5, wherein the at least one expandable material includes at least one super absorbent polymer.
  • 9. The fluid collection assembly of claim 5, wherein the fluid permeable membrane includes a gauze.
  • 10. The fluid collection assembly of claim 5, wherein the at least one expandable material includes a rod and at least a portion of the at least one expandable material is positioned adjacent to the at least one opening and between the fluid permeable membrane and the fluid permeable support.
  • 11. The fluid collection assembly of claim 1, wherein at least a portion of the at least one porous material exhibits a generally triangular cross-sectional shape at least one of before or after exposing the at least one porous material to the one or more bodily fluids.
  • 12. The fluid collection assembly of claim 1, wherein at least a portion of the at least one porous material exhibits a generally teardrop-like cross-sectional shape at least one of before or after exposing the at least one porous material to the one or more bodily fluids.
  • 13. The fluid collection assembly of claim 1, wherein the fluid impermeable barrier exhibits a generally cylindrical shape before exposing the at least one porous material to the one or more bodily fluids.
  • 14. A fluid collection system, comprising: a fluid collection assembly including: a fluid impermeable barrier at least defining a chamber, at least one opening, and a fluid outlet; andat least one porous material disposed in the chamber, the at least one porous material including at least one of: a protrusion extending outwardly from the at least one opening, the protrusion exhibiting a shape that does not correspond to a shape of the fluid impermeable barrier and a shape of a majority of the porous material, wherein the at least one porous material includes the protrusion before the at least one porous material is exposed to one or more bodily fluids; ora fluid permeable membrane, a fluid permeable support, and at least one expandable material that expands when exposed to the one or more bodily fluids, the fluid permeable membrane extending across the at least one opening, the fluid permeable membrane positioned between the at least one expandable material and at least a portion of the fluid impermeable barrier, the at least one expandable material positioned between at least a portion of the fluid permeable membrane and the fluid permeable support, wherein an expanded portion of the at least one porous material exhibits a shape that does not correspond to a shape of the fluid impermeable barrier and a shape of a majority of the porous material when the at least one expandable material is expanded;a fluid storage container; anda vacuum source;wherein the chamber of the fluid collection assembly, the fluid storage container, and the vacuum source are in fluid communication with each other via one or more conduits.
  • 15. A method of forming a fluid collection assembly, the method comprising: providing at least one porous material, the at least one porous material including at least one of: a protrusion extending outwardly from the at least one opening, the protrusion exhibiting a shape that does not correspond to a shape of the fluid impermeable barrier and a shape of a majority of the porous material, wherein the at least one porous material includes the protrusion before the at least one porous material is exposed to one or more bodily fluids; ora fluid permeable membrane, a fluid permeable support, and at least one expandable material that expands when exposed to the one or more bodily fluids, the fluid permeable membrane extending across the at least one opening, the fluid permeable membrane positioned between the at least one expandable material and at least a portion of the fluid impermeable barrier, the at least one expandable material positioned between at least a portion of the fluid permeable membrane and the fluid permeable support, wherein an expanded portion of the at least one porous material exhibits a shape that does not correspond to a shape of the fluid impermeable barrier and a shape of a majority of the porous material when the at least one expandable material is expanded; anddisposing the at least one porous material in a chamber defined by a fluid impermeable barrier of the fluid collection assembly, the fluid impermeable barrier defining a fluid outlet.
  • 16. The method of claim 15, wherein the at least one expandable material is a rod; and further comprising positioning the rod adjacent to the at least one opening and between the fluid permeable membrane and the fluid permeable support.
  • 17. The method of claim 15, further comprising pinching the porous material to form the protrusion.
  • 18. A method of using a fluid collection assembly, the method comprising: positioning at least one opening of the fluid collection assembly adjacent to a urethral opening of a patient, the fluid collection assembly including: a fluid impermeable barrier defining a chamber, at least one opening, and at least one fluid outlet;at least one porous material disposed in the chamber, the at least one porous material including at least one of: a protrusion extending outwardly from the at least one opening, the protrusion exhibiting a shape that does not correspond to a shape of the fluid impermeable barrier and a shape of a majority of the porous material, wherein the at least one porous material includes the protrusion before the at least one porous material is exposed to one or more bodily fluids; ora fluid permeable membrane, a fluid permeable support, and at least one expandable material that expands when exposed to the one or more bodily fluids, the fluid permeable membrane extending across the at least one opening, the fluid permeable membrane positioned between the at least one expandable material and at least a portion of the fluid impermeable barrier, the at least one expandable material positioned between at least a portion of the fluid permeable membrane and the fluid permeable support, wherein an expanded portion of the at least one porous material exhibits a shape that does not correspond to a shape of the fluid impermeable barrier and a shape of a majority of the porous material when the at least one expandable material is expanded; andreceiving one or more bodily fluids from the urethral opening into the chamber.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority to U.S. Provisional Patent Application No. 63/094,608 filed on Oct. 21, 2020, the disclosure of which is incorporated herein, in its entirety, by this reference.

US Referenced Citations (1026)
Number Name Date Kind
737443 Mooers Aug 1903 A
1015905 Northrop Jan 1912 A
1032841 Koenig Jul 1912 A
1178644 Johnson Apr 1916 A
1387726 Karge Aug 1921 A
1742080 Jones Dec 1929 A
1979899 Obrien et al. Nov 1934 A
2241010 Chipley May 1941 A
2262772 Peder Nov 1941 A
2326881 Packer Aug 1943 A
2379346 Farrell Jun 1945 A
2485555 Bester Oct 1949 A
2571357 Charles Oct 1951 A
2613670 Edward Oct 1952 A
2616426 Gordon Nov 1952 A
2644234 Earl Jul 1953 A
2648335 Chambers Aug 1953 A
2859786 Tupper Nov 1958 A
2944551 Carl Jul 1960 A
2968046 Duke Jan 1961 A
2971512 Reinhardt Feb 1961 A
3032038 Swinn May 1962 A
3077883 Hill Feb 1963 A
3087938 Hans et al. Apr 1963 A
3169528 Knox et al. Feb 1965 A
3171506 Therkel Mar 1965 A
3194238 Breece Jul 1965 A
3198994 Hildebrandt et al. Aug 1965 A
3221742 Egon Dec 1965 A
3312221 Overment Apr 1967 A
3312981 Mcguire et al. Apr 1967 A
3349768 Keane Oct 1967 A
3362590 Gene Jan 1968 A
3366116 Huck Jan 1968 A
3398848 Donovan Aug 1968 A
3400717 Bruce et al. Sep 1968 A
3406688 Bruce Oct 1968 A
3424163 Gravdahl Jan 1969 A
3425471 Yates Feb 1969 A
3511241 Lee May 1970 A
3512185 Ellis May 1970 A
3520300 Flower Jul 1970 A
3528423 Lee Sep 1970 A
3613123 Langstrom Oct 1971 A
3648700 Warner Mar 1972 A
3651810 Ormerod Mar 1972 A
3661155 Lindan May 1972 A
3683918 Pizzella Aug 1972 A
3699815 Holbrook Oct 1972 A
3726277 Hirschman Apr 1973 A
3742952 Magers et al. Jul 1973 A
3757355 Allen et al. Sep 1973 A
3788324 Lim Jan 1974 A
3843016 Bornhorst et al. Oct 1974 A
3863638 Rogers et al. Feb 1975 A
3863798 Kurihara et al. Feb 1975 A
3864759 Horiuchi Feb 1975 A
3865109 Elmore et al. Feb 1975 A
3881486 Fenton May 1975 A
3881489 Hartwell May 1975 A
3915189 Holbrook et al. Oct 1975 A
3998228 Poidomani Dec 1976 A
3999550 Martin Dec 1976 A
4015604 Csillag Apr 1977 A
4020843 Kanall May 1977 A
4022213 Stein May 1977 A
4027776 Douglas Jun 1977 A
4064962 Hunt Dec 1977 A
4096897 Cammarata Jun 1978 A
4116197 Bermingham Sep 1978 A
4180178 Turner Dec 1979 A
4187953 Turner Feb 1980 A
4194508 Anderson Mar 1980 A
4200102 Duhamel et al. Apr 1980 A
4202058 Anderson May 1980 A
4203503 Bertotti et al. May 1980 A
4209076 Bertotti et al. Jun 1980 A
4223677 Anderson Sep 1980 A
4233025 Larson et al. Nov 1980 A
4233978 Hickey Nov 1980 A
4246901 Frosch et al. Jan 1981 A
4253542 Ruspa et al. Mar 1981 A
4257418 Hessner Mar 1981 A
4270539 Frosch et al. Jun 1981 A
4281655 Terauchi Aug 1981 A
4292916 Bradley et al. Oct 1981 A
4330239 Gannaway May 1982 A
4352356 Tong Oct 1982 A
4360933 Kimura et al. Nov 1982 A
4365363 Windauer Dec 1982 A
4375841 Vielbig Mar 1983 A
4387726 Denard Jun 1983 A
4403991 Hill Sep 1983 A
4425130 Desmarais Jan 1984 A
4446986 Bowen et al. May 1984 A
4453938 Brendling Jun 1984 A
4457314 Knowles Jul 1984 A
4476879 Jackson Oct 1984 A
4526688 Schmidt et al. Jul 1985 A
4528703 Kraus Jul 1985 A
D280438 Wendt Sep 1985 S
4551141 McNeil Nov 1985 A
4553968 Komis Nov 1985 A
4581026 Schneider Apr 1986 A
4589516 Inoue et al. May 1986 A
4601716 Smith Jul 1986 A
4610675 Triunfol Sep 1986 A
4620333 Ritter Nov 1986 A
4626250 Schneider Dec 1986 A
4627846 Ternstroem Dec 1986 A
4631061 Martin Dec 1986 A
4650477 Johnson Mar 1987 A
4655754 Richmond et al. Apr 1987 A
4656675 Fajnsztajn Apr 1987 A
4681570 Dalton Jul 1987 A
4681577 Stern et al. Jul 1987 A
4692160 Nussbaumer Sep 1987 A
4707864 Ikematsu et al. Nov 1987 A
4713065 Koot Dec 1987 A
4713066 Komis Dec 1987 A
4723953 Pratt et al. Feb 1988 A
4735841 Sourdet Apr 1988 A
4743236 Manschot May 1988 A
4747166 Kuntz May 1988 A
4752944 Conrads et al. Jun 1988 A
4769215 Ehrenkranz Sep 1988 A
4771484 Mozell Sep 1988 A
4772280 Rooyakkers Sep 1988 A
4784654 Beecher Nov 1988 A
4790830 Hamacher Dec 1988 A
4790835 Elias Dec 1988 A
4791686 Taniguchi et al. Dec 1988 A
4795449 Schneider et al. Jan 1989 A
4798603 Meyer et al. Jan 1989 A
4799928 Crowley Jan 1989 A
4804377 Hanifl et al. Feb 1989 A
4812053 Bhattacharjee Mar 1989 A
4813943 Smith Mar 1989 A
4820297 Kaufman et al. Apr 1989 A
4846818 Keldahl et al. Jul 1989 A
4846909 Klug et al. Jul 1989 A
4865595 Heyden Sep 1989 A
4880417 Yabrov et al. Nov 1989 A
4882794 Stewart Nov 1989 A
4883465 Brennan Nov 1989 A
4886498 Newton Dec 1989 A
4886508 Washington Dec 1989 A
4886509 Mattsson Dec 1989 A
4889532 Metz et al. Dec 1989 A
4889533 Beecher Dec 1989 A
4890691 Ching-ho Jan 1990 A
4903254 Haas Feb 1990 A
4904248 Vaillancourt Feb 1990 A
4905692 More Mar 1990 A
4936838 Cross et al. Jun 1990 A
4950262 Takagi Aug 1990 A
4955922 Terauchi Sep 1990 A
4957487 Gerow Sep 1990 A
4965460 Tanaka et al. Oct 1990 A
4986823 Anderson et al. Jan 1991 A
4987849 Sherman Jan 1991 A
5002541 Conkling et al. Mar 1991 A
5004463 Nigay Apr 1991 A
5031248 Kemper Jul 1991 A
5045077 Blake Sep 1991 A
5045283 Patel Sep 1991 A
5049144 Payton Sep 1991 A
5053339 Patel Oct 1991 A
5057092 Webster Oct 1991 A
5058088 Haas et al. Oct 1991 A
5071347 Mcguire Dec 1991 A
5078707 Peter Jan 1992 A
5084037 Barnett Jan 1992 A
5100396 Zamierowski Mar 1992 A
5112324 Wallace May 1992 A
5147301 Ruvio Sep 1992 A
5176667 Debring Jan 1993 A
5195997 Carns Mar 1993 A
5196654 Diflora et al. Mar 1993 A
5203699 Mcguire Apr 1993 A
5244458 Takasu Sep 1993 A
5246454 Peterson Sep 1993 A
5267988 Farkas Dec 1993 A
5275307 Freese Jan 1994 A
5282795 Finney Feb 1994 A
5294983 Ersoz et al. Mar 1994 A
5295983 Kubo Mar 1994 A
5300052 Kubo Apr 1994 A
5304749 Crandell Apr 1994 A
5312383 Kubalak May 1994 A
5318550 Cermak et al. Jun 1994 A
5330459 Lavon et al. Jul 1994 A
5340840 Park et al. Aug 1994 A
5382244 Telang Jan 1995 A
5409014 Napoli et al. Apr 1995 A
5411495 Willingham May 1995 A
5423784 Metz Jun 1995 A
5456246 Schmieding et al. Oct 1995 A
5466229 Elson et al. Nov 1995 A
5478334 Bernstein Dec 1995 A
5499977 Marx Mar 1996 A
5543042 Filan et al. Aug 1996 A
D373928 Green Sep 1996 S
5582604 Ahr et al. Dec 1996 A
5592950 Kopelowicz Jan 1997 A
5605161 Cross Feb 1997 A
5618277 Goulter Apr 1997 A
5628735 Skow May 1997 A
5636643 Argenta et al. Jun 1997 A
5637104 Ball et al. Jun 1997 A
5674212 Osborn et al. Oct 1997 A
5678564 Lawrence et al. Oct 1997 A
5678654 Uzawa Oct 1997 A
5687429 Rahlff Nov 1997 A
5695485 Duperret et al. Dec 1997 A
5700254 Mcdowall et al. Dec 1997 A
5701612 Daneshvar Dec 1997 A
5705777 Flanigan et al. Jan 1998 A
5752944 Dann et al. May 1998 A
5763333 Suzuki et al. Jun 1998 A
5772644 Bark et al. Jun 1998 A
5792132 Garcia Aug 1998 A
5827243 Palestrant Oct 1998 A
5827247 Kay Oct 1998 A
5827250 Fujioka et al. Oct 1998 A
5827257 Fujioka et al. Oct 1998 A
