The present invention is in the field of patch-pumps having a primary-container, said primary-container storing the drug to be delivered. In particular, the present invention addresses the creation of a fluid connection between said primary-container and a cannula assembly associated with said patch-pump. In some aspects, the present invention is particularly suitable for prefilled patch-pump application.
Infusion pumps are used for treating a number of disease states requiring subcutaneous delivery of a drug. As part of the current trend towards enhanced usability, some infusion pumps are now being produced as “patch-pumps”, meaning that the long tube between a remote pump and the infusion-set on the skin is eliminated. Instead, a device with a similar footprint to the infusion-set alone constitutes the entire pump, including the drug-reservoir and the actuator which drives the drug infusion. However, even though this transition to patch-pumps represents a miniaturization of the product, typically the filling process by which the patient fills the drug reservoir remains the same and is performed at the point-of-use. Other approaches for providing the drug in a patch-pump are (a) inserting a cartridge containing the drug into the patch-pump, and (b) having a pre-filled drug reservoir integrally contained within the patch-pump already during the pump manufacturing process; said drug-reservoir thereby constituting the primary-container for the drug. Whereas the act of inserting a cartridge-type reservoir into the patch-pump can open a liquid channel from the cartridge to the cannula assembly, for a drug-reservoir that is assembled within the patch-pump, an alternative means of creating this fluid connection is required.
Thus the objective of the present invention is to enable a fluid connection to be created between an integral, optionally pre-filled drug-reservoir within a patch-pump and the cannula insertion assembly associated with said patch-pump.
It is a further object of the invention to ensure that the pre-filled drug-reservoir remains sealed or that a sterile unit containing such drug reservoir be maintained as such, until directly before the activation of the patch-pump, such that the only materials that come in contact with the drug are the plastic and/or glass from which the reservoir is fabricated and one or more septa.
It is a still further object of the invention to open said fluid connection while keeping the operation of said patch-pump as simple as possible and requiring a small number of activation-steps.
The core element therefore of the present invention is a mechanism and method for exploiting one of the activation-steps required to initiate the operation of a patch-pump to create a fluid connection between the pre-filled drug reservoir assembly of said patch-pump and the cannula assembly associated with said patch-pump.
The cannula assembly of a patch-pump may be associated with the patch-pump in a number of different ways: (a) fully integrated, in which case said cannula assembly is integrated within the housing of the patch-pump, as per the OmniPod product from Insulet Inc. (MA, USA); (b) external, in which case a short tube extends from the patch-pump to a small infusion set directly adjacent to (or sharing an adhesive pad with) the patch-pump; or (c) attached to, and preferably also detachable from, the housing of the patch-pump as per the preferred embodiment detailed below.
The present invention describes the automatic opening of a liquid channel between a sealed pre-filled drug-reservoir and said cannula assembly as a result of one of the activation-steps undertaken when starting the patch-pump. Such steps typically include placing the patch-pump on the skin of the patient, removing a safety catch, or pressing a button which causes the cannula to be inserted or activates the actuator of said patch-pump. According to the present invention, the performance or one or more of these activation-steps will cause the automatic opening of a fluid channel between the pre-filled reservoir and the cannula assembly without a dedicated step being required for this purpose. Advantageously, this simplifies the use of the patch-pump while simultaneously ensuring that the pump cannot be activated in a state in which it is only later determined that the pre-filled reservoir remains sealed.
In one embodiment, said opening of the fluid channel is performed automatically either on the step of removing a safety catch or cover, or a step of activating the cannula insertion.
In some embodiments, this invention provides a selectively activatable patch-pump assembly, said patch-pump assembly comprising:
According to this aspect, and as referred to herein the term “selectively activatable” is to be understood to refer to a requirement for an activation step, i.e., a specific action to be taken to produce the outcome. For example, and representing some embodiments, the term “selectively activatable patch-pump assembly” is to be understood to encompass an assembly whose delivery of the drug via known patch-pump mechanisms, is regulated such that an activation step is required or delivery from the patch pump is prevented.
Similarly, the term “selectively activatable penetrator”, relates to a penetrator mechanism which penetrates a prefilled drug-reservoir and does so in a selective manner, thereby preventing spontaneous rupture of such reservoir.
Similarly, the term “selectively activatable associated cannula-containing assembly”, relates to an assembly which provides for delivery of a drug subcutaneously to a subject, and does so in a selective manner, thereby preventing spontaneous subcutaneous puncture of the subject.
It is to be understood that the invention provides a number of devices, which uniquely regulate coordinated activation steps for the selective penetration of a drug reservoir releasing such drug-containing contents into a proximal conduit, which conduit is selectively put into contact with an access port in a cannula-containing assembly, regulating delivery of such drug-containing contents subcutaneously to said subject.
