1. Field of the Invention
This invention most generally relates to a fluid conduit with layered and partial covering material thereon and means and method for configuring with covering material, in partial form and layers, a covering of fluid conduit/conductors resulting in the creation of a novel and very effective, in functionality, of a fluid conduit/conductive system such as a septic pipe of smooth wall, of corrugated form, of any form of cross sectional configuration including circular, elliptical, rectangular, triangular or any other geometric shape any of which will and can provide for the flow of a fluid of forms such as septic flow fluid and the like. Included herein as a part of the invention is fluid conduits produced by the means and methods of this invention. Substantially, the fluid conduit system having incorporated therein and thereon the form and layers of covering created as a consequence of the means and method of configuring such conduit included as a feature of the invention. Such covering material most generally used but not totally limited to is a multilayer fabric of varying deniers for the processing and treatment of fluids which must be treated to remove materials so that the resultant treated fluid may be reused and/or returned to the earth and particularly to the water table. More particularly the invention the partial and variable form of fluid conduit coating relates to the use of multilayer fabric, each layer being of selected denier, in combination with conduit/conductor, either smooth-walled or corrugated, used most likely in a drainage field or leaching system usually associated with a septic tank or system. At least one of the layers of the multilayer fabric are formed from an unstructured assemblage of fibers. The unstructured assemblage of fibers provides a large surface area whereon consequent biodegradation of the oils, greases and chemicals takes place permitting treated fluid to pass omnidirectionally through the unstructured assemblage of fibers and subsequently leach into the ground. Most particularly the multilayer fabric of varying deniers may be wrapped around a corrugated plastic pipe of the type well known in the field of drainage or leaching fields. Additionally, the fabric layers may be pretreated with chemicals, bacteria, and/or microbes such as known oil digesting microbes in order to particularize the use of the drainage and waste treatment created as a consequence of the invention in forming the consequential resulting fluid processing and treatment apparatus in the processing or treating of fluids.
The invention has the particular objectives, features and advantages of: 1) Multiple layers of fabric; 2) Fabric layers of varying deniers; 3) Useful in wrapping corrugated plastic pipe: 4) With the selection of fabric, fabric properties such denier, thickness, retention quality such as hydrophobic or hydrophilic characteristic, specific fluid treatment objective can be met; 5) The multilayer fabric provides boundaries/interfaces and regions within which specifically chosen bacteria, chemicals, microbes and the like may be introduced to facilitate the biodegradation of specifically chosen undesirable materials; and 6) Improve performance over the currently known leach fields and currently known fluid conduits used for various forms of treatment of conducted fluid with the conduit.
Even more particularly, the invention is particularly useful in combination with the septic tank maze apparatus defined and described in Applicant's U.S. Pat. No. 5,429,752 Issued Jul. 4, 1995. The septic tank having such a maze incorporated therein has an outflow into a leach system of effluent or leachate which is substantially devoid of solids.
One of the most particular features of this newly disclosed invention is now described anti disclosed.
Through testing of the Enviro-Septic® wastewater treatment system, surprisingly Applicant/Inventor hereof has learned that by adding a dense layer of geo-textile fabric in the lower section of the pipe (covering a portion of the circumference of the pipe (C)—such portion being preferably less than one-half of the pipe circumference (<½C) and placed between the pipe outer surface and a layer of coarse random fibers, Applicant was able to get the bacteria to grow very quickly. Such result forces the system to generate bacteria more quickly and thereby causing the system performance to be enhanced in quality of performance and in the speed of performance—speed of performance was increased over prior art methods by a substantial of amount.