D401699 Herchenbach et al. Nov 1998 S
5859393 Cummins et al. Jan 1999 A
5865378 Hollinshead et al. Feb 1999 A
5876393 Ahr et al. Mar 1999 A
5887291 Bellizzi Mar 1999 A
5891125 Plumley Apr 1999 A
5894608 Birbara Apr 1999 A
D409303 Oepping May 1999 S
5911222 Lawrence et al. Jun 1999 A
5957904 Holland Sep 1999 A
5968026 Osborn et al. Oct 1999 A
5972505 Phillips et al. Oct 1999 A
6007526 Passalaqua et al. Dec 1999 A
6039060 Rower Mar 2000 A
6050983 Moore et al. Apr 2000 A
6059762 Boyer et al. May 2000 A
6063064 Tuckey et al. May 2000 A
6098625 Winkler Aug 2000 A
6105174 Karlsten et al. Aug 2000 A
6113582 Dwork Sep 2000 A
6117163 Bierman Sep 2000 A
6123398 Arai et al. Sep 2000 A
6129718 Wada et al. Oct 2000 A
6131964 Sareshwala Oct 2000 A
6152902 Christian et al. Nov 2000 A
6164569 Hollinshead et al. Dec 2000 A
6177606 Etheredge et al. Jan 2001 B1
6209142 Mattsson et al. Apr 2001 B1
6220050 Cooksey Apr 2001 B1
6244311 Hand et al. Jun 2001 B1
6248096 Dwork et al. Jun 2001 B1
6263887 Dunn Jul 2001 B1
6283246 Nishikawa Sep 2001 B1
6311339 Kraus Nov 2001 B1
6336919 Davis et al. Jan 2002 B1
6338729 Wada et al. Jan 2002 B1
6352525 Wakabayashi Mar 2002 B1
6394988 Hashimoto May 2002 B1
6398742 Kim Jun 2002 B1
6406463 Brown Jun 2002 B1
6409712 Dutari et al. Jun 2002 B1
6416500 Wada et al. Jul 2002 B1
6423045 Wise et al. Jul 2002 B1
6428521 Droll Aug 2002 B1
6428522 Dipalma et al. Aug 2002 B1
6446454 Lee et al. Sep 2002 B1
6475198 Lipman et al. Nov 2002 B1
6479726 Cole et al. Nov 2002 B1
6491673 Palumbo et al. Dec 2002 B1
6508794 Palumbo et al. Jan 2003 B1
6524292 Dipalma et al. Feb 2003 B1
6540729 Wada et al. Apr 2003 B1
6547771 Robertson et al. Apr 2003 B2
6569133 Cheng et al. May 2003 B2
D476518 Doppelt Jul 2003 S
6592560 Snyder et al. Jul 2003 B2
6610038 Dipalma et al. Aug 2003 B1
6618868 Minnick Sep 2003 B2
6620142 Flueckiger Sep 2003 B1
6629651 Male et al. Oct 2003 B1
6635038 Scovel Oct 2003 B2
6652495 Walker Nov 2003 B1
6666850 Ahr et al. Dec 2003 B1
6685684 Falconer Feb 2004 B1
6695828 Dipalma et al. Feb 2004 B1
6699174 Bennett Mar 2004 B1
6700034 Lindsay et al. Mar 2004 B1
6702793 Sweetser et al. Mar 2004 B1
6706027 Harvie et al. Mar 2004 B2
6732384 Scott May 2004 B2
6736977 Hall et al. May 2004 B1
6740066 Wolff et al. May 2004 B2
6764477 Chen et al. Jul 2004 B1
6783519 Samuelsson Aug 2004 B2
6796974 Palumbo et al. Sep 2004 B2
6814547 Childers et al. Nov 2004 B2
6849065 Schmidt et al. Feb 2005 B2
6857137 Otto Feb 2005 B2
6885690 Aggerstam et al. Apr 2005 B2
6888044 Fell et al. May 2005 B2
6893425 Dunn et al. May 2005 B2
6912737 Ernest et al. Jul 2005 B2
6918899 Harvie Jul 2005 B2
6979324 Bybordi et al. Dec 2005 B2
7018366 Easter Mar 2006 B2
7066411 Male et al. Jun 2006 B2
7122023 Hinoki Oct 2006 B1
7125399 Miskie Oct 2006 B2
7131964 Harvie Nov 2006 B2
7135012 Harvie Nov 2006 B2
7141043 Harvie Nov 2006 B2
D533972 La Dec 2006 S
7160273 Greter et al. Jan 2007 B2
7171699 Ernest et al. Feb 2007 B2
7171871 Kozak Feb 2007 B2
7179951 Krishnaswamy-mirle et al. Feb 2007 B2
7181781 Trabold et al. Feb 2007 B1
7186245 Cheng et al. Mar 2007 B1
7192424 Cooper Mar 2007 B2
7219764 Forbes May 2007 B1
7220250 Suzuki et al. May 2007 B2
D562975 Otto Feb 2008 S
7335189 Harvie Feb 2008 B2
7358282 Krueger et al. Apr 2008 B2
7390320 Machida et al. Jun 2008 B2
7438706 Koizumi et al. Oct 2008 B2
7488310 Yang Feb 2009 B2
7491194 Oliwa Feb 2009 B1
D591106 Dominique et al. Apr 2009 S
7513381 Heng et al. Apr 2009 B2
7520872 Biggie et al. Apr 2009 B2
D593801 Wilson et al. Jun 2009 S
7540364 Sanderson Jun 2009 B2
7549511 Marocco Jun 2009 B2
7549512 Newberry Jun 2009 B2
7585293 Vermaak Sep 2009 B2
7588560 Dunlop Sep 2009 B1
7637905 Saadat et al. Dec 2009 B2
7665359 Barber Feb 2010 B2
7682347 Parks et al. Mar 2010 B2
7687004 Allen Mar 2010 B2
7695459 Gilbert et al. Apr 2010 B2
7695460 Wada et al. Apr 2010 B2
7699818 Gilbert Apr 2010 B2
7699831 Bengtson et al. Apr 2010 B2
7722584 Tanaka et al. May 2010 B2
7727206 Gorres Jun 2010 B2
7740620 Gilbert et al. Jun 2010 B2
7749205 Tazoe et al. Jul 2010 B2
7755497 Wada et al. Jul 2010 B2
7766887 Burns et al. Aug 2010 B2
D625407 Koizumi et al. Oct 2010 S
7806879 Brooks et al. Oct 2010 B2
7811272 Lindsay et al. Oct 2010 B2
7815067 Matsumoto et al. Oct 2010 B2
7833169 Hannon Nov 2010 B2
7857806 Karpowicz et al. Dec 2010 B2
7866942 Harvie Jan 2011 B2
7871385 Levinson et al. Jan 2011 B2
7875010 Frazier et al. Jan 2011 B2
7901389 Mombrinie Mar 2011 B2
7927320 Goldwasser et al. Apr 2011 B2
7927321 Marland Apr 2011 B2
7931634 Swiecicki et al. Apr 2011 B2
7939706 Okabe et al. May 2011 B2
7946443 Stull et al. May 2011 B2
7947025 Buglino et al. May 2011 B2
7963419 Burney et al. Jun 2011 B2
7976519 Bubb et al. Jul 2011 B2
7993318 Olsson et al. Aug 2011 B2
8015627 Baker et al. Sep 2011 B2
8016071 Martinus et al. Sep 2011 B1
8028460 Williams Oct 2011 B2
8047398 Dimartino et al. Nov 2011 B2
8083094 Caulfield et al. Dec 2011 B2
8128608 Thevenin Mar 2012 B2
8181651 Pinel May 2012 B2
8181819 Burney et al. May 2012 B2
8211063 Bierman et al. Jul 2012 B2
8221369 Parks et al. Jul 2012 B2
8241262 Mahnensmith Aug 2012 B2
8277426 Wilcox et al. Oct 2012 B2
8287508 Sanchez Oct 2012 B1
8303554 Tsai et al. Nov 2012 B2
8322565 Caulfield et al. Dec 2012 B2
8337477 Parks et al. Dec 2012 B2
D674241 Bickert et al. Jan 2013 S
8343122 Gorres Jan 2013 B2
8343125 Kawazoe et al. Jan 2013 B2
8353074 Krebs Jan 2013 B2
8353886 Bester et al. Jan 2013 B2
D676241 Merrill Feb 2013 S
8388588 Wada et al. Mar 2013 B2
D679807 Burgess et al. Apr 2013 S
8425482 Khoubnazar Apr 2013 B2
8434586 Pawelski et al. May 2013 B2
8449510 Martini et al. May 2013 B2
D684260 Lund et al. Jun 2013 S
8470230 Caulfield et al. Jun 2013 B2
8479941 Matsumoto et al. Jul 2013 B2
8479949 Henkel Jul 2013 B2
8500719 Simpson et al. Aug 2013 B1
8512301 Ma Aug 2013 B2
8529530 Koch et al. Sep 2013 B2
8535284 Joder et al. Sep 2013 B2
8546639 Wada et al. Oct 2013 B2
8551075 Bengtson Oct 2013 B2
8568376 Delattre et al. Oct 2013 B2
D694404 Burgess et al. Nov 2013 S
8585683 Bengtson et al. Nov 2013 B2
8586583 Hamblin et al. Nov 2013 B2
8652112 Johannison et al. Feb 2014 B2
8669412 Fernkvist et al. Mar 2014 B2
D702973 Norland et al. Apr 2014 S
8703032 Menon et al. Apr 2014 B2
D704330 Cicatelli May 2014 S
D704510 Mason et al. May 2014 S
D705423 Walsh Cutler May 2014 S
D705926 Burgess et al. May 2014 S
8714394 Wulf May 2014 B2
8715267 Bengtson et al. May 2014 B2
8757425 Copeland Jun 2014 B2
8777032 Biesecker et al. Jul 2014 B2
8808260 Koch et al. Aug 2014 B2
8864730 Conway et al. Oct 2014 B2
8881923 Higginson Nov 2014 B2
8882731 Suzuki et al. Nov 2014 B2
8936585 Carson et al. Jan 2015 B2
D729581 Boroski May 2015 S
9028460 Medeiros May 2015 B2
9056698 Noer Jun 2015 B2
9078792 Ruiz Jul 2015 B2
9145879 Pirovano et al. Sep 2015 B2
9173602 Gilbert Nov 2015 B2
9173799 Tanimoto et al. Nov 2015 B2
9187220 Biesecker et al. Nov 2015 B2
9199772 Krippendorf Dec 2015 B2
9233020 Matsumiya Jan 2016 B2
9248058 Conway et al. Feb 2016 B2
9308118 Dupree et al. Apr 2016 B1
9309029 Incorvia et al. Apr 2016 B2
9333281 Giezendanner et al. May 2016 B2
9381108 Longoni et al. Jul 2016 B2
9382047 Schmidtner et al. Jul 2016 B2
9402424 Roy Aug 2016 B2
9456937 Ellis Oct 2016 B2
9480595 Baham et al. Nov 2016 B2
9517865 Albers et al. Dec 2016 B2
D777941 Piramoon Jan 2017 S
9533806 Ding et al. Jan 2017 B2
9550611 Hodge Jan 2017 B2
9555930 Campbell et al. Jan 2017 B2
9623159 Locke Apr 2017 B2
D789522 Burgess et al. Jun 2017 S
9687849 Bruno et al. Jun 2017 B2
9694949 Hendricks et al. Jul 2017 B2
9709048 Kinjo Jul 2017 B2
9713547 Lee et al. Jul 2017 B2
9732754 Huang et al. Aug 2017 B2
9752564 Arceno et al. Sep 2017 B2
9788992 Harvie Oct 2017 B2
D804907 Sandoval Dec 2017 S
9868564 Mcgirr et al. Jan 2018 B2
D814239 Arora Apr 2018 S
D817484 Lafond May 2018 S
10037640 Gordon Jul 2018 B2
10058470 Phillips Aug 2018 B2
10098990 Koch et al. Oct 2018 B2
D835264 Mozzicato et al. Dec 2018 S
D835779 Mozzicato et al. Dec 2018 S
D840533 Mozzicato et al. Feb 2019 S
D840534 Mozzicato et al. Feb 2019 S
10225376 Perez Martinez Mar 2019 B2
10226376 Sanchez et al. Mar 2019 B2
10258517 Maschino et al. Apr 2019 B1
D848612 Mozzicato et al. May 2019 S
10307305 Hodges Jun 2019 B1
10335121 Desai Jul 2019 B2
D856512 Cowart et al. Aug 2019 S
10376406 Newton Aug 2019 B2
10376407 Newton Aug 2019 B2
10390989 Sanchez et al. Aug 2019 B2
D858144 Fu Sep 2019 S
10406039 Villarreal Sep 2019 B2
10407222 Allen Sep 2019 B2
10478356 Griffin Nov 2019 B2
10500108 Maschino et al. Dec 2019 B1
10538366 Pentelovitch et al. Jan 2020 B2
10569938 Zhao et al. Feb 2020 B2
10577156 Dagnelie et al. Mar 2020 B2
RE47930 Cho Apr 2020 E
10618721 Vazin Apr 2020 B2
D884390 Wang May 2020 S
10669079 Freedman et al. Jun 2020 B2
D892315 Airy Aug 2020 S
10730672 Bertram et al. Aug 2020 B2
10737848 Philip et al. Aug 2020 B2
10765854 Law et al. Sep 2020 B2
10766670 Kittmann Sep 2020 B2
10799386 Harrison Oct 2020 B1
10806642 Tagomori et al. Oct 2020 B2
D901214 Hu Nov 2020 S
10849799 Nishikawa et al. Dec 2020 B2
10857025 Davis et al. Dec 2020 B2
10865017 Cowart et al. Dec 2020 B1
10889412 West et al. Jan 2021 B2
10913581 Stahlecker Feb 2021 B2
D912244 Rehm et al. Mar 2021 S
10952889 Newton et al. Mar 2021 B2
10973378 Ryu et al. Apr 2021 B2
10973678 Newton et al. Apr 2021 B2
10974874 Ragias et al. Apr 2021 B2
11000401 Ecklund et al. May 2021 B2
D923365 Wang Jun 2021 S
11026829 Harvie Jun 2021 B2
11027900 Liu Jun 2021 B2
11045346 Argent et al. Jun 2021 B2
D928946 Sanchez et al. Aug 2021 S
11090183 Sanchez et al. Aug 2021 B2
11160695 Febo et al. Nov 2021 B2
11160697 Maschino et al. Nov 2021 B2
11168420 Kinugasa et al. Nov 2021 B2
11179506 Barr et al. Nov 2021 B2
11207206 Sharma et al. Dec 2021 B2
11226376 Yamauchi et al. Jan 2022 B2
11253389 Sharma et al. Feb 2022 B2
11253407 Miao et al. Feb 2022 B2
11326586 Milner et al. May 2022 B2
11369508 Ecklund et al. Jun 2022 B2
11369524 Hubbard et al. Jun 2022 B2
11376152 Sanchez et al. Jul 2022 B2
11382786 Sanchez et al. Jul 2022 B2
11382788 Hjorth et al. Jul 2022 B2
11389318 Radl et al. Jul 2022 B2
11395871 Radl et al. Jul 2022 B2
11399990 Suyama Aug 2022 B2
11426303 Davis et al. Aug 2022 B2
11504265 Godinez et al. Nov 2022 B2
11529252 Glithero et al. Dec 2022 B2
11547788 Radl et al. Jan 2023 B2
11806266 Sanchez et al. Nov 2023 B2
11839567 Davis et al. Dec 2023 B2
D1010109 Ecklund et al. Jan 2024 S
11857716 Lee et al. Jan 2024 B2
11865030 Davis et al. Jan 2024 B2
11890221 Ulreich et al. Feb 2024 B2
11925575 Newton Mar 2024 B2
11938053 Austermann et al. Mar 2024 B2
11944740 Hughett et al. Apr 2024 B2
12023457 Mann et al. Jul 2024 B2
12042422 Davis et al. Jul 2024 B2
D1038385 Ecklund et al. Aug 2024 S
12090083 Ecklund et al. Sep 2024 B2
20010037097 Cheng et al. Nov 2001 A1
20010054426 Knudson et al. Dec 2001 A1
20020019614 Woon Feb 2002 A1
20020026161 Grundke Feb 2002 A1
20020087131 Wolff et al. Jul 2002 A1
20020091364 Prabhakar Jul 2002 A1
20020189992 Schmidt et al. Dec 2002 A1
20020193760 Thompson Dec 2002 A1
20030004436 Schmidt et al. Jan 2003 A1
20030032931 Grundke et al. Feb 2003 A1
20030032944 Cawood Feb 2003 A1
20030073964 Palumbo et al. Apr 2003 A1
20030120178 Heki Jun 2003 A1
20030157859 Ishikawa Aug 2003 A1
20030181880 Schwartz Sep 2003 A1
20030195484 Harvie Oct 2003 A1
20030204173 Burns et al. Oct 2003 A1
20030233079 Parks et al. Dec 2003 A1
20040006321 Cheng et al. Jan 2004 A1
20040015141 Cheng et al. Jan 2004 A1
20040056122 Male et al. Mar 2004 A1
20040084465 Luburic May 2004 A1
20040127872 Petryk et al. Jul 2004 A1
20040128749 Scott Jul 2004 A1
20040143229 Easter Jul 2004 A1
20040147863 Diaz et al. Jul 2004 A1
20040147894 Mizutani et al. Jul 2004 A1
20040158221 Mizutani et al. Aug 2004 A1
20040176731 Cheng et al. Sep 2004 A1
20040176746 Forral Sep 2004 A1
20040191919 Unger et al. Sep 2004 A1
20040200936 Opperthauser Oct 2004 A1
20040207530 Nielsen Oct 2004 A1
20040236292 Tazoe et al. Nov 2004 A1
20040243075 Harvie Dec 2004 A1
20040254547 Okabe et al. Dec 2004 A1
20050010182 Parks et al. Jan 2005 A1
20050033248 Machida et al. Feb 2005 A1
20050065471 Kuntz Mar 2005 A1
20050070861 Okabe et al. Mar 2005 A1
20050070862 Tazoe et al. Mar 2005 A1
20050082300 Modrell et al. Apr 2005 A1
20050097662 Leimkuhler et al. May 2005 A1
20050101924 Elson et al. May 2005 A1
20050119630 Harvie Jun 2005 A1
20050137557 Swiecicki et al. Jun 2005 A1
20050154360 Harvie Jul 2005 A1
20050177070 Levinson et al. Aug 2005 A1
20050197639 Mombrinie Sep 2005 A1
20050273920 Marinas Dec 2005 A1
20050277904 Chase et al. Dec 2005 A1
20050279359 LeBlanc et al. Dec 2005 A1
20060004332 Marx Jan 2006 A1
20060015080 Mahnensmith Jan 2006 A1
20060015081 Suzuki et al. Jan 2006 A1
20060016778 Park Jan 2006 A1
20060069359 Dipalma et al. Mar 2006 A1
20060079854 Kay et al. Apr 2006 A1
20060111648 Vermaak May 2006 A1
20060155214 Wightman Jul 2006 A1
20060171997 Gruenbacher et al. Aug 2006 A1
20060200102 Cooper Sep 2006 A1
20060229575 Boiarski Oct 2006 A1
20060229576 Conway et al. Oct 2006 A1
20060231648 Male et al. Oct 2006 A1
20060235266 Nan Oct 2006 A1
20060235359 Marland Oct 2006 A1
20060241553 Harvie Oct 2006 A1
20060269439 White Nov 2006 A1