In some embodiments, the selectively activatable penetrator comprises a hypodermic needle. In other embodiments, the selectively activatable penetrator comprises any appropriate structure capable of penetrating the drug reservoir in a controllable manner.
The sealed prefilled drug-reservoir containing a drug to be delivered is located proximally, and is associated with a conduit in connection therewith. It will be appreciated that the conduit may be of any suitable material, size and geometry to suit a particular device.
The conduit, in turn, may contain, or at least partially include therewithin a selectively activatable penetrator which penetrates said sealed prefilled drug-reservoir and facilitates drug access to said conduit. In some embodiments, such conduit may contain a septum, which prevents access of the outside environment to said drug reservoir, thereby maintaining a sterile environment for said drug reservoir.
In some embodiments, the selectively activatable penetrator is located within the conduit and is located minimally or partially within the septum, providing easier access to such drug reservoir upon activation thereof.
The selectively activatable associated cannula-containing assembly is located in fluid connection with the conduit.
According to this aspect, and in some embodiments, the cannula-containing assembly provides for the delivery of the drug-containing substance liberated from the drug reservoir. In some embodiments, such cannula-containing assembly comprises a part capable of piercing the skin. In some embodiments, such cannula-containing assembly may resemble a venicath or similar structure, which provides for skin puncture to promote subcutaneous delivery. In some embodiments, such catheter-containing part may be flexible or rigid.
A selective activation-step initiates penetration of said sealed prefilled drug-reservoir, drug access from said drug-reservoir to said conduit, drug access from said conduit to said cannula-containing assembly and delivery from the cannula-containing assembly.
In some embodiments, the selectively activatable patch-pump assembly mechanism further comprises a safety catch or cover preventing the inadvertent activation of the patch-pump.
According to this aspect, and in some embodiments, such safety catch may comprise a pin, or slot, or other structure, which locks or otherwise prevents the penetrating member from penetrating the drug reservoir, and or prevents the cannula-containing assembly from advancing within said patch pump assembly and initiating subcutaneous delivery.
In some embodiments, removal or release of a safety catch or a cover, or a combination thereof, comprises the activation-step which initiates penetration of the sealed prefilled drug-reservoir and facilitates drug access to the conduit.
In some embodiments, the selectively activatable patch-pump assembly further comprises a first spring-based mechanism, which propels the selectively activatable penetrator through the conduit and in some embodiments, through the septum, toward the sealed prefilled drug-reservoir, thereby facilitating penetration of the drug-reservoir.
In some embodiments, the selectively activatable patch-pump assembly further comprises a second spring-based mechanism, which propels the cannula-containing assembly toward proximally located skin following drug access to the conduit.
In some embodiments, the cannula-containing assembly comprises an access port, which access port is alignable with the conduit in a selective manner. In some embodiments, only activation, for example by depressing a button on a top or side of such device, results in controlled propelling of the cannula-containing assembly toward the skin of a wearer thereof, whereby an access port in such cannula-containing assembly is only aligned with the conduit when propelled sufficiently toward the skin of the subject.
In some embodiments, the selectively activatable patch-pump assembly further comprises an actuator which compresses said prefilled drug-reservoir following penetration of said sealed prefilled drug-reservoir.
Such actuator and arrangement may comprise any known means, and in some embodiments, specifically contemplates a drug delivery actuator such as that described in United States Patent Application Publication Number US 2009-0093772, fully incorporated by reference herein and United States Patent Application Publication Number US 2010-0022992, fully incorporated by reference herein.
In some embodiments, the selectively activatable patch-pump assembly is a single unit.
In some embodiments, the selectively activatable patch-pump assembly is comprised of operationally connectable units comprised of a drug reservoir-containing unit and a cannula-containing assembly.
From a user-convenience perspective, the less number of activation-steps used the better. However, in order to minimize the chance of inadvertent activation, it is wise to also have a safety catch or cover. Thus, in the present invention, it is immaterial whether the activation-step which opens up the fluid channel between the prefilled-reservoir and the cannula assembly is the safety catch step or the cannula-insertion one.
In a further embodiment, the cannula insertion also activates the actuator of the patch-pump, such that the number of activation-steps is reduced to the lowest practical minimum, thereby enhancing simplicity while improving patient compliance.
In another embodiment of the approach in which removing the safety catch (or safety cover) opens said fluid channel, removal of said catch releases a spring-loaded hollow penetrating-member to penetrate through a septum of said drug-reservoir, said penetrating-member then serving as a fluid conduit towards the cannula assembly. In this way, the drug-reservoir remains sealed until just before use.
In another embodiment, the conduit leads to a passageway which interfaces with the cannula assembly, such that when the cannula is inserted into the skin said passageway is then placed in fluid connection with said cannula.
According to this aspect, the fluid connection from the prefilled drug-reservoir to the cannula is completed. Note that said cannula assembly may employ either a soft-cannula or a rigid-cannula.