The extra layer of dense fabric not only helps to treat the effluent better but also helps to extend the life of the outer layer of fabric wrapped around the pipe. In the prior reference patent of Applicant, referred to herein on occasion as the original Enviro-Septic® pipe the outer layer of fabric eventually gets a buildup of sludge that escapes through the holes in the pipe settling on the inside of the outer layer of fabric. By adding the new layer of dense fabric, the sludge is trapped on this layer thereby protecting the outer layer of fabric from this sludge. At the time of initial startup this new dense fabric layer will screen the effluent better, thereby causing the effluent to travel the whole length of the pipe quickly and uniformly. As the effluent passes through the dense fabric layer, the bacteria will reach a long-term acceptance rate faster and the effluent will overflow or pond above the upper edges of the dense layer eventually overflowing down and into the coarse random fibers and passing through the outer layer of fabric. By allowing the effluent to travel the whole length of the pipe it results in the spreading of the loading throughout, —a process that allows more air and better bacterial growth and action. during this process a second biomat forms on the inner surface of the outer fabric and now becomes the treatment surface. It is not clogged by the sludge because it is being protected by the dense layer of fabric next to the pipe.
This dense layer of fabric does not stop the penetration of effluent. It slows the effluent down and filters it better, allowing the bacteria to grow sooner and in greater numbers.
This extra layer of dense fabric will allow for a longer life expectance than is now achieved or even expected from the standard and Patented Enviro-Septic® system. It will also allow the system to reach its peak environmental performance in a much shorter period of time.
Yet another of the most particular features of this newly disclosed invention is now describe and disclosed.
It has been discovered surprisingly that incorporating—i.e., adding a plurality (from 2 to “n” dense layers) of dense layer of geo-textile fabric in the lower section of the pipe wherein each of the ones of the plurality of dense layers is designed for covering a portion of the circumference of the pipe (C). Each of the dense layers beginning with a first dense layer—the layer which is in contact with the outer surface of the pipe—being preferably substantially about equal to about ½ of 1/n th of the pipe circumference (C) and placed between the pipe outer surface and a layer of coarse random fibers. The second (2nd) dense layer would be placed onto or i.e., over the coarse random fiber layer (note that all of the coarse random fiber layers may be of size to cover the pipe circumference or they may be of a dimension to cover a portion of the pipe greater than the dense layer inwardly directed and perhaps less than the dense layer contacting the outwardly directed surface of the 2nd dense layer. This relationship will be applied to each of the successive dense layers to the final n th dense layer. It is clear that each of the course fiber layers may completely encircle the pipe because the flow through of the fluid is minimally effected by the material of the course fiber layers. Applicant was able to get the bacteria to grow very quickly. Such result forces the system to generate bacteria more quickly and thereby causing the system performance to be enhanced in quality of performance and in the speed of performance—speed of performance was increased over prior art methods by a substantial of amount.
2. Description of the Prior Art
Suspended solids have plagued the septic system and waste water treatment industry more in the last ten (10) or more years than in previous years. The increase in the problem is due in part to the evolution and development of some of the modern day cleaners now make cleaning easier in that they cause grease and oil to dissolve into the water. The major problem with the septic tank is that the suspended solids in passing through the tank neither cool nor make contact at a slow enough pace to separate from the water.
Lint and fuzz has also been an ongoing problem for the septic tank to control. This material stays suspended in the septic tank liquid and normally passes through, remaining suspended in the effluent which subsequently also causes problems in the leach system connected with the septic tank.
Septic tanks generally available do not effectively provide for the removal, in a manner which does not effect the cost and the performance characteristics of the septic treatment system. of suspended solids that are typically found in septic tank liquid. It is important that the amount of suspended solids that leave the treatment tank be minimal so as not to adversely affect the subsequent treatment of the waste water/effluent. A leach field, for example, is adversely effected because the suspended solids will clog receiving layer and also adversely affect the absorption characteristics of the leach bed.
Currently there are designs and equipment that attempt the removal of the suspended solids. All of those known to the inventor of the now patented precipitation apparatus defined in U.S. Pat. No. 5,429,752 have failed to address the problem in an efficient manner because all the efforts attempt to “filter” the liquid. Filtration creates an additional set of problems. The filters can quickly become plugged slowing down or completely blocking the flow through of the liquid through the treatment tank. The filters are expensive and are costly to maintain. Applicant's patented precipitation apparatus greatly reduces the level of suspended solids exiting the treatment tank and entering the leach system.