20060277670 Baker et al. Dec 2006 A1
20070006368 Key et al. Jan 2007 A1
20070010797 Nishtala et al. Jan 2007 A1
20070016152 Karpowicz et al. Jan 2007 A1
20070038194 Wada et al. Feb 2007 A1
20070055209 Patel et al. Mar 2007 A1
20070073252 Forgrave Mar 2007 A1
20070117880 Elson et al. May 2007 A1
20070118993 Bates May 2007 A1
20070135786 Schmidt et al. Jun 2007 A1
20070137718 Rushlander et al. Jun 2007 A1
20070149935 Dirico Jun 2007 A1
20070191804 Coley Aug 2007 A1
20070203464 Green et al. Aug 2007 A1
20070214553 Carromba et al. Sep 2007 A1
20070225663 Watt et al. Sep 2007 A1
20070225666 Otto Sep 2007 A1
20070225668 Otto Sep 2007 A1
20070266486 Ramirez Nov 2007 A1
20070282309 Bengtson et al. Dec 2007 A1
20080004576 Tanaka et al. Jan 2008 A1
20080015526 Reiner et al. Jan 2008 A1
20080015527 House Jan 2008 A1
20080033386 Okabe et al. Feb 2008 A1
20080041869 Backaert Feb 2008 A1
20080091153 Harvie Apr 2008 A1
20080091158 Yang Apr 2008 A1
20080114327 Barge May 2008 A1
20080167634 Kouta et al. Jul 2008 A1
20080183157 Walters Jul 2008 A1
20080215031 Belfort et al. Sep 2008 A1
20080234642 Patterson et al. Sep 2008 A1
20080269703 Collins et al. Oct 2008 A1
20080281282 Finger et al. Nov 2008 A1
20080287894 Van Den Heuvel et al. Nov 2008 A1
20080312550 Nishtala et al. Dec 2008 A1
20090025717 Pinel Jan 2009 A1
20090048570 Jensen Feb 2009 A1
20090056003 Ivie et al. Mar 2009 A1
20090069761 Vogel Mar 2009 A1
20090069765 Wortham Mar 2009 A1
20090120179 Nylander et al. May 2009 A1
20090192482 Dodge et al. Jul 2009 A1
20090234312 Otoole et al. Sep 2009 A1
20090251510 Noro et al. Oct 2009 A1
20090264840 Virginio Oct 2009 A1
20090270822 Medeiros Oct 2009 A1
20090281510 Fisher Nov 2009 A1
20090283982 Thomas Nov 2009 A1
20100004612 Thevenin Jan 2010 A1
20100058660 Williams Mar 2010 A1
20100121289 Parks et al. May 2010 A1
20100160882 Lowe Jun 2010 A1
20100174250 Hu et al. Jul 2010 A1
20100179493 Heagle et al. Jul 2010 A1
20100185168 Graauw et al. Jul 2010 A1
20100198172 Wada et al. Aug 2010 A1
20100211032 Tsai et al. Aug 2010 A1
20100234820 Tsai et al. Sep 2010 A1
20100241104 Gilbert Sep 2010 A1
20100263113 Shelton et al. Oct 2010 A1
20100310845 Bond et al. Dec 2010 A1
20110028920 Johannison Feb 2011 A1
20110028922 Kay et al. Feb 2011 A1
20110034889 Smith Feb 2011 A1
20110036837 Shang Feb 2011 A1
20110040267 Wada et al. Feb 2011 A1
20110040271 Rogers et al. Feb 2011 A1
20110054426 Stewart et al. Mar 2011 A1
20110060299 Wada et al. Mar 2011 A1
20110060300 Weig et al. Mar 2011 A1
20110077495 Gilbert Mar 2011 A1
20110077606 Wilcox et al. Mar 2011 A1
20110087337 Forsell Apr 2011 A1
20110137273 Muellejans et al. Jun 2011 A1
20110145993 Rader et al. Jun 2011 A1
20110152802 Dicamillo et al. Jun 2011 A1
20110164147 Takahashi et al. Jul 2011 A1
20110172620 Khambatta Jul 2011 A1
20110172625 Wada et al. Jul 2011 A1
20110202024 Cozzens Aug 2011 A1
20110238023 Slayton Sep 2011 A1
20110240648 Tucker Oct 2011 A1
20110251572 Nishtala et al. Oct 2011 A1
20110265889 Tanaka et al. Nov 2011 A1
20110276020 Mitsui Nov 2011 A1
20120029452 Roedsten Feb 2012 A1
20120035577 Tomes et al. Feb 2012 A1
20120041400 Christensen Feb 2012 A1
20120059328 Dikeman et al. Mar 2012 A1
20120066825 Birbara et al. Mar 2012 A1
20120103347 Wheaton et al. May 2012 A1
20120137420 Gordon et al. Jun 2012 A1
20120165768 Sekiyama et al. Jun 2012 A1
20120165786 Chappa et al. Jun 2012 A1
20120210503 Anzivino et al. Aug 2012 A1
20120233761 Huang Sep 2012 A1
20120245541 Suzuki et al. Sep 2012 A1
20120245542 Suzuki et al. Sep 2012 A1
20120245547 Wilcox et al. Sep 2012 A1
20120253303 Suzuki et al. Oct 2012 A1
20120271259 Ulert Oct 2012 A1
20120296305 Barraza Khaled et al. Nov 2012 A1
20120316522 Carter et al. Dec 2012 A1
20120330256 Wilcox et al. Dec 2012 A1
20130006206 Wada et al. Jan 2013 A1
20130045651 Esteves et al. Feb 2013 A1
20130053804 Soerensen et al. Feb 2013 A1
20130096523 Chang et al. Apr 2013 A1
20130110059 Kossow et al. May 2013 A1
20130138064 Stroebech et al. May 2013 A1
20130150813 Gordon et al. Jun 2013 A1
20130218112 Thompson Aug 2013 A1
20130245496 Wells et al. Sep 2013 A1
20130245586 Jha Sep 2013 A1
20130292537 Dirico Nov 2013 A1
20130330501 Aizenberg et al. Dec 2013 A1
20140005647 Shuffler et al. Jan 2014 A1
20140031774 Bengtson Jan 2014 A1
20140039432 Dunbar et al. Feb 2014 A1
20140107599 Fink et al. Apr 2014 A1
20140157499 Suzuki et al. Jun 2014 A1
20140171889 Hopman et al. Jun 2014 A1
20140182051 Tanimoto et al. Jul 2014 A1
20140196189 Lee et al. Jul 2014 A1
20140276501 Cisko Sep 2014 A1
20140303582 Wright et al. Oct 2014 A1
20140316381 Reglin Oct 2014 A1
20140325746 Block Nov 2014 A1
20140348139 Gomez Martinez Nov 2014 A1
20140352050 Yao et al. Dec 2014 A1
20140371628 Desai Dec 2014 A1
20150045757 Lee et al. Feb 2015 A1
20150047114 Ramirez Feb 2015 A1
20150048089 Robertson Feb 2015 A1
20150135423 Sharpe et al. May 2015 A1
20150157300 Ealovega et al. Jun 2015 A1
20150209194 Heyman Jul 2015 A1
20150290425 Macy et al. Oct 2015 A1
20150320583 Harvie Nov 2015 A1
20150329255 Rzepecki Nov 2015 A1
20150342799 Michiels et al. Dec 2015 A1
20150359660 Harvie Dec 2015 A1
20150366699 Nelson Dec 2015 A1
20160029998 Brister et al. Feb 2016 A1
20160030228 Jones Feb 2016 A1
20160038356 Yao et al. Feb 2016 A1
20160058322 Brister et al. Mar 2016 A1
20160060001 Wada et al. Mar 2016 A1
20160100976 Conway et al. Apr 2016 A1
20160106604 Timm Apr 2016 A1
20160113809 Kim Apr 2016 A1
20160183689 Miner Jun 2016 A1
20160256022 Le Sep 2016 A1
20160270982 Raycheck et al. Sep 2016 A1
20160278662 Brister et al. Sep 2016 A1
20160357400 Penha et al. Dec 2016 A1
20160366699 Zhang et al. Dec 2016 A1
20160367226 Newton et al. Dec 2016 A1
20160367411 Justiz et al. Dec 2016 A1
20160374848 Sanchez Dec 2016 A1
20170007438 Harvie Jan 2017 A1
20170014560 Minskoff et al. Jan 2017 A1
20170100276 Joh Apr 2017 A1
20170128638 Giezendanner et al. May 2017 A1
20170136209 Burnett et al. May 2017 A1
20170143534 Sanchez May 2017 A1
20170165100 Jackson et al. Jun 2017 A1
20170165405 Muser et al. Jun 2017 A1
20170189225 Voorhees et al. Jul 2017 A1
20170202692 Laniado Jul 2017 A1
20170216081 Accosta Aug 2017 A1
20170246026 Laniado Aug 2017 A1
20170252014 Siller Gonzalez et al. Sep 2017 A1
20170252202 Sanchez et al. Sep 2017 A9
20170266031 Sanchez et al. Sep 2017 A1
20170266658 Bruno et al. Sep 2017 A1
20170281399 Vanmiddendorp et al. Oct 2017 A1
20170312116 Laniado Nov 2017 A1
20170325788 Ealovega et al. Nov 2017 A1
20170333244 Laniado Nov 2017 A1
20170042748 Griffin Dec 2017 A1
20170348139 Newton et al. Dec 2017 A1
20170354532 Holt Dec 2017 A1
20170354551 Gawley et al. Dec 2017 A1
20170367873 Grannum Dec 2017 A1
20180002075 Lee Jan 2018 A1
20180008451 Stroebech Jan 2018 A1
20180008804 Laniado Jan 2018 A1
20180021218 Brosch et al. Jan 2018 A1
20180028349 Newton et al. Feb 2018 A1
20180037384 Archeny et al. Feb 2018 A1
20180049910 Newton Feb 2018 A1
20180064572 Wiltshire Mar 2018 A1
20180104131 Killian Apr 2018 A1
20180127187 Sewell May 2018 A1
20180193215 Davies et al. Jul 2018 A1
20180200101 Su Jul 2018 A1
20180228642 Davis et al. Aug 2018 A1
20180256384 Kasirye Sep 2018 A1
20180271694 Fernandez et al. Sep 2018 A1
20180317892 Catlin Nov 2018 A1
20180325748 Sharma et al. Nov 2018 A1
20190001030 Braga et al. Jan 2019 A1
20190021899 Vlet Jan 2019 A1
20190038451 Harvie Feb 2019 A1
20190046102 Kushnir et al. Feb 2019 A1
20190059938 Holsten Feb 2019 A1
20190091059 Gabriel Mar 2019 A1
20190100362 Meyers et al. Apr 2019 A1
20190133814 Tammen et al. May 2019 A1
20190142624 Sanchez et al. May 2019 A1
20190224036 Sanchez et al. Jul 2019 A1
20190247222 Ecklund et al. Aug 2019 A1
20190247223 Brun et al. Aug 2019 A1
20190282391 Johannes et al. Sep 2019 A1
20190314189 Acosta Oct 2019 A1
20190314190 Sanchez et al. Oct 2019 A1
20190321587 Mcmenamin et al. Oct 2019 A1
20190344934 Faerber et al. Nov 2019 A1
20190365307 Laing et al. Dec 2019 A1
20190365561 Newton et al. Dec 2019 A1
20190374373 Joh Dec 2019 A1
20200008985 Nguyen et al. Jan 2020 A1
20200016012 Dutkiewicz Jan 2020 A1
20200030595 Boukidjian et al. Jan 2020 A1
20200046544 Godinez et al. Feb 2020 A1
20200055638 Lau et al. Feb 2020 A1
20200070392 Huber et al. Mar 2020 A1
20200085609 Schelch et al. Mar 2020 A1
20200085610 Cohn et al. Mar 2020 A1
20200086090 Von Weymarn-Schärli et al. Mar 2020 A1
20200107518 Hiroshima et al. Apr 2020 A1
20200129322 Leuckel Apr 2020 A1
20200171217 Braga et al. Jun 2020 A9
20200206039 Mclain Jul 2020 A1
20200214910 Varona et al. Jul 2020 A1
20200216898 Hubbell Jul 2020 A1
20200216989 Kinugasa et al. Jul 2020 A1
20200229964 Staali et al. Jul 2020 A1
20200231343 Freedman et al. Jul 2020 A1
20200232841 Satish et al. Jul 2020 A1
20200246172 Ho Aug 2020 A1
20200246203 Tulk et al. Aug 2020 A1
20200255189 Liu Aug 2020 A1
20200261280 Heyman Aug 2020 A1
20200276046 Staali et al. Sep 2020 A1
20200306075 Newton et al. Oct 2020 A1
20200315837 Radl et al. Oct 2020 A1
20200315838 Eckert Oct 2020 A1
20200315872 Viens et al. Oct 2020 A1
20200315874 Viens et al. Oct 2020 A1
20200331672 Bertram et al. Oct 2020 A1
20200345332 Duval Nov 2020 A1
20200353135 Gregory et al. Nov 2020 A1
20200367677 Silsby et al. Nov 2020 A1
20200369444 Silsby et al. Nov 2020 A1
20200375781 Staali et al. Dec 2020 A1
20200375810 Carlin et al. Dec 2020 A1
20200385179 Mccourt Dec 2020 A1
20200390591 Glithero et al. Dec 2020 A1
20200390592 Merrill Dec 2020 A1
20200405521 Glasroe Dec 2020 A1
20210008771 Huber et al. Jan 2021 A1
20210009323 Markarian et al. Jan 2021 A1
20210020072 Moehring et al. Jan 2021 A1
20210023279 Radl et al. Jan 2021 A1
20210059853 Davis et al. Mar 2021 A1
20210061523 Bytheway Mar 2021 A1
20210069005 Sanchez et al. Mar 2021 A1
20210069008 Blabas et al. Mar 2021 A1
20210069009 Im Mar 2021 A1
20210069030 Nishikawa et al. Mar 2021 A1
20210077993 Nazareth et al. Mar 2021 A1
20210113749 Radl et al. Apr 2021 A1
20210121318 Pinlac Apr 2021 A1
20210137724 Ecklund et al. May 2021 A1
20210138190 Erbey et al. May 2021 A1
20210154055 Villarreal May 2021 A1
20210170079 Radl et al. Jun 2021 A1
20210178390 Oueslati et al. Jun 2021 A1
20210186742 Newton et al. Jun 2021 A1
20210212865 Wallajapet et al. Jul 2021 A1
20210220162 Jamison Jul 2021 A1
20210220163 Mayrand Jul 2021 A1
20210228400 Glithero Jul 2021 A1
20210228401 Becker et al. Jul 2021 A1
20210228795 Hughett et al. Jul 2021 A1
20210229877 Ragias et al. Jul 2021 A1
20210236323 Austermann et al. Aug 2021 A1
20210236324 Sweeney Aug 2021 A1
20210251814 Jönegren et al. Aug 2021 A1
20210267787 Nazemi Sep 2021 A1
20210275343 Sanchez et al. Sep 2021 A1
20210275344 Wing Sep 2021 A1
20210290454 Yamada Sep 2021 A1
20210315727 Jiang Oct 2021 A1
20210353450 Sharma et al. Nov 2021 A1
20210361469 Liu et al. Nov 2021 A1
20210369495 Cheng et al. Dec 2021 A1
20210386925 Hartwell et al. Dec 2021 A1
20210393433 Godinez et al. Dec 2021 A1
20220023091 Ecklund et al. Jan 2022 A1
20220031523 Pierpoint Feb 2022 A1
20220039995 Johannes et al. Feb 2022 A1
20220047410 Walthall Feb 2022 A1
20220062027 Mitchell et al. Mar 2022 A1
20220062028 Mitchell et al. Mar 2022 A1
20220062029 Johannes et al. Mar 2022 A1
20220066825 Saraf et al. Mar 2022 A1
20220071811 Cheng et al. Mar 2022 A1
20220071826 Kulkarni et al. Mar 2022 A1
20220104965 Vaninetti et al. Apr 2022 A1
20220104976 Hoeger et al. Apr 2022 A1
20220104981 Jones Apr 2022 A1
20220117773 Davis et al. Apr 2022 A1
20220117774 Meyer et al. Apr 2022 A1
20220117775 Jones et al. Apr 2022 A1
20220133524 Davis May 2022 A1
20220151817 Mann May 2022 A1
20220160949 Simiele et al. May 2022 A1
20220168159 Triado et al. Jun 2022 A1
20220193312 Lee et al. Jun 2022 A1
20220211536 Johannes et al. Jul 2022 A1
20220218510 Metzger et al. Jul 2022 A1
20220229053 Levin et al. Jul 2022 A1
20220241106 Johannes et al. Aug 2022 A1
20220247407 Yamamoto et al. Aug 2022 A1
20220248836 Cagle et al. Aug 2022 A1
20220257407 Johannes et al. Aug 2022 A1
20220265460 Coker Aug 2022 A1
20220265462 Alder et al. Aug 2022 A1
20220270711 Feala et al. Aug 2022 A1
20220273482 Johannes et al. Sep 2022 A1
20220280357 Jagannathan et al. Sep 2022 A1
20220287689 Johannes Sep 2022 A1
20220287867 Jones et al. Sep 2022 A1
20220287868 Garvey et al. Sep 2022 A1
20220296408 Evans et al. Sep 2022 A1
20220305191 Joseph et al. Sep 2022 A1
20220313222 Austermann et al. Oct 2022 A1
20220313474 Kriscovich et al. Oct 2022 A1
20220331170 Erdem et al. Oct 2022 A1
20220339024 Johannes et al. Oct 2022 A1
20220354685 Davis et al. Nov 2022 A1
20220362049 Austermann et al. Nov 2022 A1
20220370231 Wang et al. Nov 2022 A1
20220370234 Hughett et al. Nov 2022 A1
20220370235 Johannes et al. Nov 2022 A1
20220370237 Parmar et al. Nov 2022 A1
20220387001 Askenazi et al. Dec 2022 A1
20220395390 Brooks Dec 2022 A1
20220395391 Saunders et al. Dec 2022 A1
20220409422 Schneider et al. Dec 2022 A1
20230018845 Lee Jan 2023 A1
20230020563 Sharma et al. Jan 2023 A1
20230031640 Hughett et al. Feb 2023 A1
20230037159 Brennan et al. Feb 2023 A1
20230052238 Oluwasogo Feb 2023 A1
20230062944 Vollenberg et al. Mar 2023 A1
20230062994 Ecklund et al. Mar 2023 A1
20230070347 Watson et al. Mar 2023 A1
20230073708 Xu et al. Mar 2023 A1
20230089032 Hughett et al. Mar 2023 A1