Some embodied contemplated devices are explained more fully below, in connection with the figures, but the same shall not be construed as limiting the invention.
All publications, patents, and patent applications mentioned herein are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference. In case of a conflict between the specification and an incorporated reference, the specification shall control. Where number ranges are given in this document, endpoints are included within the range. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value or sub-range within the stated ranges, optionally including or excluding either or both endpoints, in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise. Where a percentage is recited in reference to a value that intrinsically has units that are whole numbers, any resulting fraction may be rounded to the nearest whole number.
One embodiment of a patch-pump containing a mechanism of the present invention is shown in exploded form in
As will be detailed in connection with the following figures, in this preferred embodiment, removal of this cover 14 initiates the creation of a fluid connection from the drug-reservoir to the cannula.
Referring now to
According to this aspect, and in one embodiment, a drug is contained within a sealed prefilled drug-reservoir 20, which is formed in the volume between a rigid reservoir wall 22 and a flexible reservoir wall 24. The pump may further comprise an actuator 26, which expands and by doing so moves the flexible wall 24 towards the rigid wall 22; thereby compressing the drug-reservoir 20 in order to expel the drug. The drug reservoir 20 further comprises a septum 28 at the end of a conduit 29 leading from the drug reservoir 20, said septum 28 sealing said reservoir while allowing penetration thereof using a hollow penetrating member.
Referring now to
Referring now to
Referring now to
It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as set forth in the appended claims. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed in the scope of the claims.
In the claims articles such as “a,”, “an” and “the” mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” or “and/or” between members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention also includes embodiments in which more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process. Furthermore, it is to be understood that the invention provides, in various embodiments, all variations, combinations, and permutations in which one or more limitations, elements, clauses, descriptive terms, etc., from one or more of the listed claims is introduced into another claim dependent on the same base claim unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise. Where elements are presented as lists, e.g. in Markush group format or the like, it is to be understood that each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It should be understood that, in general, where the invention, or aspects of the invention, is/are referred to as comprising particular elements, features, etc., certain embodiments of the invention or aspects of the invention consist, or consist essentially of, such elements, features, etc. For purposes of simplicity those embodiments have not in every case been specifically set forth in haec verba herein. Certain claims are presented in dependent form for the sake of convenience, but Applicant reserves the right to rewrite any dependent claim in independent format to include the elements or limitations of the independent claim and any other claim(s) on which such claim depends, and such rewritten claim is to be considered equivalent in all respects to the dependent claim in whatever form it is in (either amended or unamended) prior to being rewritten in independent format.
This application is a 35 USC §371 U.S. National Stage Entry of PCT Application Serial No. PCT/IL2013/050240 (WO 2013/140395) filed on Mar. 14, 2013, which claims priority to U.S. Provisional Application No. 61/612,436, filed on Mar. 19, 2012, which is incorporated herein in the entirety by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IL2013/050240 | 3/14/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/140395 | 9/26/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4843598 | Medlin | Jun 1989 | A |
4886514 | Maget | Dec 1989 | A |
5062834 | Gross et al. | Nov 1991 | A |
5102389 | Hauser et al. | Apr 1992 | A |