It would be advantageous to have a treatment system which would include a leach system which would, more efficiently and effectively process the leachate or effluent from the septic tank or precipitation apparatus. The obvious consequences of such an improved fluid conducting conduit structure for use within a drainage field, would be longer life, less area needed to handle a specific amount of outflow of liquid and a cleaner and safer treated liquid returning to the environment. The improved fluid conducting conduit structure defined and claimed herein provides these advantages without a large increase in cost, does not require any additional maintenance and, in fact, requires less maintenance, is incorporatable into standard treatment designs and configurations, would be easily installed as new or replacements into existing and in-place leach fields and would provide flexibility to incorporate a variety of specially designed use to result in a custom system based upon special or specific needs within the treatment system.
There is nothing currently available which satisfies these needs and objectives. However, the invention disclosed herein does meet all of these objectives.
The following patents relate to the technology of the present invention but none of the in meets the objects of the disclosed and claimed improved system in a manner like that of the instant invention. Additionally none are as effective and as efficient as the instant improved conduit system.
U.S. Pat. No. 3,976,578 to Beane discloses a protective sleeve for corrugated drainage tubes. The protective sleeve is a continuous tubular sleeve of knit fabric material which is slipped over one or more sections of corrugated flexible drainage pipe and acts as a filter to keep rocks, dirt, mud, pieces of clay, and the like from clogging the openings in the corrugated drainage pipe while allowing the water to pass through. Disclosed is a knit fabric preferably formed by lock stitches and is inherently elastic.
U.S. Pat. No. 4,909,665 to Caouette discloses a fabric wrapped corrugated structure. The fabric wrapping comprises an outer fabric combined with a grid mesh separation element. It is disclosed that the fabric may be of the woven or non-woven type and that the fabric may be bonded to the grid mesh. Further, Caouette discloses that the grid mesh may take many different forms as long as one set of cross members or other members such as dimples on a planar structure or fibrous material provides some separation of the fabric above the peaks of the corrugated pipe.
U.S. Pat. No. 5,224,832 to Gonczy et al. discloses a multilayer insulation blanket used in heat transfer technology which can be wrapped around a structure. The Gonczy patent does not disclose the use of multilayer fabrics of varying deniers and does not disclose the liquid permeability of the multilayer blanket.
U.S. Pat. No. 4,288,321 to Beane discloses a drain tile and a pile fabric filter sleeve. The knit fabric of the '321 patent to Beane is provided over the drainage conduit to facilitate efficient liquid flow. The knit fabric is also impregnated with suitable chemical agents for counteracting anticipated chemical reaction particle intrusions. The knit fabric is further disclosed to be formed of stitches defining a ground and defining terry loops extending from the ground and being directed in a predetermined generally radial direction relative to the longitudinal axis of the drainage conduit.
U.S. Pat. No. 4,904,113 to Goddard et al. discloses a highway edgedrain. The edgedrain comprises a tube inserted into a fabric sheath. The fabric sheath of the '113 patent is preferably of a nonwoven fabric and of a geotextile composition. The sheath acts a filter to prevent the passage of large particles or rocks into the tube. Further the sheath is disclosed as being made from t material of a single density.
U.S. Pat. No. 4,662,778 to Dempsey discloses a drainage mat. Most significantly, the '778 patent discloses a drainage material with extended surface which is a two-layer composite of polyester non-woven filter fabric heat bonded to an expanded nylon non-woven matting such as ENKADRAIN™ brand of three-dimensional composite.
U.S. Pat. No. 5,002,427 to Kambe et al. discloses a hydrophobic material used for drainage of a culvert. The '427 patent discloses a textile or knit fabric having large and small mesh portions.
The patents noted herein provide considerable information regarding the developments that have taken place in this field of technology. Clearly the instant invention provides many advantages over the prior art inventions noted above. Again it is noted that none of the prior Lilt meets the objects of the multilayered fabric as used in septic and waste water treatment in a manner like that of the instant invention. None of them are as effective and as efficient as the install combination of multilayered fabric and corrugated pipe combination for use in the management of effluent drainage systems.