20230099821 Radl et al. Mar 2023 A1
20230099991 Bianchi et al. Mar 2023 A1
20230105001 Whittome Apr 2023 A1
20230110577 Choi Apr 2023 A1
20230138269 Abdelal et al. May 2023 A1
20230145365 Martin et al. May 2023 A1
20230155253 Yin et al. May 2023 A1
20230210504 Kuroda et al. Jul 2023 A1
20230210685 Fallows Jul 2023 A1
20230218426 Hughett Jul 2023 A1
20230240884 Davis et al. Aug 2023 A1
20230248562 Sanchez et al. Aug 2023 A1
20230248564 Mann et al. Aug 2023 A1
20230255812 Sanchez et al. Aug 2023 A1
20230255813 Sanchez et al. Aug 2023 A1
20230255815 Newton Aug 2023 A1
20230263650 Sanchez et al. Aug 2023 A1
20230263655 Johannes et al. Aug 2023 A1
20230277362 Davis et al. Sep 2023 A1
20230285178 Sanchez et al. Sep 2023 A1
20230293339 James Sep 2023 A1
20230301846 Greenwood Sep 2023 A1
20230355423 Stevenson et al. Nov 2023 A1
20230404791 Ecklund et al. Dec 2023 A1
20240008444 Su et al. Jan 2024 A1
20240009023 Johannes et al. Jan 2024 A1
20240024170 Scott Jan 2024 A1
20240041638 Johannes et al. Feb 2024 A1
20240058161 Ulreich et al. Feb 2024 A1
20240065881 Kuroda et al. Feb 2024 A1
20240099874 Sanchez et al. Mar 2024 A1
20240110318 Bendt et al. Apr 2024 A1
20240123134 Kharkar et al. Apr 2024 A1
20240261131 Garvey et al. Aug 2024 A1
Foreign Referenced Citations (459)
Number Date Country
2018216821 Aug 2019 AU
2021299304 Feb 2023 AU
2269203 Dec 1997 CA
2165286 Sep 1999 CA
2354132 Jun 2000 CA
2359091 Sep 2003 CA
1720888 Jan 2006 CA
2488867 Aug 2007 CA
107847384 Mar 2018 CA
3050918 Aug 2018 CA
3098571 Nov 2019 CA
1332620 Jan 2002 CN
1434693 Aug 2003 CN
1533755 Oct 2004 CN
1602825 Apr 2005 CN
2936204 Aug 2007 CN
101262836 Sep 2008 CN
101522148 Sep 2009 CN
102159159 Aug 2011 CN
202184840 Apr 2012 CN
102481441 May 2012 CN
202463712 Oct 2012 CN
202950810 May 2013 CN
103533968 Jan 2014 CN
103717180 Apr 2014 CN
204562697 Aug 2015 CN
105411783 Mar 2016 CN
105451693 Mar 2016 CN
105534632 May 2016 CN
205849719 Jan 2017 CN
106726089 May 2017 CN
107920912 Apr 2018 CN
108420590 Aug 2018 CN
209285902 Aug 2019 CN
110381883 Oct 2019 CN
211198839 Aug 2020 CN
112566550 Mar 2021 CN
112603184 Apr 2021 CN
114007493 Feb 2022 CN
114375187 Apr 2022 CN
116096332 May 2023 CN
79818 Oct 1893 DE
1516466 Jun 1969 DE
2721330 Nov 1977 DE
2742298 Mar 1978 DE
9407554.9 May 1995 DE
4443710 Jun 1995 DE
4416094 Nov 1995 DE
4236097 Oct 1996 DE
19619597 Nov 1997 DE
102005037762 Sep 2006 DE
102011103783 Dec 2012 DE
102012112818 Jun 2014 DE
202015104597 Jul 2016 DE
102020121462 Jan 2022 DE
9600118 Nov 1996 DK
0032138 Jul 1981 EP
0066070 Dec 1982 EP
0068712 Jan 1983 EP
0140470 May 1985 EP
0140471 May 1988 EP
0274753 Jul 1988 EP
0119143 Nov 1988 EP
0483592 May 1992 EP
0610638 Aug 1994 EP
0613355 Sep 1994 EP
0613355 Jan 1997 EP
0787472 Aug 1997 EP
0966936 Dec 1999 EP
0987293 Mar 2000 EP
1063953 Jan 2001 EP
0653928 Oct 2002 EP
1332738 Aug 2003 EP
1382318 Jan 2004 EP
1089684 Oct 2004 EP
1616542 Jan 2006 EP
1382318 May 2006 EP
1063953 Jan 2007 EP
1872752 Jan 2008 EP
2180907 May 2010 EP
2380532 Oct 2011 EP
2389908 Nov 2011 EP
2601916 Jun 2013 EP
2676643 Dec 2013 EP
2997950 Mar 2016 EP
2879534 Mar 2017 EP
3424471 Jan 2019 EP
3169292 Nov 2019 EP
3753492 Dec 2020 EP
3788992 Mar 2021 EP
3576689 Mar 2022 EP
3752110 Mar 2022 EP
3787570 Mar 2022 EP
4025163 Jul 2022 EP
3463180 Mar 2023 EP
3569205 Jun 2023 EP
4382082 Jun 2024 EP
871820 Jul 1961 GB
1011517 Dec 1965 GB
1467144 Mar 1977 GB
2106395 Apr 1983 GB
2106784 Apr 1983 GB
2148126 May 1985 GB
2171315 Aug 1986 GB
2181953 May 1987 GB
2148126 Jul 1987 GB
2191095 Dec 1987 GB
2199750 Jul 1988 GB
2260907 May 1993 GB
2462267 Feb 2010 GB
2469496 Oct 2010 GB
2490327 Oct 2012 GB
2507318 Apr 2014 GB
2612752 May 2023 GB
201800009129 Apr 2020 IT
S498638 Jan 1974 JP
S5410596 Jan 1979 JP
S5410596 May 1979 JP
S54155729 Oct 1979 JP
S55155618 Dec 1980 JP
S56152629 Nov 1981 JP
S57142534 Sep 1982 JP
S5888596 Jun 1983 JP
S58188016 Dec 1983 JP
S63107780 Jul 1988 JP
H0267530 Mar 1990 JP
H02103871 Apr 1990 JP
H02131422 May 1990 JP
H02131422 Nov 1990 JP
H0460220 Feb 1992 JP
H05123349 May 1993 JP
H05123350 May 1993 JP
H0626264 Apr 1994 JP
3087938 Oct 1995 JP
H085630 Jan 1996 JP
H1040141 Feb 1998 JP
H10225430 Aug 1998 JP
H11113946 Apr 1999 JP
H11290365 Oct 1999 JP
2000116690 Apr 2000 JP
2000185068 Jul 2000 JP
2001054531 Feb 2001 JP
2001070331 Mar 2001 JP
2001224616 Aug 2001 JP
2001276107 Oct 2001 JP
2001276108 Oct 2001 JP
2002028173 Jan 2002 JP
2003038563 Feb 2003 JP
2003505152 Feb 2003 JP
2003126242 May 2003 JP
2003180722 Jul 2003 JP
2003528691 Sep 2003 JP
2004057578 Feb 2004 JP
2004130056 Apr 2004 JP
2004267530 Sep 2004 JP
2005052219 Mar 2005 JP
2005066011 Mar 2005 JP
2005066325 Mar 2005 JP
2005102978 Apr 2005 JP
2005518237 Jun 2005 JP
3749097 Dec 2005 JP
2006026108 Feb 2006 JP
3123547 Jun 2006 JP
2006136492 Jun 2006 JP
2006204868 Aug 2006 JP
2007044494 Feb 2007 JP
3132659 May 2007 JP
2007209687 Aug 2007 JP
4039641 Nov 2007 JP
2008005975 Jan 2008 JP
2009509570 Mar 2009 JP
2009165887 Jul 2009 JP
2009525776 Jul 2009 JP
2010504150 Feb 2010 JP
2010081981 Apr 2010 JP
4640772 Dec 2010 JP
2010536439 Dec 2010 JP
2011500225 Jan 2011 JP
2011030962 Feb 2011 JP
4747166 May 2011 JP
2011087823 May 2011 JP
4801218 Aug 2011 JP
2011218130 Nov 2011 JP
2011224070 Nov 2011 JP
3175719 Apr 2012 JP
2012523869 Oct 2012 JP
2013238608 Nov 2013 JP
2014521960 Aug 2014 JP
2015092945 May 2015 JP
3198994 Jul 2015 JP
2016521191 Jul 2016 JP
2017014698 Jan 2017 JP
2019076342 May 2019 JP
2019525811 Sep 2019 JP
2019170942 Oct 2019 JP
2019533492 Nov 2019 JP
2020520775 Jul 2020 JP
2021120686 Aug 2021 JP
2021522009 Aug 2021 JP
2021522013 Aug 2021 JP
7129493 Aug 2022 JP
2023532132 Jul 2023 JP
200290061 Sep 2002 KR
20030047451 Jun 2003 KR
20140039485 Apr 2014 KR
101432639 Aug 2014 KR
20180106659 Oct 2018 KR
20180108774 Oct 2018 KR
2068717 Jun 2013 PT
505542 Sep 1997 SE
8101957 Jul 1981 WO
8804558 Jun 1988 WO
9104714 Apr 1991 WO
9104714 Jun 1991 WO
9220299 Feb 1993 WO
9303690 Mar 1993 WO
9307839 Apr 1993 WO
9309736 May 1993 WO
9309736 Jun 1993 WO
9514448 Jun 1995 WO
9600096 Jan 1996 WO
9634636 Nov 1996 WO
9817211 Apr 1998 WO
9830336 Jul 1998 WO
0000112 Jan 2000 WO
0000113 Jan 2000 WO
0025651 May 2000 WO
0033773 Jun 2000 WO
0057784 Oct 2000 WO
0069377 Nov 2000 WO
0079497 Dec 2000 WO
0145618 Jun 2001 WO
0145621 Jun 2001 WO
02094160 Nov 2002 WO
03013967 Feb 2003 WO
03024824 Mar 2003 WO
03055423 Jul 2003 WO
03071931 Sep 2003 WO
03079942 Oct 2003 WO
03071931 Feb 2004 WO
2004019836 Mar 2004 WO
2004024046 Mar 2004 WO
2004026195 Apr 2004 WO
2005051252 Jun 2005 WO
2005074571 Sep 2005 WO
2005089687 Sep 2005 WO
2005107661 Nov 2005 WO
2006021220 Mar 2006 WO
2006037140 Apr 2006 WO
2007005851 Jan 2007 WO
2007007845 Jan 2007 WO
2007042823 Apr 2007 WO
2007055651 May 2007 WO
2006098950 Nov 2007 WO
2007134608 Nov 2007 WO
2007128156 Feb 2008 WO
2008026106 Mar 2008 WO
2008078117 Jul 2008 WO
2008104019 Sep 2008 WO
2008141471 Nov 2008 WO
2009004368 Jan 2009 WO
2009004369 Jan 2009 WO
2009052496 Apr 2009 WO
2009052502 Apr 2009 WO
2009007702 Jul 2009 WO
2009101738 Aug 2009 WO
2010058192 May 2010 WO
2010030122 Jul 2010 WO
2010101915 Jan 2011 WO
2011018132 Feb 2011 WO
2011018133 Feb 2011 WO
2011024864 Mar 2011 WO
2011054118 May 2011 WO
2011079132 Jun 2011 WO
2011107972 Sep 2011 WO
2011108972 Sep 2011 WO
2011117292 Sep 2011 WO
2011123219 Oct 2011 WO
2011132043 Oct 2011 WO
2012012908 Feb 2012 WO
2012065274 May 2012 WO
2012097462 Jul 2012 WO
2012098796 Jul 2012 WO
2012101288 Aug 2012 WO
2012175916 Dec 2012 WO
2013018435 Feb 2013 WO
2013033429 Mar 2013 WO
2013055434 Apr 2013 WO
2013082397 Jun 2013 WO
2013103291 Jul 2013 WO
2013131109 Sep 2013 WO
2013167478 Nov 2013 WO
2013177716 Dec 2013 WO
2014041534 Mar 2014 WO
2014046420 Mar 2014 WO
2014118518 Aug 2014 WO
2014160852 Oct 2014 WO
2015023599 Feb 2015 WO
2015052348 Apr 2015 WO
2015068384 May 2015 WO
2015169403 Nov 2015 WO
2015170307 Nov 2015 WO
2015197462 Dec 2015 WO
2016051385 Apr 2016 WO
2016055989 Apr 2016 WO
2016071894 May 2016 WO
2016103242 Jun 2016 WO
2016116915 Jul 2016 WO
2016124203 Aug 2016 WO
2016139448 Sep 2016 WO
2016166562 Oct 2016 WO
2016167535 Oct 2016 WO
2016191574 Dec 2016 WO
2016200088 Dec 2016 WO
2016200361 Dec 2016 WO
2016204731 Dec 2016 WO
2017001532 Jan 2017 WO
2017001846 Jan 2017 WO
2017075226 May 2017 WO
2017152198 Sep 2017 WO
2017153357 Sep 2017 WO
2017162559 Sep 2017 WO
2017205446 Nov 2017 WO
2017209779 Dec 2017 WO
2017210524 Dec 2017 WO
2018022414 Feb 2018 WO
2018044781 Mar 2018 WO
2018056953 Mar 2018 WO
2018090550 May 2018 WO
2018138513 Aug 2018 WO
2018144318 Aug 2018 WO
2018144463 Aug 2018 WO
2018150263 Aug 2018 WO
2018150268 Aug 2018 WO
2018152156 Aug 2018 WO
2018183791 Oct 2018 WO
2018150267 Nov 2018 WO
2018235026 Dec 2018 WO
2018235065 Dec 2018 WO
2019004404 Jan 2019 WO
2019041005 Mar 2019 WO
2019044217 Mar 2019 WO
2019044218 Mar 2019 WO
2019044219 Mar 2019 WO
2019050959 Mar 2019 WO
2019065541 Apr 2019 WO
2019096845 May 2019 WO
2019150385 Aug 2019 WO
2019161094 Aug 2019 WO
2019188566 Oct 2019 WO
2019190593 Oct 2019 WO
2019212949 Nov 2019 WO
2019212950 Nov 2019 WO
2019212951 Nov 2019 WO
2019212952 Nov 2019 WO
2019212954 Nov 2019 WO
2019212955 Nov 2019 WO
2019212956 Nov 2019 WO
2019214787 Nov 2019 WO
2019214788 Nov 2019 WO
2019226826 Nov 2019 WO
2019239433 Dec 2019 WO
2020000994 Jan 2020 WO
2020020618 Jan 2020 WO
2020038822 Feb 2020 WO
2020088409 May 2020 WO
2020049394 Jun 2020 WO
2020120657 Jun 2020 WO
2020152575 Jul 2020 WO
2020182923 Sep 2020 WO
2020204967 Oct 2020 WO
2020205939 Oct 2020 WO
2020209898 Oct 2020 WO
2020242790 Dec 2020 WO
2020251893 Dec 2020 WO
2020256865 Dec 2020 WO
2021007144 Jan 2021 WO
2021007345 Jan 2021 WO
2021010844 Jan 2021 WO
2021016026 Jan 2021 WO
2021016300 Jan 2021 WO
2021025919 Feb 2021 WO
2021034886 Feb 2021 WO
2021041123 Mar 2021 WO
2021046501 Mar 2021 WO
2021086868 May 2021 WO
2021094352 May 2021 WO
2021094639 May 2021 WO
2021097067 May 2021 WO
2021102296 May 2021 WO
2021107025 Jun 2021 WO
2021138411 Jul 2021 WO
2021138414 Jul 2021 WO
2021154686 Aug 2021 WO
2021155206 Aug 2021 WO
2021170075 Sep 2021 WO
2021173436 Sep 2021 WO
2021188817 Sep 2021 WO
2021195384 Sep 2021 WO
2021205995 Oct 2021 WO
2021207621 Oct 2021 WO
2021211568 Oct 2021 WO
2021211801 Oct 2021 WO
2021211914 Oct 2021 WO
2021216419 Oct 2021 WO
2021216422 Oct 2021 WO
2021231532 Nov 2021 WO
2021247523 Dec 2021 WO
2021257202 Dec 2021 WO
2022006256 Jan 2022 WO
2022031943 Feb 2022 WO
2022035745 Feb 2022 WO
2022051360 Mar 2022 WO
2022054613 Mar 2022 WO
2022066704 Mar 2022 WO
2022067392 Apr 2022 WO
2022069950 Apr 2022 WO
2022071429 Apr 2022 WO
2022076322 Apr 2022 WO
2022076427 Apr 2022 WO
2022086898 Apr 2022 WO
2022090199 May 2022 WO
2022098536 May 2022 WO
2022099087 May 2022 WO
2022101999 May 2022 WO
2022115692 Jun 2022 WO
2022125685 Jun 2022 WO
2022140545 Jun 2022 WO
2022145231 Jul 2022 WO
2022150360 Jul 2022 WO
2022150463 Jul 2022 WO
2022159392 Jul 2022 WO
2022170182 Aug 2022 WO
2022182385 Sep 2022 WO
2022187152 Sep 2022 WO
2022192188 Sep 2022 WO
2022192347 Sep 2022 WO
2022204000 Sep 2022 WO
2022216507 Oct 2022 WO
2022216776 Oct 2022 WO
2022222030 Oct 2022 WO
2023286058 Jan 2023 WO
2023014639 Feb 2023 WO
2023014641 Feb 2023 WO
2023018475 Feb 2023 WO
2023023777 Mar 2023 WO
2023034453 Mar 2023 WO
2023038945 Mar 2023 WO
2023038950 Mar 2023 WO
2023049109 Mar 2023 WO
2023049175 Mar 2023 WO
2023086394 May 2023 WO
2023149884 Aug 2023 WO
2023149902 Aug 2023 WO
2023149903 Aug 2023 WO
2023154390 Aug 2023 WO
2023191764 Oct 2023 WO
2023244238 Dec 2023 WO
2024058788 Mar 2024 WO
Non-Patent Literature Citations (844)
Entry
US 9,908,683 B2, 03/2018, Sandhausen et al. (withdrawn)
Advisory Action for U.S. Appl. No. 14/722,613 mailed Mar. 4, 2019.
Advisory Action for U.S. Appl. No. 14/952,591 mailed Jun. 1, 2018.
Advisory Action for U.S. Appl. No. 15/238,427 mailed Apr. 10, 2019.
Advisory Action for U.S. Appl. No. 16/899,956 mailed Jul. 9, 2021.
Advisory Action for U.S. Appl. No. 16/904,868 mailed Jul. 2, 2021.
Advisory Action for U.S. Appl. No. 16/905,400 mailed Jun. 9, 2021.
Corrected International Search Report and Written Opinion for International Application No. PCT/US2017/043025 mailed Jan. 11, 2018.
Corrected Notice of Allowability for U.S. Appl. No. 15/221,106 mailed Jul. 2, 2019.
Corrected Notice of Allowability for U.S. Appl. No. 15/612,325 mailed Mar. 17, 2021.
Final Office Action for U.S. Appl. No. 14/722,613 mailed on Nov. 29, 2018.
Final Office Action for U.S. Appl. No. 14/947,759 mailed Apr. 8, 2016.
Final Office Action for U.S. Appl. No. 14/952,591 mailed Feb. 23, 2018.
Final Office Action for U.S. Appl. No. 14/952,591 mailed Nov. 1, 2019.
Final Office Action for U.S. Appl. No. 14/952,591 mailed Nov. 27, 2020.
Final Office Action for U.S. Appl. No. 15/171,968 mailed Feb. 14, 2020.
Final Office Action for U.S. Appl. No. 15/171,968 mailed Mar. 19, 2019.
Final Office Action for U.S. Appl. No. 15/221,106 mailed Jan. 23, 2019.
Final Office Action for U.S. Appl. No. 15/238,427 mailed Jan. 2, 2019.
Final Office Action for U.S. Appl. No. 15/260,103 mailed Feb. 14, 2019.
Final Office Action for U.S. Appl. No. 15/612,325 mailed Sep. 17, 2020.
Final Office Action for U.S. Appl. No. 16/899,956 mailed Apr. 19, 2021.
