This patent application is directed to engine cooling systems and, more specifically, to a fluid conduit assembly.
Typical engine cooling systems supply coolant to the engine from a heat rejection device, such as a radiator or cooling tower. The coolant flows through various passageways and jackets in the engine and returns to the radiator, for example. The transport of coolant requires various connections on the engine and between the engine and either a vehicle or facility connection in the case of stationary engine applications. These connections are typically accomplished by hose or rigid connections designed to accommodate vibration and misalignment.
Embodiments of the fluid conduit assembly introduced herein may be better understood by referring to the following Detailed Description in conjunction with the accompanying drawings, in which like reference numerals indicate identical or functionally similar elements:
The headings provided herein are for convenience only and do not necessarily affect the scope or meaning of the claimed embodiments. Further, the drawings have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be expanded or reduced to help improve the understanding of the embodiments. Moreover, while the disclosed technology is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the embodiments described. On the contrary, the embodiments are intended to cover all modifications, equivalents, and alternatives falling within the scope of the embodiments as defined by the appended claims.
In some applications, a rigid coolant conduit is preferred over a flexible hose; particularly where the connections are close together and awkwardly oriented with respect to each other. However, a rigid tube does not allow sufficient adjustability to accommodate tolerance stack-up between connection locations. A fluid conduit assembly for connecting orthogonally oriented fluid connections is disclosed. In an embodiment, the assembly includes a first rigid tube arcuately extending from a first proximal end portion to a first distal end portion. The first proximal end portion includes a first fitting connectable to a first fluid connection, and the first distal end portion extends along a first distal axis. The assembly also includes a second rigid tube arcuately extending from a second proximal end portion to a second distal end portion. The second proximal end portion includes a second fitting connectable to a second fluid connection that is orthogonally oriented with respect to the first fluid connection. The second distal end portion extends along a second distal axis. In some embodiments, a coupling connects the first distal end portion and the second distal end portion for fluid communication therebetween. The first rigid tube is rotatably positionable with respect to the first fluid connection whereby the first distal axis and the second distal axis are substantially coaxially aligned when the first fitting and second fitting are connected to the first and second fluid connections, respectively. Accordingly, the disclosed fluid conduit assembly provides a rigid coolant connection while providing adjustability to accommodate inconsistencies (e.g., tolerance stack-up) in connection locations. The disclosed rigid coolant conduits also allow for relatively high fluid flow rates in a compact design suitable for confined spaces.
Various examples of the device and systems introduced above will now be described in further detail. The following description provides specific details for a thorough understanding and enabling description of these examples. One skilled in the relevant art will understand, however, that the techniques discussed herein may be practiced without many of these details. Likewise, one skilled in the relevant art will also understand that the technology can include many other features not described in detail herein. Additionally, some well-known structures or functions may not be shown or described in detail below so as to avoid unnecessarily obscuring the relevant description.
The terminology used below is to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of some specific examples of the embodiments. Indeed, some terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this section.
As shown in
With reference to
As shown in
A coupling 240 connects the distal end portions 228 and 234. In this embodiment, the coupling 240 includes a flexible band 242 and a pair of fasteners 244 operative to clamp the flexible band 242 around the end portions 228 and 234. Coupling 240 is capable of accommodating misalignment (e.g., ˜1 mm) and a gap (e.g., ˜1-10 mm) between the distal end portions 228 and 234. Some examples of suitable couplings are available from Straub® and marketed as Grip Couplings.
As shown in
The rigid tubes 222 and 224 can be comprised of any suitable rigid material such as metal. In various embodiments, the tubes can be formed from steel, aluminum, or high-temperature plastic, for example.
The above description and drawings are illustrative and are not to be construed as limiting. Numerous specific details are described to provide a thorough understanding of the disclosure. However, in some instances, well-known details are not described in order to avoid obscuring the description. Further, various modifications may be made without deviating from the scope of the embodiments. Accordingly, the embodiments are not limited except as by the appended claims.
Reference in this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Moreover, various features are described which may be exhibited by some embodiments and not by others. Similarly, various requirements are described which may be requirements for some embodiments but not for other embodiments.
The terms used in this specification generally have their ordinary meanings in the art, within the context of the disclosure, and in the specific context where each term is used. It will be appreciated that the same thing can be said in more than one way. Consequently, alternative language and synonyms may be used for any one or more of the terms discussed herein, and any special significance is not to be placed upon whether or not a term is elaborated or discussed herein. Synonyms for some terms are provided. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification, including examples of any term discussed herein, is illustrative only and is not intended to further limit the scope and meaning of the disclosure or of any exemplified term. Likewise, the disclosure is not limited to various embodiments given in this specification. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure pertains. In the case of conflict, the present document, including definitions, will control.
Number | Name | Date | Kind |
---|---|---|---|
954504 | Drew | Apr 1910 | A |
1368522 | Newcomb | Feb 1921 | A |
1500861 | Zbinden | Jul 1924 | A |
1653718 | Mauss | Dec 1927 | A |
1756094 | McGuirk | Apr 1930 | A |
1968449 | Hefti | Jul 1934 | A |
2395766 | Schreck | Feb 1946 | A |
2587938 | Warren | Mar 1952 | A |
4407533 | Giebeler | Oct 1983 | A |
4932687 | Anderson et al. | Jun 1990 | A |
7909636 | Brodeur | Mar 2011 | B2 |
20020050260 | Harvey | May 2002 | A1 |
20030127854 | Lehnhardt | Jul 2003 | A1 |
20050247155 | Liu | Nov 2005 | A1 |
20060131873 | Klingbail et al. | Jun 2006 | A1 |
20120240884 | Zahdeh et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
203384533 | Jan 2014 | CN |
1 426 559 | Mar 1976 | GB |
Entry |
---|
International Application No. PCT/US2017/026818, International Search Report & Written Opinion, 9 pages,Jun. 27, 2017. |
Number | Date | Country | |
---|---|---|---|
20180216569 A1 | Aug 2018 | US |