Some particular aspects of interest for the multilayer fabric wrapped corrugated pipe invention are:
1. Longer life and no shadow effects;
2. Less masking;
3. More storage and breakdown area within the fabric layers;
4. Different grades of bacterial area;
5. Different interfaces for bacteria;
6. The division of different types of material;
7. Less clogging;
8. Septic use and floor drain use;
9. May be used over valley with any material that gives spacing and may also be used over smooth wall pipe;
10. May be used on incoming/outgoing liquids, that is the process would work for liquid moving from within to without the pipe or moving from without to within;
11. Any pretreatment of surface or subsurface fluids to include trapping collecting or dispersing fluids into and out of the ground;
12. Fabric may be pretreated with chemical, bacteria and/or combinations such pretreatment may be specific for applications such as oil-spill or the like;
13. Multi-layered fabrics and different deniers and different thicknesses may be combined again to achieve specific functions;
14. Treating liquids on the inside, trapping things inside—different fabrics exhibit retaining, properties relative to specific materials and likewise different materials have varying treatment properties for different substances such as oil and effluent;
15. At all of the interfaces of the multilayered fabric and at the interface of the fabric with the conduit surface and the soil, fluids are being treated in a progressive manner resulting in a treated fluid having an acceptable standard of quality; and
16. May be used on corrugated or smooth-walled structures or any fluid-carrying structure that passes fluids through itself or through holes/slots/cuts over/under/through/around.
By using multilayers one is able to have a medium for different types of bacteria to collect on and break down on as well as divide them by particle size. All prior systems have structures with members which are pressed tightly against the pipe itself, causing shadowing to take place where the fabric touches the pipe or the members. By using multilayers of fabrics starting with the very coarse denier working down to a fine denier, one is able to alleviated all of the shadowing effect which has never before been achieved. At the same time, larger particles are being sorted or separated from smaller particles, allowing the bacteria in the effluent to work more efficiently on these particles.
It should be noted that multilayered fabrics may be used with basically all chamber type systems such as for example infiltraters, contactors, bio-diffusers and with smooth-walled perforated pipe as well as corrugated plastic pipe. The multilayer fabric could be used inside of a product known as ELJEN DRAIN to extend the life of the product.
Because of the fibers being used in multilayers the ability of the aerobic bacteria to work on the particles is increased due to the ability of the liquids to be wicked throughout the fabrics (due to capillary action) thereby inducing more air, which will also change the state of the nitrogen content and other chemicals within the effluent so they may change more readily into gas and escape from the soils to the atmosphere above. Within the multiple layers there will be more storage area for the fine suspended particles that frequently clog standard systems. Oils, greases and chemicals contained in the fluids to be treated and entering within the fluid conducting conduit structure are entrapped within at least one of the first layers and at least one additional layer of fabric and particularly on the unstructured assemblage of fibers. The unstructured assemblage of fibers provides a large surface area whereon consequent biodegradation of said oils, greases and chemicals takes place permitting treated fluid to pass omnidirectionally through the unstructured assemblage of fibers.
With the use of multilayers of fabrics it is possible that one can set up systems which would handle garage floor drain wastes by allowing the bacteria action to take place in the first few layers, the oil to be trapped on other layers, and the water to pass through the final layers then returned back to the clean soils. The floor drain fluid would be directed to a treatment bed or field similar to a leach field. In the treatment field would be conduit having means for allowing the passage of the floor drain fluid outwardly of the conduit and subsequently into the multilayer fabric wrapped around or at least covering the conduit. The fabric may be specially treated to process the particular drain fluid in order to place it in condition to be returned to the earth.
The INFILTRATOR™ brand of leaching structure, with the MICRO-LEACHING CHAMBERS™ brand of wall perforations is a chamber device used in leaching systems and is considered herein as a conduit. This form of conduit directs fluid flow even though it is somewhat similar to a semicircular cross section of a length perforated corrugated pipe. That is to say, if perforated corrugated pipe was halved along its axis, and the halves were laid in trenches with the opening of the half downwardly directed, a conduit similar to this brand of leaching conduit would result. Multilayer fabric having the characteristics previously noted, placed over this device will result in improved performance. Further, the multilayer fabric placed across the downwardly directed open portion would likewise improve the performance of the leaching system.