Final Office Action for U.S. Appl. No. 16/904,868 mailed Mar. 26, 2021.
Final Office Action for U.S. Appl. No. 16/905,400 mailed Apr. 6, 2021.
Final Office Action for U.S. Appl. No. 17/088,272 mailed May 25, 2021.
Final Office Action for U.S. Appl. No. 29/624,661 mailed Feb. 18, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2016/049274 mailed Dec. 1, 2016.
International Search Report and Written Opinion from International Application No. PCT/US2017/035625 mailed Aug. 15, 2017.
International Search Report and Written Opinion from International Application No. PCT/US2017/043025 mailed Oct. 18, 2017.
International Search Report and Written Opinion from International Application No. PCT/US2018/015968 mailed Apr. 6, 2018.
International Search Report and Written Opinion from International Application No. PCT/US2019/029608 mailed Sep. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029609 mailed Sep. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029610 mailed Sep. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029611 mailed Jul. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029613 mailed Jul. 3, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029614 mailed Sep. 26, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2019/029616 mailed Aug. 30, 2019.
International Search Report and Written Opinion from International Application No. PCT/US2020/023572 mailed Jul. 6, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/033064 mailed Aug. 31, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/033122 mailed Aug. 31, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/040860 mailed Oct. 2, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/041242 mailed Nov. 17, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/041249 mailed Oct. 2, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/042262 mailed Oct. 14, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/043059 mailed Oct. 6, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/044024 mailed Nov. 12, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/046914 mailed Dec. 1, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/055680 mailed Dec. 15, 2020.
International Search Report and Written Opinion from International Application No. PCT/US2020/061563 mailed Feb. 19, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/065234 mailed Apr. 12, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/067451 mailed Mar. 25, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/067454 mailed Mar. 29, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/067455 mailed Mar. 26, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/015024 mailed May 18, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/015787 mailed May 27, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/023001 mailed Jun. 21, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/024162 mailed Jul. 8, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027061 mailed Jul. 19, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027104 mailed Jul. 6, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027314 mailed Jul. 6, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027422 mailed Aug. 12, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027425 mailed Aug. 11, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027913 mailed Jul. 12, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/027917 mailed Aug. 19, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/035181 mailed Sep. 16, 2021.
Issue Notification for U.S. Appl. No. 14/952,591 mailed Jul. 28, 2021.
Issue Notification for U.S. Appl. No. 15/171,968 mailed Mar. 3, 2021.
Issue Notification for U.S. Appl. No. 15/221,106 mailed Jul. 24, 2019.
Issue Notification for U.S. Appl. No. 15/238,427 mailed Jul. 24, 2019.
Issue Notification for U.S. Appl. No. 15/260, 103 mailed Aug. 7, 2019.
Issue Notification for U.S. Appl. No. 15/611,587 mailed Feb. 20, 2019.
Issue Notification for U.S. Appl. No. 15/612,325 mailed Mar. 24, 2021.
Issue Notification for U.S. Appl. No. 29/624,661 mailed Aug. 4, 2021.
Non-Final Office Action for U.S. Appl. No. 14/592,591 mailed Mar. 20, 2020.
Non-Final Office Action for U.S. Appl. No. 14/722,613 mailed Jun. 13, 2019.
Non-Final Office Action for U.S. Appl. No. 14/947,759 mailed Mar. 17, 2016.
Non-Final Office Action for U.S. Appl. No. 14/952,591 mailed Aug. 1, 2017.
Non-Final Office Action for U.S. Appl. No. 14/952,591 mailed Mar. 20, 2020.
Non-Final Office Action for U.S. Appl. No. 14/952,591 mailed Mar. 21, 2019.
Non-Final Office Action for U.S. Appl. No. 14/952,591 mailed Sep. 28, 2018.
Non-Final Office Action for U.S. Appl. No. 15/171,968 mailed May 11, 2020.
Non-Final Office Action for U.S. Appl. No. 15/171,968 mailed Aug. 20, 2019.
Non-Final Office Action for U.S. Appl. No. 15/171,968 mailed Jun. 12, 2018.
Non-Final Office Action for U.S. Appl. No. 15/221,106 mailed Jun. 5, 2018.
Non-Final Office Action for U.S. Appl. No. 15/238,427 mailed Aug. 8, 2018.
Non-Final Office Action for U.S. Appl. No. 15/260,103 mailed Sep. 26, 2018.
Non-Final Office Action for U.S. Appl. No. 15/611,587 mailed Dec. 29, 2017.
Non-Final Office Action for U.S. Appl. No. 15/611,587 mailed Jul. 13, 2018.
Non-Final Office Action for U.S. Appl. No. 15/612,325 mailed Mar. 19, 2020.
Non-Final Office Action for U.S. Appl. No. 16/452,145 mailed Sep. 28, 2021.
Non-Final Office Action for U.S. Appl. No. 16/452,258 mailed Sep. 28, 2021.
Non-Final Office Action for U.S. Appl. No. 16/899,956 mailed Oct. 16, 2020.
Non-Final Office Action for U.S. Appl. No. 16/899,956 mailed Sep. 2, 2021.
Non-Final Office Action for U.S. Appl. No. 16/904,868 mailed Nov. 25, 2020.
Non-Final Office Action for U.S. Appl. No. 16/904,868 mailed Oct. 5, 2021.
Non-Final Office Action for U.S. Appl. No. 16/905,400 mailed Dec. 2, 2020.
Non-Final Office Action for U.S. Appl. No. 16/905,400 mailed Jul. 22, 2021.
Non-Final Office Action for U.S. Appl. No. 17/088,272 mailed Jan. 25, 2021.
Non-Final Office Action for U.S. Appl. No. 17/330,657 mailed Aug. 11, 2021.
Non-Final Office Action for U.S. Appl. No. 29/624,661 mailed Jul. 18, 2019.
Non-Final Office Action for U.S. Appl. No. 29/694,002 mailed Jun. 24, 2020.
Notice of Allowance for U.S. Appl. No. 14/952,591 mailed Apr. 5, 2021.
Notice of Allowance for U.S. Appl. No. 14/952,591 mailed Jul. 8, 2021.
Notice of Allowance for U.S. Appl. No. 15/171,968 mailed Feb. 16, 2021.
Notice of Allowance for U.S. Appl. No. 15/171,968 mailed Nov. 6, 2020.
Notice of Allowance for U.S. Appl. No. 15/221,106 mailed May 1, 2019.
Notice of Allowance for U.S. Appl. No. 15/238,427 mailed May 23, 2019.
Notice of Allowance for U.S. Appl. No. 15/260,103 mailed Jun. 7, 2019.
Notice of Allowance for U.S. Appl. No. 15/611,587 mailed Dec. 21, 2018.
Notice of Allowance for U.S. Appl. No. 15/612,325 mailed Feb. 19, 2021.
Notice of Allowance for U.S. Appl. No. 15/612,325 mailed Jan. 21, 2021.
Notice of Allowance for U.S. Appl. No. 17/088,272 mailed Aug. 5, 2021.
Notice of Allowance for U.S. Appl. No. 29/624,661 mailed Apr. 28, 2021.
Notice of Allowance for U.S. Appl. No. 29/624,661 mailed Jul. 10, 2020.
Notice of Allowance for U.S. Appl. No. 29/624,661 mailed May 14, 2020.
Notice of Allowance for U.S. Appl. No. 29/624,661 mailed Sep. 29, 2020.
Notice of Allowance for U.S. Appl. No. 29/694,002 mailed Apr. 29, 2021.
Notice of Allowance for U.S. Appl. No. 29/694,002 mailed Jan. 29, 2021.
Notice of Allowance for U.S. Appl. No. 29/694,002 mailed Oct. 16, 2020.
Notice to File Missing Parts for U.S. Appl. No. 17/179,116 mailed Mar. 3, 2021.
Restriction Requirement for U.S. Appl. No. 16/478,180 mailed May 25, 2021.
U.S. Appl. No. 14/433,773, filed Apr. 3, 2020.
U.S. Appl. No. 15/171,968, filed Jun. 2, 2016.
U.S. Appl. No. 15/221,106, filed Jul. 27, 2016.
U.S. Appl. No. 15/611,587, filed Jun. 1, 2017.
U.S. Appl. No. 15/612,325, filed Jun. 2, 2017.
U.S. Appl. No. 16/369,676, filed Mar. 29, 2019.
U.S. Appl. No. 16/433,773, filed Jun. 6, 2019.
U.S. Appl. No. 16/449,039, filed Jun. 21, 2019.
U.S. Appl. No. 16/452,145, filed Jun. 25, 2019.
U.S. Appl. No. 16/452,258, filed Jun. 25, 2019.
U.S. Appl. No. 16/478,180, filed Jul. 16, 2019.
U.S. Appl. No. 16/904,868, filed Jun. 18, 2020.
U.S. Appl. No. 16/905,400, filed Jun. 18, 2020.
U.S. Appl. No. 17/051,550, filed Oct. 29, 2020.
U.S. Appl. No. 17/051,554, filed Oct. 29, 2020.
U.S. Appl. No. 17/051,585, filed Oct. 29, 2020.
U.S. Appl. No. 17/051,600, filed Oct. 29, 2020.
U.S. Appl. No. 17/088,272, filed Nov. 3, 2020.
U.S. Appl. No. 17/179,116, filed Feb. 18, 2021.
U.S. Appl. No. 17/330,657, filed May 26, 2021.
U.S. Appl. No. 17/378,015, filed Jul. 16, 2021.
U.S. Appl. No. 17/412,864, filed Aug. 26, 2021.
U.S. Appl. No. 17/444,825, filed Aug. 10, 2021.
U.S. Appl. No. 17/446,256, filed Aug. 27, 2021.
U.S. Appl. No. 17/446,654, filed Sep. 1, 2021.
U.S. Appl. No. 17/447,123, filed Sep. 8, 2021.
U.S. Appl. No. 17/461,036 mailed Aug. 30, 2021.
U.S. Appl. No. 17/494,578, filed Oct. 5, 2021.
U.S. Appl. No. 29/741,751, filed Jul. 15, 2020.
U.S. Appl. No. 62/452,437, filed Jan. 31, 2017.
U.S. Appl. No. 62/665,297, filed May 1, 2018.
U.S. Appl. No. 62/665,302, filed May 1, 2018.
U.S. Appl. No. 62/665,317, filed May 1, 2018.
U.S. Appl. No. 62/665,321, filed May 1, 2018.
U.S. Appl. No. 62/665,331, filed May 1, 2018.
U.S. Appl. No. 62/665,335, filed May 1, 2018.
U.S. Appl. No. 62/853,279, filed May 28, 2019.
U.S. Appl. No. 62/853,889, filed May 29, 2019.
U.S. Appl. No. 62/864,656, filed Jun. 21, 2019.
U.S. Appl. No. 62/873,045, filed Jul. 11, 2019.
U.S. Appl. No. 62/873,048, filed Jul. 11, 2019.
U.S. Appl. No. 62/876,500, filed Jul. 19, 2019.
U.S. Appl. No. 62/877,558, filed Jul. 23, 2019.
U.S. Appl. No. 62/883,172, filed Aug. 6, 2019.
U.S. Appl. No. 62/889,149, filed Aug. 20, 2019.
U.S. Appl. No. 62/938,447, filed Nov. 21, 2019.
U.S. Appl. No. 62/949,187, filed Dec. 17, 2019.
U.S. Appl. No. 62/956,756, filed Jan. 3, 2020.
U.S. Appl. No. 62/956,767, filed Jan. 3, 2020.
U.S. Appl. No. 62/956,770, filed Jan. 3, 2020.
U.S. Appl. No. 62/994,912, filed Mar. 26, 2020.
U.S. Appl. No. 63/011,445, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,487, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,571, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,657, filed Apr. 17, 2020.
U.S. Appl. No. 63/011,760, filed Apr. 17, 2020.
U.S. Appl. No. 63/012,347, filed Apr. 20, 2020.
U.S. Appl. No. 63/012,384, filed Apr. 20, 2020.
U.S. Appl. No. 63/030,685, filed May 27, 2020.
U.S. Appl. No. 63/033,310, filed Jun. 2, 2020.
U.S. Appl. No. 63/047,374, filed Jul. 2, 2020.
U.S. Appl. No. 63/061,241, filed Aug. 5, 2020.
U.S. Appl. No. 63/061,244, filed Aug. 5, 2020.
U.S. Appl. No. 63/061,834, filed Aug. 6, 2020.
U.S. Appl. No. 63/064,017, filed Aug. 11, 2020.
U.S. Appl. No. 63/064,126, filed Aug. 11, 2020.
U.S. Appl. No. 63/067,542, filed Aug. 19, 2020.
U.S. Appl. No. 63/071,438, filed Aug. 28, 2020.
U.S. Appl. No. 63/071,821, filed Aug. 28, 2020.
U.S. Appl. No. 63/073,545, filed Sep. 2, 2020.
U.S. Appl. No. 63/073,553, filed Sep. 2, 2020.
U.S. Appl. No. 63/074,051, filed Sep. 3, 2020.
U.S. Appl. No. 63/074,066, filed Sep. 3, 2020.
U.S. Appl. No. 63/076,032, filed Sep. 9, 2020.
U.S. Appl. No. 63/076,474, filed Sep. 10, 2020.
U.S. Appl. No. 63/076,477, filed Sep. 10, 2020.
U.S. Appl. No. 63/082,261, filed Sep. 23, 2020.
U.S. Appl. No. 63/088,506, filed Oct. 7, 2020.
U.S. Appl. No. 63/088,511, filed Oct. 7, 2020.
U.S. Appl. No. 63/088,539, filed Oct. 7, 2020.
U.S. Appl. No. 63/094,464, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,498, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,594, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,608, filed Oct. 21, 2020.
U.S. Appl. No. 63/094,626, filed Oct. 21, 2020.
U.S. Appl. No. 63/109,066, filed Nov. 3, 2020.
U.S. Appl. No. 63/112,417, filed Nov. 11, 2020.
U.S. Appl. No. 63/119,161, filed Nov. 30, 2020.
U.S. Appl. No. 63/124,271, filed Dec. 11, 2020.
U.S. Appl. No. 63/134,287, filed Jan. 6, 2021.
U.S. Appl. No. 63/134,450, filed Jan. 6, 2021.
U.S. Appl. No. 63/134,631, filed Jan. 7, 2021.
U.S. Appl. No. 63/134,632, filed Jan. 7, 2021.
U.S. Appl. No. 63/134,754, filed Jan. 7, 2021.
U.S. Appl. No. 63/146,946, filed Feb. 8, 2021.
U.S. Appl. No. 63/147,013, filed Feb. 8, 2021.
U.S. Appl. No. 63/147,299, filed Feb. 9, 2021.
U.S. Appl. No. 63/148,723, filed Feb. 12, 2021.
U.S. Appl. No. 63/154,248, filed Feb. 26, 2021.
U.S. Appl. No. 63/155,395, filed Mar. 2, 2021.
U.S. Appl. No. 63/157,007, filed Mar. 5, 2021.
U.S. Appl. No. 63/157,014, filed Mar. 5, 2021.
U.S. Appl. No. 63/159,142, filed Mar. 10, 2021.
U.S. Appl. No. 63/159,186, filed Mar. 10, 2021.
U.S. Appl. No. 63/159,210, filed Mar. 10, 2021.
U.S. Appl. No. 63/159,280, filed Mar. 10, 2021.
U.S. Appl. No. 63/165,273, filed Mar. 24, 2021.
U.S. Appl. No. 63/165,384, filed Mar. 24, 2021.
U.S. Appl. No. 63/171,165, filed Apr. 6, 2021.
U.S. Appl. No. 63/172,975, filed Apr. 9, 2021.
U.S. Appl. No. 63/181,695, filed Apr. 29, 2021.
U.S. Appl. No. 63/192,274, filed May 24, 2021.
U.S. Appl. No. 63/193,235, filed May 26, 2021.
U.S. Appl. No. 63/193,406, filed May 26, 2021.
U.S. Appl. No. 63/193,891, filed May 27, 2021.
U.S. Appl. No. 63/214,551, filed Jun. 24, 2021.
U.S. Appl. No. 63/214,570, filed Jun. 24, 2021.
U.S. Appl. No. 63/215,017, filed Jun. 25, 2021.
U.S. Appl. No. 63/228,244, filed Aug. 2, 2021.
U.S. Appl. No. 63/228,252, filed Aug. 2, 2021.
U.S. Appl. No. 63/228,258, filed Aug. 2, 2021.
U.S. Appl. No. 63/230,894, filed Aug. 9, 2021.
U.S. Appl. No. 63/238,457, filed Aug. 30, 2021.
U.S. Appl. No. 63/238,477, filed Aug. 30, 2021.
U.S. Appl. No. 63/241,562, filed Sep. 8, 2021.
U.S. Appl. No. 63/241,564, filed Sep. 8, 2021.
U.S. Appl. No. 63/241,575, filed Sep. 8, 2021.
U.S. Appl. No. 63/246,972, filed Sep. 22, 2021.
U.S. Appl. No. 63/247,375, filed Sep. 23, 2021.
U.S. Appl. No. 63/247,478, filed Sep. 23, 2021.
U.S. Appl. No. 63/247,491, filed Sep. 23, 2021.
Defendant and Counterclaim Plaintiff Sage Products, LLC's Answer, Defenses, and Counterclaims To Plaintiff's Amended Complaint, Nov. 1, 2019.
Memorandum Order, Feb. 2021, 14 pgs.
Sage's Initial Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508; 10,226,375; and 10,390,989, May 29, 2020, 193 pages.
Exhibit A to PureWick's Fourth Supplemental Response to Interrogatory No. 3, Mar. 2021, 21 pages.
PureWick's Supplemental Response to Interrogatory No. 6 Exhibit C: U.S. Pat. No. 6,287,508, Sep. 2020, 21 pages.
Exhibit B to PureWick's Supplemental Response to Interrogatory No. 6: U.S. Pat. No. 8,287,508, 25 pages.
Exhibit B to PureWick's Supplemental Response to Interrogatory No. 6: U.S. Pat. No. 10,390,989, 26 pages.
Sage's Supplemental and Initial Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508; 10,226,375; 10,390,989 and Initial Invalidity Contentions Regarding U.S. Pat. No. 10,376,407, Aug. 21, 2020, 277 pages.