5108852 | Tomantschger et al. | Apr 1992 | A |
5109850 | Blanco et al. | May 1992 | A |
5134046 | Chow et al. | Jul 1992 | A |
5318557 | Gross | Jun 1994 | A |
5354264 | Bae et al. | Oct 1994 | A |
5436372 | Yoshida et al. | Jul 1995 | A |
5438249 | Chang et al. | Aug 1995 | A |
5505706 | Maus et al. | Apr 1996 | A |
5527288 | Gross et al. | Jun 1996 | A |
5563004 | Buzzelli et al. | Oct 1996 | A |
5643207 | Rise | Jul 1997 | A |
5677083 | Tomiyama | Oct 1997 | A |
5814020 | Gross | Sep 1998 | A |
5827233 | Futagawa et al. | Oct 1998 | A |
5848991 | Gross et al. | Dec 1998 | A |
5938640 | Maget et al. | Aug 1999 | A |
5980741 | Schnell et al. | Nov 1999 | A |
6150053 | Murata et al. | Nov 2000 | A |
6186982 | Gross et al. | Feb 2001 | B1 |
6296967 | Jacobs et al. | Oct 2001 | B1 |
6312409 | Gross | Nov 2001 | B1 |
6322532 | D'Sa et al. | Nov 2001 | B1 |
6358239 | Rake et al. | Mar 2002 | B1 |
6377848 | Garde et al. | Apr 2002 | B1 |
6400489 | Suzuki et al. | Jun 2002 | B1 |
6465125 | Takami et al. | Oct 2002 | B1 |
6506520 | Inoue et al. | Jan 2003 | B1 |
6534218 | Okada et al. | Mar 2003 | B1 |
6537249 | Kriesell et al. | Mar 2003 | B2 |
6537250 | Kriesel | Mar 2003 | B1 |
6577039 | Ishida et al. | Jun 2003 | B2 |
6589229 | Connelly et al. | Jul 2003 | B1 |
6733485 | Whitehurst et al. | May 2004 | B1 |
6982514 | Lu et al. | Jan 2006 | B1 |
7242134 | Wallace et al. | Jul 2007 | B2 |
7541715 | Chiang et al. | Jun 2009 | B2 |
8834454 | Genosar et al. | Sep 2014 | B2 |
9011376 | Goldstein | Apr 2015 | B2 |
20020107480 | Kriesel et al. | Aug 2002 | A1 |
20020169439 | Flaherty | Nov 2002 | A1 |
20030014014 | Nitzan | Jan 2003 | A1 |
20040059282 | Flock et al. | Mar 2004 | A1 |
20040068224 | Couvillon et al. | Apr 2004 | A1 |
20040115068 | Hansen et al. | Jun 2004 | A1 |
20040115523 | Hommura et al. | Jun 2004 | A1 |
20040115530 | Maeda et al. | Jun 2004 | A1 |
20040138612 | Shermer et al. | Jul 2004 | A1 |
20050096587 | Santini et al. | May 2005 | A1 |
20060052768 | Joshi et al. | Mar 2006 | A1 |
20060069344 | Southam et al. | Mar 2006 | A1 |
20060102455 | Chiang et al. | May 2006 | A1 |
20060106346 | Sullivan | May 2006 | A1 |
20060200073 | Radmer et al. | Sep 2006 | A1 |
20080188779 | Vallero | Aug 2008 | A1 |
20080281270 | Cross et al. | Nov 2008 | A1 |
20090069746 | Miller et al. | Mar 2009 | A1 |
20090093772 | Genosar et al. | Apr 2009 | A1 |
20100022992 | Genosar et al. | Jan 2010 | A1 |
20100056874 | Dijksman | Mar 2010 | A1 |
20100130931 | Yodfat | May 2010 | A1 |
20100152658 | Hanson et al. | Jun 2010 | A1 |
20100266638 | Turkel et al. | Oct 2010 | A1 |
20100274221 | Sigg et al. | Oct 2010 | A1 |
20110098652 | Haster et al. | Apr 2011 | A1 |
20110160655 | Hanson et al. | Jun 2011 | A1 |
20110306929 | Levesque | Dec 2011 | A1 |
20120041338 | Chickering, III | Feb 2012 | A1 |
20120042517 | Tronnes et al. | Feb 2012 | A1 |
20120238849 | Holtzclaw et al. | Sep 2012 | A1 |
20140148761 | Rotem et al. | May 2014 | A1 |
20140163339 | Goldstein et al. | Jun 2014 | A1 |
20140171867 | Walsh et al. | Jun 2014 | A1 |
20150017493 | Genosar et al. | Jan 2015 | A1 |
20150038907 | Rotem | Feb 2015 | A1 |
20150045718 | Shlomo et al. | Feb 2015 | A1 |
20160361491 | Shaked et al. | Dec 2016 | A1 |
Number | Date | Country |
---|---|---|
2812877 | Apr 2012 | CA |
3621846 | Jan 1988 | DE |
19809483 | Sep 1999 | DE |
0676214 | Oct 1995 | EP |
1912690 | Apr 2008 | EP |
2621558 | Aug 2013 | EP |
2825225 | Jan 2015 | EP |
2827923 | Jan 2015 | EP |
2221394 | Feb 1990 | GB |
169807 | Feb 2006 | IL |
02-131376 | May 1990 | JP |
04-127885 | Apr 1992 | JP |
9710012 | Mar 1997 | WO |
0121234 | Mar 2001 | WO |
01-51108 | Jul 2001 | WO |
2004067066 | Feb 2003 | WO |
2004006982 | Jan 2004 | WO |
2005124918 | Dec 2005 | WO |
2007010522 | Jan 2007 | WO |
2007129317 | Nov 2007 | WO |
2008-062335 | May 2008 | WO |
2008-1229823 | Oct 2008 | WO |
2011-075100 | Jun 2011 | WO |
2012042517 | Apr 2012 | WO |
2013136327 | Sep 2013 | WO |
2013140395 | Sep 2013 | WO |
Entry |
---|
PCT/IL2013/050240 International Search Report, mailed Jul. 2, 2013, 3 pages. |
Lee et al., “Battery Dimensional Changes Occuring During Charge/Discharge Cycles—Thin Rectangular Lithium Ion and Polymer Cells,” Journal of Power Sources, 119-121: 833-837 (2003). |
Number | Date | Country | |
---|---|---|---|
20150038907 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
61612436 | Mar 2012 | US |