The use of multilayer fabric would also permit cleaning of water coming into a pipe so that it could be possible to take water that has been contaminated (areas of contaminated soil) and pass it through the multilayers and have bacterial growth on the outer surface and have cleaner water as it goes in the system. It would be effective in the removal of oils, greases and other chemicals. In the application where fluid to be treated is entering the conduit or pipe, the layer of fabric in contact with the pipe may have a denier lower in value which is finer than the denier of the adjacent additional/outer layer of the multilayer fabric. Where there are more than two (2) layers, is is important to note that each additional layer has a denier different from each additional layer adjacent thereto. In other words, where fluid is moving from inside to outside, the first layer will be more coarse than the coarseness of the next layer. Another layer over the next layer need only have a level of coarseness different than that of the next layer. Further, if yet another layer was added, it is only necessary that the coarseness of that layer be different from the layers adjacent.
It should be noted that the use of such fabrics with any kind of septic system or drainage system will result in improved performance. By allowing multiple layers of bacteria to form around the interior of the different layers, one can ultimately reduce the amount of necessary leach area surface that is needed for the system to operate properly. On most septic systems there is only one bacterial interface surface. By doing multiple layers of fabrics one not only maintains the initial surface area which is the soil interface with the fabric, but bacterial growth will take place on the multiple layers. For each layer on which bacteria grow, the amount of leach area surface needed to do the job is significantly reduced.
It is also important to note that with the use of the multilayer fabric liquids will be diffused/dispersed without channeling the liquids in a forced direction adding considerably to the life of any septic system.
This invention most generally relates to a device/apparatus for using a multilayer fabric of varying deniers for the processing and treatment of fluids which must be treated to remove materials so that the resultant treated fluid may be reused and/or returned to the earth and particularly to the water table.
One of the most particular features and objects of this newly disclosed invention is now describe and disclosed.
Through testing of the Enviro-Septic® wastewater treatment system, surprisingly Applicant/Inventor hereof has learned that by adding a dense layer of geo-textile fabric in the lower section of the pipe (covering a portion of the circumference of the pipe (C)—such portion being preferably less than one-half of the pipe circumference (<½C) and placed between the pipe outer surface and a layer of coarse random fibers, Applicant was able to get the bacteria to grow very quickly. Such result forces the system to generate bacteria more quickly and thereby causing the system performance to be enhanced in quality of performance and in the speed of performance—speed of performance was increased over prior art methods by a substantial of amount.
The extra layer of dense fabric not only helps to treat the effluent better but also helps to extend the life of the outer layer of fabric wrapped around the pipe. In the prior reference patents of Applicant, referred to herein on occasion as the original Enviro-Septic® pipe the outer layer of fabric eventually gets a buildup of sludge that escapes through the holes in the pipe settling on the inside of the outer layer of fabric. By adding the new layer of dense fabric, the sludge is trapped on this layer thereby protecting the outer layer of fabric from this sludge. At the time of initial startup this new dense fabric layer will screen the effluent better, thereby causing the effluent to travel the whole length of the pipe quickly and uniformly. As the effluent passes through the dense fabric layer, the bacteria will reach a long-term acceptance rate faster and the effluent will overflow or pond above the upper edges of the dense layer eventually overflowing down and into the coarse random fibers and passing through the outer layer of fabric. By allowing the effluent to travel the whole length of the pipe it results in the spreading of the loading throughout, —a process that allows more air and better bacterial growth and action. during this process a second biomat forms on the inner surface of the outer fabric and now becomes the treatment surface. It is not clogged by the sludge because it is being protected by the dense layer of fabric next to the pipe.
This dense layer of fabric does not stop the penetration of effluent. It slows the effluent down and filters it better, allowing the bacteria to grow sooner and in greater numbers.
This extra layer of dense fabric will allow for a longer life expectance than is now achieved or even expected from the standard and Patented Enviro-Septic® system. It will also allow the system to reach its peak environmental performance in a much shorter period of time.