Sage's Second Supplemental Invalidity Contentions Regarding U.S. Pat. Nos. 8,287,508, 10,226,375, 10,390,989, and 10,376,407, 292 pages.
Boehringer CareDry System—Second Generation for Non-Invasive Urinary Management for Females, Mar. 2021, 3 pgs.
Exhibit B to PureWick's Supplemental Response to Interrogatory No. 6: U.S. Pat. No. 10,226,376, 38 pages.
Excerpts from the 508 (U.S. Pat. No. 8,278,508) Patent's Prosecution History, 2020, 99 pages.
Sage's Second Notice of Deposition of PureWick Corporation, C.A. No. 19-1508-MN, Feb. 2021, 10 pages.
Sage's First Notice of Deposition of PureWick Corporation, C.A. No. 19-1508-MN, Feb. 2021, 14 pages.
Sage's Supplemental Statement Regarding References and Combinations, C.A. No. 19-1508-MN, 3 pages.
Sixth Supplemental Responses to Sage Products' First Set of Interrogatories (No. 1-11) to PureWick Corporation, C.A. No. 19-1508-MN, Apr. 2021, 39 pages.
Seventh Supplemental Responses to Sage Products' First Set of Interrogatories (No. 1-11) to PureWick Corporation, C.A. No. 19-1508-MN, Apr. 2021, 41 pages.
Plaintiff's Opening Claim Construction Brief, Case No. 19-1508-MN, Oct. 16, 2020, 26 pages.
Plaintiff's Identification of Claim Terms and Proposed Constructions, Case No. 19-1508-MN, 3 pages.
PureWick's Response to Interrogatory No. 9 in PureWick, LLC v. Sage Products, LLC, Case No. 19-1508-MN, Mar. 23, 2020, 6 pages.
Sage's Preliminary Identification of Claim Elements and Proposed Constructions for U.S. Pat. Nos. 8,287,508, 10,226,376, 10,390,989 and 10,376,407, Case No. 19-1508-MN, 7 pages.
Decision Granting Institution of Inter Partes Review for U.S. Pat. No. 8,287,508, Case No. 2020-01426, Feb. 17, 2021, 39 pages.
Corrected Certificate of Service, Case No. IPR2020-01426, U.S. Pat. No. 8,287,508, 2020, 2 pages.
Declaration of Diane K. Newman Curriculum Vitae, Petition for Interparties Review, 2020, pp. 1-199.
“3 Devices Take Top Honors in Dare-To-Dream Medtech Design Contest”, R+D Digest, Nov. 2013, 1 page.
“Advanced Mission Extender Device (AMDX) Products”, Omni Medical Systems, Inc., 15 pages.
“AMXD Control Starter Kit Brochure”, https://www.omnimedicalsys.com/index.php?page=products, Omni Medical, 8 pages.
“AMXDmax In-Flight Bladder Relief”, Omni Medical; Omni Medical Systems, Inc., 2015.
“AMXDX—Advanced Mission Extender Device Brochure”, Omni Medical, Omni Brochure—http://www.omnimedicalsys.com/uploads/AMXDFixedWing.pdf, 2 pages.
“External Urine Management for Female Anatomy”, https://www.stryker.com/us/en/sage/products/sage-primafit.html, Jul. 2020, 4 pages.
“High Absorbancy Cellulose Acetate Electrospun Nanofibers for Feminine Hygiene Application”, https://www.sciencedirect.com/science/article/abs/pii/S2352940716300701?via%3Dihub, Jul. 2016, 3 pages.
“How Period Panties Work”, www.shethinx.com/pages/thinx-itworks, 2020, 10 pages.
“Hydrogel properties of electrospun polyvinylpyrrolidone and polyvinylpyrrolidone/poly(acrylic acid) blend nanofibers”, https://pubs.rsc.org/en/content/articlelanding/2015/ra/c5ra07514a#!divAbstract, 2015, 5 pages.
“In Flight Bladder Relief”, Omni Medical, Omni Presentation https://www.omnimedicalsys.com/uploads/AMXDmax_HSD.pdf, 14 pages.
“Making Women's Sanitary Products Safer and Cheaper”, https://www.elsevier.com/connect/making-womens-sanitary-products-safer-and-cheaper, Sep. 2016, 10 pages.
“Novel Nanofibers Make Safe and Effective Absorbent for Sanitary Products”, https://www.materialstoday.com/nanomaterials/news/nanofibers-make-safe-and-effective-absorbent/, Oct. 2016, 3 pages.
“Research and Development Work Relating to Assistive Technology 2005-06”, British Department of Health, Nov. 2006, 40 pages.
“Step by Step How Ur24 WorksHome”, http://medicalpatentur24.com, last accessed Dec. 6, 2017, Aug. 30, 2017, 4 pages.
“Underwear that absorbs your period”, Thinx!, https://www.shethinx.com/pages/thinx-it-works last accessed Jun. 24, 2020, 7 pages.
“User & Maintenance Guide”, Omni Medical, 2007, 16 pages.
“Winners Announced for Dare-to-Dream Medtech Design Challenge”, https://www.mddionline.com/design-engineering/winners-announced-dare-dream-medtech-design-challenge, MD&DI, 2014, 4 pages.
Hollister, Female Urinary and Pouch and Male Urinary Pouch Brochure, 2011, 1 page.
Hollister, “Male Urinary Pouch External Collection Device”, http://www.hollister.com/en/products/Continence-Care-Products/Urine-Collectors/Urine-Collection-Accessories/Male-Urinary-Pouch-External-Collection-Device, last accessed Feb. 8, 2018.
Hollister, “Retracted Penis Pouch by Hollister”, Vitality Medical.com, https://www.vitalitymedical.com/hollister-retracted-penis-pouch.html last accessed Jun. 24, 2020, 6 pages.
Jennewein, “CONNECT Graduates 7 Startups in Tech, Life Sciences”, https://timesofsandiego.com/business/2015/08/16/connect-graduates-7-startups-in-tech-life-sciences/, Aug. 2015, 2 pages.
Macaulay, et al., “A Noninvasive Continence Management System: Development and Evaluation of a Novel Toileting Device for Women”, The Wound, Ostomy and Continence Nurses Society, vol. 34 No. 6, 2007, pp. 641-648.
Newman, et al., “The Urinary Incontinence Sourcebook”, Petition for Interparties Review, 1997, 23 pages.
Newton, et al., “Measuring Safety, Effectiveness and Ease of Use of PureWick in the Management of Urinary Incontinence in Bedbound Women: Case Studies”, Jan. 8, 2016, 11 pages.
Parmar, “10 Finalists Chosen for Dare-to-Dream Medtech Design Challenge (PureWick)”, Design Services, Nov. 10, 2014, 3 pages.
Purewick, “Incontinence Relief for Women”, Presentation, Sep. 23, 2015, 7 pages.
Pytlik, “Super Absorbent Polymers”, University of Buffalo, http://www.courses.sens.buffalo.edu/ce435/Diapers/Diapers.html, accessed on Feb. 17, 2017.
Sachtman, “New Relief for Pilots? It Depends”, Wired, https://www.wired.com/2008/05/pilot-relief/, 2008, 2 pages.
Advisory Action for U.S. Appl. No. 16/245,726 mailed Apr. 19, 2023.
Advisory Action for U.S. Appl. No. 16/369,676 mailed Mar. 24, 2023.
Advisory Action for U.S. Appl. No. 16/433,773 mailed Feb. 15, 2023.
Advisory Action for U.S. Appl. No. 16/452,258 mailed Oct. 26, 2022.
Advisory Action for U.S. Appl. No. 16/478,180 mailed Sep. 21, 2022.
Advisory Action for U.S. Appl. No. 16/904,868 mailed Jun. 15, 2022.
Advisory Action for U.S. Appl. No. 16/905,400 mailed Feb. 16, 2022.
Advisory Action for U.S. Appl. No. 17/662,700 mailed Jan. 30, 2023.
Corrected Notice of Allowability for U.S. Appl. No. 17/330,657 mailed Dec. 9, 2021.
Final Office Action for U.S. Appl. No. 16/245,726 mailed Nov. 25, 2022.
Final Office Action for U.S. Appl. No. 16/369,676 mailed Dec. 5, 2022.
Final Office Action for U.S. Appl. No. 16/433,773 mailed Oct. 25, 2022.
Final Office Action for U.S. Appl. No. 16/449,039 mailed Aug. 1, 2022.
Final Office Action for U.S. Appl. No. 16/452,145 mailed Mar. 25, 2022.
Final Office Action for U.S. Appl. No. 16/452,258 mailed Jun. 14, 2022.
Final Office Action for U.S. Appl. No. 16/478,180 mailed Jun. 22, 2022.
Final Office Action for U.S. Appl. No. 16/478,180 mailed May 31, 2023.
Final Office Action for U.S. Appl. No. 16/904,868 mailed Mar. 10, 2022.
Final Office Action for U.S. Appl. No. 16/905,400 mailed Dec. 9, 2021.
Final Office Action for U.S. Appl. No. 17/051,399 mailed Mar. 9, 2023.
Final Office Action for U.S. Appl. No. 17/051,550 mailed May 23, 2023.
Final Office Action for U.S. Appl. No. 17/051,585 mailed Jul. 27, 2023.
Final Office Action for U.S. Appl. No. 17/444,792 mailed Jun. 15, 2023.
Final Office Action for U.S. Appl. No. 17/448,811 mailed Aug. 3, 2023.
Final Office Action for U.S. Appl. No. 17/451,345 mailed May 3, 2023.
Final Office Action for U.S. Appl. No. 17/662,700 mailed Sep. 30, 2022.
International Search Report and Written Opinion from International Application No. PCT/IB2021/057173 mailed Nov. 5, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2020/057562 mailed Jan. 27, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/026607 mailed Jul. 29, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/039866 mailed Oct. 7, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/043893 mailed Nov. 22, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/044699 mailed Nov. 22, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/045188 mailed Jan. 26, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/047536 mailed Dec. 23, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/048211 mailed Dec. 22, 2021.
International Search Report and Written Opinion from International Application No. PCT/US2021/048661 mailed Feb. 14, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/049404 mailed Jan. 18, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/051456 mailed Jan. 19, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/053593 mailed Apr. 11, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/055515 mailed Jan. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/056566 mailed Feb. 11, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/060993 mailed Mar. 18, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2021/062440 mailed Mar. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011108 mailed Apr. 22, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011281 mailed Apr. 25, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011419 mailed Jun. 7, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/011421 mailed Jun. 13, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/012794 mailed May 3, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/014285 mailed Sep. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/014749 mailed Sep. 28, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015026 mailed Oct. 31, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015045 mailed Sep. 9, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015073 mailed Sep. 8, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015418 mailed Nov. 11, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015420 mailed Nov. 18, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015471 mailed May 16, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015492 mailed Apr. 26, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/015781 mailed May 6, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/016942 mailed Jun. 8, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/018159 mailed Dec. 12, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/018170 mailed May 31, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/019254 mailed Jun. 7, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/019480 mailed Jun. 13, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/021103 mailed Jun. 23, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/022111 mailed Oct. 26, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/023594 mailed Jul. 12, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/026667 mailed Aug. 22, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/030685 mailed Oct. 31, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/031032 mailed Sep. 9, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/032424 mailed Oct. 11, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/034457 mailed Oct. 12, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/034744 mailed Dec. 9, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/039018 mailed Jan. 10, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/039022 mailed Jan. 10, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/039711 mailed Jan. 12, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/039714 mailed Nov. 22, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/041085 mailed Mar. 16, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/041688 mailed Nov. 21, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/042719 mailed Dec. 5, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/042725 mailed Dec. 19, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/043818 mailed Mar. 24, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/044107 mailed Dec. 23, 2022.
International Search Report and Written Opinion from International Application No. PCT/US2022/044208 mailed May 8, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/044212 mailed Jan. 20, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/044243 mailed Feb. 24, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/049300 mailed Jun. 6, 2023.
Issue Notification for U.S. Appl. No. 16/899,956 mailed Mar. 29, 2023.
Issue Notification for U.S. Appl. No. 16/905,400 mailed Nov. 30, 2022.
Issue Notification for U.S. Appl. No. 17/088,272 mailed Jun. 15, 2022.
Issue Notification for U.S. Appl. No. 17/330,657 mailed Jun. 22, 2022.
Non-Final Office Action for U.S. Appl. No. 16/245,726 mailed Jan. 21, 2022.
Non-Final Office Action for U.S. Appl. No. 16/369,676 mailed Mar. 31, 2022.
Non-Final Office Action for U.S. Appl. No. 16/433,773 mailed Apr. 11, 2023.
Non-Final Office Action for U.S. Appl. No. 16/433,773 mailed Apr. 21, 2022.
Non-Final Office Action for U.S. Appl. No. 16/449,039 mailed Apr. 27, 2023.
Non-Final Office Action for U.S. Appl. No. 16/449,039 mailed Dec. 8, 2021.
Non-Final Office Action for U.S. Appl. No. 16/452,145 mailed Mar. 28, 2023.
Non-Final Office Action for U.S. Appl. No. 16/452,258 mailed Apr. 26, 2023.
Non-Final Office Action for U.S. Appl. No. 16/478,180 mailed Dec. 20, 2022.
Non-Final Office Action for U.S. Appl. No. 16/478,180 mailed Oct. 22, 2021.
Non-Final Office Action for U.S. Appl. No. 16/904,868 mailed Mar. 15, 2023.
Non-Final Office Action for U.S. Appl. No. 16/905,400 mailed Apr. 27, 2022.
Non-Final Office Action for U.S. Appl. No. 17/051,399 mailed Aug. 18, 2023.
Non-Final Office Action for U.S. Appl. No. 17/051,550 mailed Dec. 15, 2022.
Non-Final Office Action for U.S. Appl. No. 17/051,585 mailed Mar. 29, 2023.
Non-Final Office Action for U.S. Appl. No. 17/179,116 mailed Mar. 24, 2023.
Non-Final Office Action for U.S. Appl. No. 17/326,980 mailed Jul. 11, 2023.
Non-Final Office Action for U.S. Appl. No. 17/444,792 mailed Feb. 10, 2023.
Non-Final Office Action for U.S. Appl. No. 17/446,256 mailed Apr. 13, 2023.
Non-Final Office Action for U.S. Appl. No. 17/448,811 mailed Mar. 1, 2023.
Non-Final Office Action for U.S. Appl. No. 17/450,864 mailed May 10, 2023.
Non-Final Office Action for U.S. Appl. No. 17/451,345 mailed Dec. 7, 2022.
Non-Final Office Action for U.S. Appl. No. 17/451,354 mailed May 3, 2023.
Non-Final Office Action for U.S. Appl. No. 17/453,260 mailed Mar. 14, 2023.
Non-Final Office Action for U.S. Appl. No. 17/646,771 mailed Jul. 5, 2023.
Non-Final Office Action for U.S. Appl. No. 17/653,137 mailed Apr. 7, 2023.
Non-Final Office Action for U.S. Appl. No. 17/655,464 mailed Mar. 14, 2023.
Non-Final Office Action for U.S. Appl. No. 17/661,090 mailed Jul. 6, 2023.
Non-Final Office Action for U.S. Appl. No. 17/662,700 mailed Jul. 22, 2022.
Non-Final Office Action for U.S. Appl. No. 17/663,330 mailed Jun. 29, 2023.
Non-Final Office Action for U.S. Appl. No. 17/664,487 mailed Jun. 8, 2023.
Non-Final Office Action for U.S. Appl. No. 18/139,521 mailed Aug. 17, 2023.
Non-Final Office Action for U.S. Appl. No. 29/741,751 mailed Jan. 18, 2022.
Notice of Allowance for U.S. Appl. No. 16/245,726 mailed Jul. 6, 2023.
Notice of Allowance for U.S. Appl. No. 16/449,039 mailed Dec. 15, 2022.
Notice of Allowance for U.S. Appl. No. 16/899,956 mailed Apr. 19, 2022.
Notice of Allowance for U.S. Appl. No. 16/899,956 mailed Aug. 10, 2022.
Notice of Allowance for U.S. Appl. No. 16/899,956 mailed Dec. 1, 2022.
Notice of Allowance for U.S. Appl. No. 16/899,956 mailed Dec. 29, 2021.
Notice of Allowance for U.S. Appl. No. 16/905,400 mailed Aug. 17, 2022.
Notice of Allowance for U.S. Appl. No. 17/051,554 mailed Jul. 6, 2023.
Notice of Allowance for U.S. Appl. No. 17/088,272 mailed Mar. 4, 2022.
Notice of Allowance for U.S. Appl. No. 17/088,272 mailed Nov. 24, 2021.
Notice of Allowance for U.S. Appl. No. 17/330,657 mailed Mar. 16, 2022.
Notice of Allowance for U.S. Appl. No. 17/330,657 mailed Nov. 26, 2021.
Notice of Allowance for U.S. Appl. No. 17/461,036 mailed Feb. 22, 2023.
Notice of Allowance for U.S. Appl. No. 17/461,036 mailed Jun. 30, 2023.
Notice of Allowance for U.S. Appl. No. 17/461,036 mailed Oct. 6, 2022.
Notice of Allowance for U.S. Appl. No. 17/662,700 mailed Jul. 28, 2023.
Notice of Allowance for U.S. Appl. No. 17/662,700 mailed Mar. 28, 2023.
Notice of Allowance for U.S. Appl. No. 17/663,046 mailed Jan. 30, 2023.
Notice of Allowance for U.S. Appl. No. 18/299,788 mailed Jul. 24, 2023.
Notice of Allowance for U.S. Appl. No. 29/741,751 mailed Jun. 9, 2022.
Restriction Requirement for U.S. Appl. No. 16/433,773 mailed Dec. 7, 2021.
Restriction Requirement for U.S. Appl. No. 17/326,980 mailed Mar. 20, 2023.
Restriction Requirement for U.S. Appl. No. 17/446,256 mailed Jan. 23, 2023.
Restriction Requirement for U.S. Appl. No. 17/645,821 mailed Jul. 12, 2023.
Restriction Requirement for U.S. Appl. No. 17/646,771 mailed Apr. 6, 2023.
Restriction Requirement for U.S. Appl. No. 17/657,474 mailed Jun. 30, 2023.
Text Messages to Lorena Eckert Re Prototype PureWick Holder dated Apr. 16, 2022.
U.S. Appl. No. 14/625,469, filed Feb. 28, 2015.
U.S. Appl. No. 14/947,759, filed Nov. 20, 2015.
U.S. Appl. No. 14/952,591, filed Nov. 25, 2015.
U.S. Appl. No. 15/260,103, filed Sep. 8, 2016.
U.S. Appl. No. 15/384,196, filed Dec. 19, 2016.
U.S. Appl. No. 16/245,726, filed Jan. 11, 2019.
U.S. Appl. No. 17/394,055, filed Aug. 4, 2021.
U.S. Appl. No. 17/450,864, filed Oct. 14, 2021.
U.S. Appl. No. 17/451,345, filed Oct. 19, 2021.
U.S. Appl. No. 17/451,354, filed Oct. 19, 2021.
U.S. Appl. No. 17/453,260, filed Nov. 2, 2021.
U.S. Appl. No. 17/453,560, filed Nov. 4, 2021.
U.S. Appl. No. 17/595,747, filed Nov. 23, 2021.
U.S. Appl. No. 17/597,408, filed Jan. 5, 2022.
U.S. Appl. No. 17/597,673, filed Jan. 18, 2022.
U.S. Appl. No. 17/614,173, filed Nov. 24, 2021.
U.S. Appl. No. 17/631,619, filed Jan. 31, 2022.
U.S. Appl. No. 17/645,821, filed Dec. 23, 2021.
U.S. Appl. No. 17/646,771, filed Jan. 3, 2022.
U.S. Appl. No. 17/653,314, filed Mar. 3, 2022.
U.S. Appl. No. 17/653,920, filed Mar. 8, 2022.
U.S. Appl. No. 17/655,464, filed Mar. 18, 2022.
U.S. Appl. No. 17/657,474, filed Mar. 31, 2022.
U.S. Appl. No. 17/661,090, filed Apr. 28, 2022.
U.S. Appl. No. 17/662,700, filed May 10, 2022.
U.S. Appl. No. 17/663,046, filed May 12, 2022.
U.S. Appl. No. 17/664,487, filed May 23, 2022.
U.S. Appl. No. 17/664,914, filed May 25, 2022.
U.S. Appl. No. 17/749,340, filed May 20, 2022.
U.S. Appl. No. 17/754,736, filed Apr. 11, 2022.
U.S. Appl. No. 17/756,201, filed May 19, 2022.
U.S. Appl. No. 17/758,152, filed Jun. 29, 2022.
U.S. Appl. No. 17/758,316, filed Jul. 1, 2022.
U.S. Appl. No. 17/759,697, filed Jul. 28, 2022.
U.S. Appl. No. 17/878,268, filed Aug. 1, 2022.
U.S. Appl. No. 17/907,125, filed Sep. 23, 2022.
U.S. Appl. No. 17/912,147, filed Sep. 16, 2022.
U.S. Appl. No. 17/929,887, filed Sep. 6, 2022.
U.S. Appl. No. 17/930,238, filed Sep. 7, 2022.
U.S. Appl. No. 17/933,590, filed Sep. 20, 2022.
U.S. Appl. No. 17/996,064, filed Oct. 12, 2022.
U.S. Appl. No. 17/996,155, filed Oct. 13, 2022.
U.S. Appl. No. 17/996,253, filed Oct. 14, 2022.
U.S. Appl. No. 17/996,468, filed Oct. 18, 2022.
U.S. Appl. No. 17/996,556, filed Oct. 19, 2022.
U.S. Appl. No. 18/003,029, filed Dec. 22, 2022.
U.S. Appl. No. 18/006,807, filed Jan. 25, 2023.
U.S. Appl. No. 18/007,105, filed Jan. 27, 2023.
U.S. Appl. No. 18/041,109, filed Feb. 9, 2023.
U.S. Appl. No. 18/042,842, filed Feb. 24, 2023.
U.S. Appl. No. 18/043,618, filed Mar. 1, 2023.
U.S. Appl. No. 18/115,444, filed Feb. 28, 2023.
U.S. Appl. No. 18/134,857, filed Apr. 14, 2023.
U.S. Appl. No. 18/140,163, filed Apr. 27, 2023.
U.S. Appl. No. 18/140,751, filed Apr. 28, 2023.
U.S. Appl. No. 18/164,800, filed Feb. 6, 2023.
U.S. Appl. No. 18/198,464, filed May 17, 2023.
U.S. Appl. No. 18/246,121, filed Mar. 21, 2023.
U.S. Appl. No. 18/247,986, filed Apr. 5, 2023.
U.S. Appl. No. 18/259,626, filed Jun. 28, 2023.
U.S. Appl. No. 18/260,122, filed Jun. 30, 2023.
U.S. Appl. No. 18/260,391, filed Jul. 5, 2023.
U.S. Appl. No. 18/260,394, filed Jul. 5, 2023.
U.S. Appl. No. 18/263,800, filed Aug. 1, 2023.
U.S. Appl. No. 18/264,004, filed Aug. 2, 2023.
U.S. Appl. No. 18/265,736, filed Jun. 7, 2023.
U.S. Appl. No. 18/299,788, filed Apr. 13, 2023.
U.S. Appl. No. 18/335,579, filed Jun. 15, 2023.
U.S. Appl. No. 61/955,537, filed Mar. 19, 2014.
U.S. Appl. No. 62/082,279, filed Nov. 20, 2014.
U.S. Appl. No. 62/084,078, filed Nov. 25, 2014.
U.S. Appl. No. 62/414,963, filed Oct. 31, 2016.
U.S. Appl. No. 62/485,578, filed Apr. 14, 2017.
U.S. Appl. No. 62/923,279, filed Oct. 18, 2019.
U.S. Appl. No. 62/926,767, filed Oct. 28, 2019.
U.S. Appl. No. 62/935,337, filed Nov. 14, 2019.
U.S. Appl. No. 62/967,158, filed Jan. 26, 2020.
U.S. Appl. No. 62/967,977, filed Jan. 30, 2020.
U.S. Appl. No. 62/991,754, filed Mar. 19, 2020.
U.S. Appl. No. 63/008,112, filed Apr. 10, 2020.
U.S. Appl. No. 63/094,646, filed Oct. 21, 2020.
U.S. Appl. No. 63/109,084, filed Nov. 3, 2020.
U.S. Appl. No. 63/133,892, filed Jan. 5, 2021.
U.S. Appl. No. 63/138,878, filed Jan. 19, 2021.
U.S. Appl. No. 63/150,640, filed Feb. 18, 2021.
U.S. Appl. No. 63/191,558, filed May 21, 2021.
U.S. Appl. No. 63/192,289, filed May 24, 2021.
U.S. Appl. No. 63/208,262, filed Jun. 8, 2021.
U.S. Appl. No. 63/230,897, filed Aug. 9, 2021.
U.S. Appl. No. 63/241,328, filed Sep. 7, 2021.
U.S. Appl. No. 63/299,208, filed Jan. 13, 2022.
U.S. Appl. No. 63/308,190, filed Feb. 9, 2022.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 5, Apr. 1, 2022, 72 pages.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 1, Mar. 28, 2022, 99 pages.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 2, Mar. 29, 2022, 106 pages.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 3, Mar. 30, 2022, 115 pages.
PureWick Corporation v. Sage Products, LLC Transcripts vol. 4, Mar. 31, 2022, 117 pages.
“AMXD Control Starter Kit”, Omni Medical Systems, Inc., 1 page.
“AMXDmax Advanced Mission Extender Device User & Maintenance Guide”, Omni Medical, Jan. 11, 2010, 10 pages.
“AMXDmax Development History 2002-2014”, Omni Medical Systems, Inc., 2 pages.
“Combat Force Multiplier in Flight Bladder Relief Cockpit Essential Equipment Brochure”, Omni Medical, 20 pages.
“GSA Price List”, Omni Medical, Apr. 2011, 2 pages.
“How is Polypropylene Fiber Made”, https:www.yarnsandfibers.com/textile-resources/synthetic-fibers/polypropylene-fiber/polypropylene-fiber-production-raw-materials/how-is-polypropylene-fiber-made/ last accessed 2020, Oct. 7, 2020, 3 pages.
“Letter to Mark Harvie of Omni Measurement Systems”, Department of Veterans Affairs, Nov. 1, 2007, 11 pages.
“Revised AMXDmax Advanced Mission Extender Device User & Maintenance Guide”, Omni Medical Systems, Oct. 8, 2019, 52 pages.
“Rising Warrior Insulated Gallon Jug Cover”, https://www.amazon.com/Rising-Warrior-Insulated-Sleeve, 2021, 2 pages.
“Urine Bag Cover-Catheter Bag Cover 2000 ml Volume—Medline Style-Multiple Sclerosis-Spine Injury—Suprapublic Catheter—Bladder Incontinence”, https://www.etsy.com/listing/1142934658/urine-bag-cover-caatheter-bag-cover-2000, 2022, 1 page.
“Vinyl Dust Cover, Janome #741811000, Janome, Sewing Parts Online”, https://www.sewingpartsonline.com/vinyl-dust-cover-janome-74181000, 2020, 2 pages.
Ali , “Sustainability Assessment: Seventh Generation Diapers versus gDiapers”, The University of Vermont, Dec. 6, 2011, pp. 1-31.
Autumn , et al., “Frictional adhesion: a new angle on gecko attachment”, The Journal of Experimental Biology, 2006, pp. 3569-3579.
Cañas , et al., “Effect of nano- and micro-roughness on adhesion of bioinspired micropatterned surfaces”, Acta Biomaterialia 8, 2012, pp. 282-288.
Chaudhary , et al., “Bioinspired dry adhesive: Poly(dimethylsiloxane) grafted with poly(2-ethylhexyl acrylate) brushes”, European Polymer Journal, 2015, pp. 432-440.
Dai , et al., “Non-sticky and Non-slippery Biomimetic Patterned Surfaces”, Journal of Bionic Engineering, Mar. 2020, pp. 326-334.
Espinoza-Ramirez , “Nanobiodiversity and Biomimetic Adhesives Development: From Nature to Production and Application”, Journal of Biomaterials and Nanobiotechnology, pp. 78-101, 2019.
Hwang , et al., “Multifunctional Smart Skin Adhesive Patches for Advanced Health Care”, Adv. Healthcare Mater, 2018, pp. 1-20.
Jagota , et al., “Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces”, Materials Science and Engineering, 2011, pp. 253-292.
Jeong , et al., “A nontransferring dry adhesive with hierarchical polymer nanohairs”, PNAS, Apr. 7, 2009, pp. 5639-5644.
Jeong , et al., “Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives”, Science Direct, 2009, pp. 335-346.
Karp , et al., “Dry solution to a sticky problem”, Nature., 2011, pp. 42-43.
Lee , et al., “Continuous Fabrication of Wide-Tip Microstructures for Bio-Inspired Dry Adhesives via Tip Inking Process”, Journal of Chemistry, Jan. 2, 2019, pp. 1-5.
Parness , et al., “A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality”, J.R. Soc. Interface, 2009, pp. 1223-1232.
Pieper , et al., “An external urine-collection device for women: A clinical trial”, Journal of ER Nursing, vol. 20, No. 2, Mar./Apr. 1993, pp. 51-55.
Tsipenyuk , et al., “Use of biomimetic hexagonal surface texture in friction against lubricated skin”, Journal of the Royal Society—Interface, 2014, pp. 1-6.
Vinas , “A Solution for an Awkward—but Serious—Subject”, http://www.aero-news.net/index.cfm?do=main.textpost&id=69ae2bb1-838b-4098-a7b5-7flbb2505688 last accessed Feb. 8, 2021, 3 pages.
Advisory Action for U.S. Appl. No. 16/433,773 mailed Dec. 29, 2023.
Advisory Action for U.S. Appl. No. 16/449,039 mailed Jan. 25, 2024.
Advisory Action for U.S. Appl. No. 16/478,180 mailed Sep. 7, 2023.
Advisory Action for U.S. Appl. No. 16/904,868 mailed Jan. 2, 2024.
Advisory Action for U.S. Appl. No. 17/051,550 mailed Sep. 8, 2023.
Advisory Action for U.S. Appl. No. 17/051,585 mailed Oct. 17, 2023.
Advisory Action for U.S. Appl. No. 17/179,116 mailed Jan. 8, 2024.
Advisory Action for U.S. Appl. No. 17/444,792 mailed Aug. 25, 2023.
Advisory Action for U.S. Appl. No. 17/446,256 mailed Dec. 8, 2023.
Advisory Action for U.S. Appl. No. 17/448,811 mailed Nov. 15, 2023.
Advisory Action for U.S. Appl. No. 17/451,345 mailed Oct. 20, 2023.
Advisory Action for U.S. Appl. No. 17/451,354 mailed Jan. 30, 2024.
Advisory Action for U.S. Appl. No. 17/453,260 mailed Dec. 22, 2023.
Advisory Action for U.S. Appl. No. 17/646,771 mailed Feb. 29, 2024.
Advisory Action for U.S. Appl. No. 17/653,137 mailed Dec. 1, 2023.
Advisory Action for U.S. Appl. No. 17/655,464 mailed Dec. 13, 2023.
Advisory Action for U.S. Appl. No. 17/661,090 mailed Feb. 26, 2024.
Advisory Action for U.S. Appl. No. 17/663,330 mailed Feb. 27, 2024.
Advisory Action for U.S. Appl. No. 18/164,800 mailed Feb. 12, 2024.
Communication of Notice of Opposition of European Application No. 17807547.9 mailed Jan. 5, 2024.
Corrected Notice of Allowability for U.S. Appl. No. 16/369,676 mailed Dec. 7, 2023.
Corrected Notice of Allowability for U.S. Appl. No. 17/326,980 mailed Feb. 8, 2024.
Final Office Action for U.S. Appl. No. 16/369,676 mailed Aug. 31, 2023.
Final Office Action for U.S. Appl. No. 16/433,773 mailed Oct. 10, 2023.
Final Office Action for U.S. Appl. No. 16/449,039 mailed Nov. 21, 2023.
Final Office Action for U.S. Appl. No. 16/452,258 mailed Dec. 21, 2023.
Final Office Action for U.S. Appl. No. 16/478,180 mailed Feb. 28, 2024.
Final Office Action for U.S. Appl. No. 16/904,868 mailed Nov. 2, 2023.
Final Office Action for U.S. Appl. No. 17/051,399 mailed Jan. 8, 2024.
Final Office Action for U.S. Appl. No. 17/179,116 mailed Oct. 31, 2023.
Final Office Action for U.S. Appl. No. 17/446,256 mailed Sep. 19, 2023.
Final Office Action for U.S. Appl. No. 17/446,654 mailed Jan. 31, 2024.
Final Office Action for U.S. Appl. No. 17/450,864 mailed Dec. 28, 2023.
Final Office Action for U.S. Appl. No. 17/451,354 mailed Oct. 30, 2023.
Final Office Action for U.S. Appl. No. 17/453,260 mailed Oct. 5, 2023.
Final Office Action for U.S. Appl. No. 17/646,771 mailed Dec. 21, 2023.
Final Office Action for U.S. Appl. No. 17/653,137 mailed Sep. 21, 2023.
Final Office Action for U.S. Appl. No. 17/655,464 mailed Sep. 1, 2023.
Final Office Action for U.S. Appl. No. 17/661,090 mailed Dec. 11, 2023.
Final Office Action for U.S. Appl. No. 17/663,330 mailed Dec. 12, 2023.
Final Office Action for U.S. Appl. No. 17/664,487 mailed Jan. 4, 2024.
Final Office Action for U.S. Appl. No. 18/139,523 mailed Dec. 22, 2023.
Final Office Action for U.S. Appl. No. 18/140,751 mailed Jan. 17, 2024.
Final Office Action for U.S. Appl. No. 18/164,800 mailed Dec. 6, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2022/050909 mailed Jul. 24, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2023/012696 mailed Jul. 6, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2023/018474 mailed Sep. 11, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2023/024805 mailed Dec. 14, 2023.
International Search Report and Written Opinion from International Application No. PCT/US2023/025192 mailed Feb. 7, 2024.
Issue Notification for U.S. Appl. No. 16/245,726 mailed Oct. 18, 2023.
Issue Notification for U.S. Appl. No. 17/051,554 mailed Mar. 6, 2024.
Issue Notification for U.S. Appl. No. 17/461,036 mailed Oct. 11, 2023.
Issue Notification for U.S. Appl. No. 17/663,046 mailed Dec. 20, 2023.
Issue Notification for U.S. Appl. No. 18/299,788 mailed Feb. 21, 2024.
Non-Final Office Action for U.S. Appl. No. 16/369,676 mailed Feb. 29, 2024.
Non-Final Office Action for U.S. Appl. No. 16/433,773 mailed Feb. 26, 2024.
Non-Final Office Action for U.S. Appl. No. 16/452,145 mailed Nov. 2, 2023.
Non-Final Office Action for U.S. Appl. No. 16/478,180 mailed Nov. 7, 2023.
Non-Final Office Action for U.S. Appl. No. 17/051,550 mailed Oct. 24, 2023.
Non-Final Office Action for U.S. Appl. No. 17/051,585 mailed Jan. 8, 2024.
Non-Final Office Action for U.S. Appl. No. 17/051,600 mailed Jan. 17, 2024.
Non-Final Office Action for U.S. Appl. No. 17/179,116 mailed Feb. 26, 2024.
Non-Final Office Action for U.S. Appl. No. 17/444,792 mailed Nov. 17, 2023.
Non-Final Office Action for U.S. Appl. No. 17/446,256 mailed Feb. 13, 2024.
Non-Final Office Action for U.S. Appl. No. 17/446,654 mailed Sep. 8, 2023.
Non-Final Office Action for U.S. Appl. No. 17/447,123 mailed Jan. 24, 2024.
Non-Final Office Action for U.S. Appl. No. 17/448,811 mailed Jan. 17, 2024.
Non-Final Office Action for U.S. Appl. No. 17/451,345 mailed Jan. 17, 2024.
Non-Final Office Action for U.S. Appl. No. 17/453,560 mailed Oct. 16, 2023.
Non-Final Office Action for U.S. Appl. No. 17/645,821 mailed Oct. 25, 2023.
Non-Final Office Action for U.S. Appl. No. 17/653,137 mailed Jan. 18, 2024.