Yet another of the most particular features of this newly disclosed invention is now describe and disclosed.
It has been discovered surprisingly that incorporating—i.e., adding a plurality (from 2 to “n” dense layers) of dense layer of geo-textile fabric in the lower section of the pipe wherein each of the ones of the plurality of dense layers is designed for covering a portion of the circumference of the pipe (C). Each of the dense layers beginning with a first dense layer—the layer which is in contact with the outer surface of the pipe—being preferably substantially about equal to about ½ of 1/n th of the pipe circumference (C) and placed between the pipe outer surface and a layer of coarse random fibers. The second (2nd) dense layer would be placed onto or i.e., over the coarse random fiber layer (note that all of the coarse random fiber layers may be of size to cover the pipe circumference or they may be of a dimension to cover a portion of the pipe greater than the dense layer inwardly directed and perhaps less than the dense layer contacting the outwardly directed surface of the 2nd dense layer. This relationship will be applied to each of the successive dense layers to the final n th dense layer. It is clear that each of the course fiber layers may completely encircle the pipe because the flow through of the fluid is minimally effected by the material of the course fiber layers. Applicant was able to get the bacteria to grow very quickly. Such result forces the system to generate bacteria more quickly and thereby causing the system performance to be enhanced in quality of performance and in the speed of performance—speed of performance was increased over prior art methods by a substantial of amount.
These and further objects of the present invention will become apparent to those skilled in the art to which this invention pertains and after a study of the present disclosure of the invention
Include herewith in this application is a serious of drawing figures. Included are two drawings identified as ENVIRO-SEPTIC ORIGINAL A and ENVIRO-SEPTIC NEW A and in association with the character of the operation of the invention there are figures identified its STAGE 1A through STAGE 4A. Further included is a drawing identified as ENVIRO-SEPTIC NEW B. And in association with the character of the operation of the invention when there is a plurality of thick and/or dense fiber layers and a plurality of course fiber layers there are figures identified as STAGE 1B through STAGE 4B.
Included herewith as a further identification of this invention, Applicant has provided forms of drawing figures identified as drawing
The following is a description of the preferred embodiment of the invention. It is clear that there may be variations in the size and the shape of the apparatus, in the materials used in the construction and in the orientation of the components. However, the main features are consistent and are;
1) Multiple layers of fabric rather than screens;
2) Fabric layers of varying deniers and/or thickness;
3) Useful in wrapping smooth-walled and corrugated plastic pipe;
4) With the selection of fabric and fabric denier, specific fluid treatment objectives can be met;
5) The multilayer fabric provides boundaries/interfaces and regions within which specifically chosen bacteria, chemicals, microbes and the like may be introduced to facilitate the biodegradation of specifically chosen undesirable materials; and
6) Improve performance over the currently known leach fields.
7) One of the most particular features of this newly disclosed invention is now describe and disclosed.
Through testing of the Enviro-Septic® wastewater treatment system, surprisingly Applicant/Inventor hereof has learned that by adding a dense layer of geo-textile fabric in the lower section of the pipe (covering a portion of the circumference of the pipe (C)—such portion being preferably less than one-half of the pipe circumference (<½C) and placed between the pipe outer surface and a layer of coarse random fibers, Applicant was able to get the bacteria to grow very quickly. Such result forces the system to generate bacteria more quickly and thereby causing the system performance to be enhanced in quality of performance and in the speed of performance—speed of performance was increased over prior art methods by a substantial of amount.
The extra layer of dense fabric not only helps to treat the effluent better but also helps to extend the life of the outer layer of fabric wrapped around the pipe. In the prior reference patents of Applicant, referred to herein on occasion as the original Enviro-Septic® pipe the outer layer of fabric eventually gets a buildup of sludge that escapes through the holes in the pipe settling on the inside of the outer layer of fabric. By adding the new layer of dense fabric, the sludge is trapped on this layer thereby protecting the outer layer of fabric from this sludge. At the time of initial startup this new dense fabric layer will screen the effluent better, thereby causing the effluent to travel the whole length of the pipe quickly and uniformly. As the effluent passes through the dense fabric layer, the bacteria will reach a long-term acceptance rate faster and the effluent will overflow or pond above the upper edges of the dense layer eventually overflowing down and into the coarse random fibers and passing through the outer layer of fabric. By allowing the effluent to travel the whole length of the pipe it results in the spreading of the loading throughout, —a process that allows more air and better bacterial growth and action. during this process a second biomat forms on the inner surface of the outer fabric and now becomes the treatment surface. It is not clogged by the sludge because it is being protected by the dense layer of fabric next to the pipe.