Non-Final Office Action for U.S. Appl. No. 17/657,474 mailed Sep. 12, 2023.
Non-Final Office Action for U.S. Appl. No. 17/664,914 mailed Jan. 31, 2024.
Non-Final Office Action for U.S. Appl. No. 17/808,354 mailed Nov. 28, 2023.
Non-Final Office Action for U.S. Appl. No. 18/134,857 mailed Jan. 25, 2024.
Non-Final Office Action for U.S. Appl. No. 18/140,163 mailed Nov. 9, 2023.
Non-Final Office Action for U.S. Appl. No. 18/140,751 mailed Sep. 14, 2023.
Non-Final Office Action for U.S. Appl. No. 18/198,464 mailed Dec. 7, 2023.
Notice of Allowance for U.S. Appl. No. 16/369,676 mailed Nov. 14, 2023.
Notice of Allowance for U.S. Appl. No. 17/051,550 mailed Feb. 7, 2024.
Notice of Allowance for U.S. Appl. No. 17/051,554 mailed Oct. 18, 2023.
Notice of Allowance for U.S. Appl. No. 17/326,980 mailed Jan. 29, 2024.
Notice of Allowance for U.S. Appl. No. 17/453,560 mailed Jan. 31, 2024.
Notice of Allowance for U.S. Appl. No. 17/657,474 mailed Mar. 5, 2024.
Notice of Allowance for U.S. Appl. No. 17/662,700 mailed Mar. 6, 2024.
Notice of Allowance for U.S. Appl. No. 17/662,700 mailed Nov. 15, 2023.
Notice of Allowance for U.S. Appl. No. 18/299,788 mailed Nov. 6, 2023.
Restriction Requirement for U.S. Appl. No. 17/051,600 mailed Sep. 21, 2023.
Restriction Requirement for U.S. Appl. No. 18/134,857 mailed Oct. 23, 2023.
Submission in Opposition Proceedings for European Application No. 17807547.9 filed Jan. 10, 2024.
Supplemental Notice of Allowance for U.S. Appl. No. 17/051,550 mailed Feb. 21, 2024.
Supplemental Notice of Allowance for U.S. Appl. No. 17/051,554 mailed Feb. 14, 2024.
U.S. Appl. No. 17/451,719, filed Oct. 19, 2021.
U.S. Appl. No. 18/294,370, filed Feb. 1, 2024.
U.S. Appl. No. 18/294,403, filed Feb. 1, 2024.
U.S. Appl. No. 18/373,424, filed Sep. 27, 2023.
U.S. Appl. No. 18/376,274, filed Oct. 3, 2023.
U.S. Appl. No. 18/389,009, filed Nov. 13, 2023.
U.S. Appl. No. 18/415,080, filed Jan. 17, 2024.
U.S. Appl. No. 18/426,795, filed Jan. 30, 2024.
U.S. Appl. No. 18/548,152, filed Aug. 28, 2023.
U.S. Appl. No. 18/549,387, filed Sep. 7, 2023.
U.S. Appl. No. 18/549,658, filed Sep. 8, 2023.
U.S. Appl. No. 18/553,625, filed Oct. 2, 2023.
U.S. Appl. No. 18/556,945, filed Oct. 24, 2023.
U.S. Appl. No. 18/558,502, filed Nov. 1, 2023.
U.S. Appl. No. 18/562,626, filed Nov. 20, 2023.
U.S. Appl. No. 18/563,672, filed Nov. 22, 2023.
U.S. Appl. No. 18/569,711, filed Dec. 13, 2023.
U.S. Appl. No. 18/569,778, filed Dec. 13, 2023.
U.S. Appl. No. 18/584,002, filed Feb. 22, 2024.
U.S. Appl. No. 18/681,987, filed Feb. 7, 2024.
U.S. Appl. No. 18/682,006, filed Feb. 7, 2024.
U.S. Appl. No. 18/687,117, filed Feb. 27, 2024.
U.S. Appl. No. 18/688,023, filed Feb. 29, 2024.
U.S. Appl. No. 63/596,012, filed Nov. 3, 2023.
U.S. Appl. No. 63/608,553, filed Dec. 11, 2023.
Merriam-Webster Dictionary, “Embed Definition & Meaning”, https://www.merriam-webster.com/dictionary/embed last accessed Aug. 3, 2023, 2003.
Wikipedia Article, “Zylinder (Geometrie)”, https://de.wikipedia.org/w/index.php?title=Zylinder (Geometrie)&oldid=154862081, version of Jun. 1, 2016, 7 pages.
Advisory Action for U.S. Appl. No. 16/452,258 mailed Apr. 8, 2024.
Advisory Action for U.S. Appl. No. 16/478,180 mailed Jun. 7, 2024.
Advisory Action for U.S. Appl. No. 17/051,585 mailed Oct. 8, 2024.
Advisory Action for U.S. Appl. No. 17/444,792 mailed Jul. 8, 2024.
Advisory Action for U.S. Appl. No. 17/446,654 mailed Apr. 15, 2024.
Advisory Action for U.S. Appl. No. 17/450,864 mailed Mar. 21, 2024.
Advisory Action for U.S. Appl. No. 17/451,345 mailed Jul. 3, 2024.
Advisory Action for U.S. Appl. No. 17/645,821 mailed Jul. 2, 2024.
Advisory Action for U.S. Appl. No. 17/664,487 mailed Mar. 13, 2024.
Advisory Action for U.S. Appl. No. 17/808,354 mailed Jun. 12, 2024.
Advisory Action for U.S. Appl. No. 18/134,857 mailed Oct. 23, 2024.
Advisory Action for U.S. Appl. No. 18/139,523 mailed Apr. 24, 2024.
Advisory Action for U.S. Appl. No. 18/140,163 mailed Jun. 3, 2024.
Advisory Action for U.S. Appl. No. 18/140,751 mailed Apr. 24, 2024.
Corrected Notice of Allowability for U.S. Appl. No. 17/450,864 mailed Oct. 24, 2024.
Corrected Notice of Allowability for U.S. Appl. No. 17/657,474 mailed Mar. 13, 2024.
Corrected Notice of Allowability for U.S. Appl. No. 17/657,474 mailed May 14, 2024.
Corrected Notice of Allowability for U.S. Appl. No. 17/664,914 mailed Aug. 9, 2024.
Final Office Action for U.S. Appl. No. 16/433,773 mailed Sep. 9, 2024.
Final Office Action for U.S. Appl. No. 17/051,585 mailed Jul. 5, 2024.
Final Office Action for U.S. Appl. No. 17/051,600 mailed Jun. 27, 2024.
Final Office Action for U.S. Appl. No. 17/444,792 mailed Apr. 3, 2024.
Final Office Action for U.S. Appl. No. 17/446,256 mailed Aug. 7, 2024.
Final Office Action for U.S. Appl. No. 17/447,123 mailed May 14, 2024.
Final Office Action for U.S. Appl. No. 17/451,345 mailed Apr. 18, 2024.
Final Office Action for U.S. Appl. No. 17/597,673 mailed Oct. 22, 2024.
Final Office Action for U.S. Appl. No. 17/645,821 mailed Apr. 3, 2024.
Final Office Action for U.S. Appl. No. 17/653,137 mailed Aug. 7, 2024.
Final Office Action for U.S. Appl. No. 17/653,920 mailed Aug. 14, 2024.
Final Office Action for U.S. Appl. No. 17/808,354 mailed Apr. 10, 2024.
Final Office Action for U.S. Appl. No. 18/003,029 mailed Oct. 22, 2024.
Final Office Action for U.S. Appl. No. 18/134,857 mailed Jul. 25, 2024.
Final Office Action for U.S. Appl. No. 18/140,163 mailed Mar. 27, 2024.
Final Office Action for U.S. Appl. No. 18/164,800 mailed Oct. 22, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/025939 mailed Feb. 7, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/030365 mailed Mar. 13, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/030373 mailed Mar. 13, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/031433 mailed Mar. 4, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/031740 mailed Mar. 4, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/036238 mailed Jul. 22, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/036868 mailed Jun. 5, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/075507 mailed Jun. 13, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/077168 mailed Jun. 24, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/077208 mailed May 10, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/080680 mailed Jul. 22, 2024.
International Search Report and Written Opinion from International Application No. PCT/US2023/085516 mailed Aug. 26, 2024.
Issue Notification for U.S. Appl. No. 16/369,676 mailed Oct. 2, 2024.
Issue Notification for U.S. Appl. No. 16/449,039 mailed Jun. 19, 2024.
Issue Notification for U.S. Appl. No. 16/452,145 mailed Oct. 23, 2024.
Issue Notification for U.S. Appl. No. 17/051,550 mailed Mar. 13, 2024.
Issue Notification for U.S. Appl. No. 17/326,980 mailed Jul. 10, 2024.
Issue Notification for U.S. Appl. No. 17/448,811 mailed Jul. 3, 2024.
Issue Notification for U.S. Appl. No. 17/453,260 mailed Jul. 10, 2024.
Issue Notification for U.S. Appl. No. 17/453,560 mailed Aug. 7, 2024.
Issue Notification for U.S. Appl. No. 17/657,474 mailed Jun. 19, 2024.
Issue Notification for U.S. Appl. No. 17/662,700 mailed Oct. 23, 2024.
Non-Final Office Action for U.S. Appl. No. 16/452,258 mailed Jun. 20, 2024.
Non-Final Office Action for U.S. Appl. No. 16/478,180 mailed Aug. 7, 2024.
Non-Final Office Action for U.S. Appl. No. 16/904,868 mailed Mar. 12, 2024.
Non-Final Office Action for U.S. Appl. No. 17/378,015 mailed Jul. 5, 2024.
Non-Final Office Action for U.S. Appl. No. 17/446,654 mailed Jun. 25, 2024.
Non-Final Office Action for U.S. Appl. No. 17/450,864 mailed May 29, 2024.
Non-Final Office Action for U.S. Appl. No. 17/451,345 mailed Jul. 25, 2024.
Non-Final Office Action for U.S. Appl. No. 17/451,354 mailed Apr. 4, 2024.
Non-Final Office Action for U.S. Appl. No. 17/595,747 mailed Jun. 7, 2024.
Non-Final Office Action for U.S. Appl. No. 17/597,408 mailed Aug. 15, 2024.
Non-Final Office Action for U.S. Appl. No. 17/597,673 mailed Mar. 20, 2024.
Non-Final Office Action for U.S. Appl. No. 17/614,173 mailed Sep. 24, 2024.
Non-Final Office Action for U.S. Appl. No. 17/628,411 mailed Sep. 23, 2024.
Non-Final Office Action for U.S. Appl. No. 17/645,821 mailed Sep. 6, 2024.
Non-Final Office Action for U.S. Appl. No. 17/646,771 mailed Apr. 24, 2024.
Non-Final Office Action for U.S. Appl. No. 17/653,314 mailed Aug. 29, 2024.
Non-Final Office Action for U.S. Appl. No. 17/653,920 mailed Mar. 15, 2024.
Non-Final Office Action for U.S. Appl. No. 17/655,464 mailed Mar. 26, 2024.
Non-Final Office Action for U.S. Appl. No. 17/661,090 mailed May 22, 2024.
Non-Final Office Action for U.S. Appl. No. 17/663,330 mailed Jul. 1, 2024.
Non-Final Office Action for U.S. Appl. No. 17/664,487 mailed Jun. 17, 2024.
Non-Final Office Action for U.S. Appl. No. 17/749,340 mailed Aug. 14, 2024.
Non-Final Office Action for U.S. Appl. No. 17/757,311 mailed Oct. 22, 2024.
Non-Final Office Action for U.S. Appl. No. 17/758,316 mailed Aug. 28, 2024.
Non-Final Office Action for U.S. Appl. No. 18/003,029 mailed Mar. 26, 2024.
Non-Final Office Action for U.S. Appl. No. 18/139,523 mailed Aug. 26, 2024.
Non-Final Office Action for U.S. Appl. No. 18/140,751 mailed Jun. 21, 2024.
Non-Final Office Action for U.S. Appl. No. 18/164,800 mailed Mar. 22, 2024.
Non-Final Office Action for U.S. Appl. No. 18/389,009 mailed May 24, 2024.
Non-Final Office Action for U.S. Appl. No. 18/426,795 mailed Aug. 9, 2024.
Non-Final Office Action for U.S. Appl. No. 18/451,080 mailed Jul. 30, 2024.
Non-Final Office Action for U.S. Appl. No. 18/584,002 mailed Sep. 19, 2024.
Notice of Allowance for U.S. Appl. No. 16/369,676 mailed Jun. 17, 2024.
Notice of Allowance for U.S. Appl. No. 16/449,039 mailed Mar. 28, 2024.
Notice of Allowance for U.S. Appl. No. 16/452,145 mailed Jul. 11, 2024.
Notice of Allowance for U.S. Appl. No. 16/904,868 mailed Sep. 29, 2024.
Notice of Allowance for U.S. Appl. No. 17/179,116 mailed Sep. 13, 2024.
Notice of Allowance for U.S. Appl. No. 17/326,980 mailed Apr. 5, 2024.
Notice of Allowance for U.S. Appl. No. 17/447,123 mailed Jul. 26, 2024.
Notice of Allowance for U.S. Appl. No. 17/448,811 mailed Jun. 14, 2024.
Notice of Allowance for U.S. Appl. No. 17/450,864 mailed Sep. 18, 2024.
Notice of Allowance for U.S. Appl. No. 17/453,260 mailed Apr. 8, 2024.
Notice of Allowance for U.S. Appl. No. 17/657,474 mailed May 2, 2024.
Notice of Allowance for U.S. Appl. No. 17/662,700 mailed Jun. 12, 2024.
Notice of Allowance for U.S. Appl. No. 17/664,914 mailed Jul. 26, 2024.
Notice of Allowance for U.S. Appl. No. 17/667,097 mailed Aug. 28, 2024.
Notice of Allowance for U.S. Appl. No. 18/140,163 mailed Aug. 21, 2024.
Notice of Allowance for U.S. Appl. No. 18/198,464 mailed Apr. 17, 2024.
Notice of Allowance for U.S. Appl. No. 18/198,464 mailed Jul. 30, 2024.
Notice of Allowance for U.S. Appl. No. 18/389,009 mailed Aug. 28, 2024.
Restriction Requirement for U.S. Appl. No. 17/527,769 mailed Jun. 17, 2024.
Restriction Requirement for U.S. Appl. No. 17/596,629 mailed Sep. 19, 2024.
Restriction Requirement for U.S. Appl. No. 17/625,941 mailed Aug. 7, 2024.
Restriction Requirement for U.S. Appl. No. 17/667,097 mailed Mar. 20, 2024.
Restriction Requirement for U.S. Appl. No. 17/756,201 mailed Oct. 4, 2024.
Restriction Requirement for U.S. Appl. No. 17/878,268 mailed Sep. 20, 2024.
U.S. Appl. No. 17/013,822, filed Sep. 7, 2020.
U.S. Appl. No. 17/444,792, filed Aug. 10, 2021.
U.S. Appl. No. 18/249,577, filed Oct. 19, 2021.
U.S. Appl. No. 18/610,523, filed Mar. 20, 2024.
U.S. Appl. No. 18/662,216, filed May 13, 2024.
U.S. Appl. No. 18/693,638, filed Mar. 20, 2024.
U.S. Appl. No. 18/694,090, filed Mar. 21, 2024.
U.S. Appl. No. 18/728,604, filed Jul. 12, 2024.
U.S. Appl. No. 18/757,964, filed Jun. 28, 2024.
U.S. Appl. No. 18/758,025, filed Jun. 28, 2024.
U.S. Appl. No. 18/828,559, filed Sep. 9, 2024.
U.S. Appl. No. 18/834,115 filed Jul. 29, 2024.
U.S. Appl. No. 18/834,176 filed Jul. 29, 2024.
U.S. Appl. No. 18/834,340, filed Jul. 30, 2024.
U.S. Appl. No. 18/835,068, filed Aug. 1, 2024.
U.S. Appl. No. 18/835,444, filed Aug. 2, 2024.
U.S. Appl. No. 18/836,204, filed Aug. 6, 2024.
U.S. Appl. No. 18/841,630, filed Aug. 26, 2024.
U.S. Appl. No. 18/851,197, filed Sep. 26, 2024.
U.S. Appl. No. 18/886,306, filed Sep. 16, 2024.
U.S. Appl. No. 18/903,592, filed Oct. 1, 2024.
U.S. Appl. No. 18/925,921, filed Oct. 24, 2024.
U.S. Appl. No. 18/930,014, filed Oct. 29, 2024.
U.S. Appl. No. 63/564,696 filed Mar. 13, 2024.
U.S. Appl. No. 63/561,893, filed Dec. 11, 2023.
U.S. Appl. No. 63/568,615, filed Mar. 22, 2024.
U.S. Appl. No. 63/683,428, filed Aug. 15, 2024.
U.S. Appl. No. 63/711,438, filed Oct. 24, 2024.
U.S. Appl. No. 63/711,445, filed Oct. 24, 2024.
“Dictionary.com, Abut Definition and Meaning”, Dictionary.com, https://www.dictionary.com/browse/abut, 2024, 1 page.
“Oblong”, Cambridge Dictionary, https://dictionary.cambridge.org/dictionary/english/oblong, 2024, 1 page.
Britannica, “Polyolefin”, Britannica Online Encyclopedia, T. Editors of Encyclopaedia, https://www.britannica.com/science/polyolefin, Jul. 26, 2012.
Martin, et al., “Chapter 5 Applications of Polyethylene Oxide (POLYOX) in Hydrophilic Matrices”, Hydrophilic Matrix Tablets for Oral Controlled Release, AAPS Advances in the Pharmaceutical Sciences vol. 16, 2014, pp. 123-141.
Wikipedia Article, “Decibel”, https://web.archive.org/web/2020041521917/https://en.wikipedia/org/wiki/Decibel last accessed Mar. 11, 2024, 21 pages.
Wikipedia Article, “Fiberglass”, https://web.archive.org.web/20200309194847/https://en.wikipedia.org/wiki/Fiberglass last accessed Mar. 11, 2024.
Related Publications (1)
Number Date Country
20220117775 A1 Apr 2022 US
Provisional Applications (1)
Number Date Country
63094608 Oct 2020 US