This dense layer of fabric does not stop the penetration of effluent. It slows the effluent down and filters it better, allowing the bacteria to grow sooner and in greater numbers.
This extra layer of dense fabric will allow for a longer life expectance than is now achieved or even expected from the standard and Patented Enviro-Septic® system. It will also allow the system to reach its peak environmental performance in a much shorter period of time.
Yet another of the most particular features of this newly disclosed invention is now describe and disclosed.
It has been discovered surprisingly that incorporating—i.e., adding a plurality (from 2 to “n” dense layers) of dense layer of geo-textile fabric in the lower section of the pipe wherein each of the ones of the plurality of dense layers is designed for covering a portion of the circumference of the pipe (C). Each of the dense layers beginning with a first dense layer—the layer which is in contact with the outer surface of the pipe—being preferably substantially about equal to about ½ of 1/n th of the pipe circumference (C) and placed between the pipe outer surface and a layer of coarse random fibers. The second (2nd) dense layer would be placed onto or i.e., over the coarse random fiber layer (note that all of the coarse random fiber layers may be of size to cover the pipe circumference or they may be of a dimension to cover a portion of the pipe greater than the dense layer inwardly directed and perhaps less than the dense layer contacting the outwardly directed surface of the 2nd dense layer. This relationship will be applied to each of the successive dense layers to the final n th dense layer. It is clear that each of the course fiber layers may completely encircle the pipe because the flow through of the fluid is minimally effected by the material of the course fiber layers. Applicant was able to get the bacteria to grow very quickly. Such result forces the system to generate bacteria more quickly and thereby causing the system performance to be enhanced in quality of performance and in the speed of performance—speed of performance was increased over prior art methods by a substantial of amount.
The following is simply a description and disclosure of the use of the present invention resulting in the creation of pipe produced by the process and including various combinations and materials all of which are products produced by the process of this invention.
In all of the above drawings it is further noted that the seams at the top can be either stitched, heat bonded or just overlapped.
It is thought that the present invention, the means and method and the conduits produced thereby and having included therewith a multilayer fabric of varying deniers for primarily the processing and treatment of fluids which must be treated to remove materials so that the resultant treated fluid may be reused and/or returned to the earth and many of its attendant advantages is understood from the foregoing description and it will be apparent that various changes may be made in the form, construction and arrangement of the parts thereof without departing from the spirit and scope of the invention or sacrificing all of its material advantages, the form hereinbefore described being merely a preferred or exemplary embodiment thereof.
This patent application claims the benefit of U.S. Provisional Application No. 60/683,994 filed May 24, 2005; U.S. Pat. No. 6,461,078; Issued Oct. 8, 2002 for U.S. Utility patent application: Ser. No. 09/524,238; Filed Mar. 13, 2000 entitled as “PLASTIC SEWAGE PIPE” and also the benefit of U.S. Pat. No. 5,954,451; Issued Sep. 21, 1999 for U.S. Utility patent application: Ser. No. 08/998,351; Filed Dec. 18, 1997 entitled as “A METHOD AND APPARATUS FOR USING MULTILAYER MATERIAL IN PROCESSING OF SEPTIC EFFLUENT AND WASTE WATER”. The drawing figures, the method of use, the advantages and additional characteristics and the functionality of U.S. Pat. Nos. 6,461,078 and 5,954,451 are included herein as referenced thereto.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US06/19718 | 5/23/2006 | WO | 00 | 11/20/2007 |
Number | Date | Country | |
---|---|---|---|
60683994 | May 2005 | US |