This document relates to fluid control valve devices and to the manufacture of such devices.
Some fluid systems use valves to control fluid flow. These fluid control valves may include a plug that is seated inside a valve housing between a fluid inlet and a fluid outlet. The plug can be moved within the valve housing to adjust the flow of fluid through the valve. For example, if a lower end of a plug is shifted toward a seat liner, the fluid flow may be restricted or closed. If the lower end of the plug is shifted away from the seat liner, the fluid flow may be opened. As used herein, fluid may include gas, liquid, solid particulates, or any combination thereof.
Several factors affect the design and manufacture of fluid control valves. For example, the location of the plug guide may affect the design and manufacture of a control valve. Typically, an upper portion of the plug is attached to a stem, which is slidably engaged with a guide bushing having tight clearance tolerances. Thus, the plug's reciprocating motion is substantially guided only from the upper end, thereby permitting some sway at the lower end of the plug where the control surfaces restrict the fluid flow. When the lower portion of plug is shifted away from the seat liner to open the fluid flow through the valve, the force of the fluid on the plug may cause the lower end of plug to sway laterally and impact the seat liner. Such an impact may cause vibration effects and damage to the liner, the plug, and other portions of the valve assembly.
The fluid type is another factor that may affect the design of the control valve components. For example, some gasoline refining applications require valves to control the flow of a high-temperature fluid including crude oil and erosive particulates, such as dirt and/or certain catalytic agents. As this erosive fluid flows through the valve, the components may be subjected to temperatures in excess of 500° F. and, in some cases, in excess of 1000° F. and pressure differential across the valve greater than 3000 psi, which result in high fluid velocities at the control surfaces of the valve. In such instances, the pressure drop across the valve may cause tremendous forces on the valve plug and seat liner, which can cause loud vibration noises and damaging impacts between the plug and the seat liner.
Selection of materials for the valve trim components, such as the plug and the seat liner, is another factor to be considered in the design of fluid control valves. The erosion of valve components by high-temperature and high-pressure fluids may lead to significant problems. For example, in some gasoline refining applications, high-temperature crude oil with erosive particulates require replacement of valve plugs made from a ductile metal about every six months. Even if the ductile metal can withstand the pressure differentials across the valve assembly and the impact energy caused by the motion of the plug relative to the seat liner, the erosive fluid can systematically wear away the control surfaces, thereby requiring replacement of the valve components. Rapid erosion of valve components results in significant maintenance and replacement costs.
Some embodiments of a fluid control valve may include a plug that is guided proximal to the fluid control constriction so as to reduce the sway of the plug relative to the seat liner, which may reduce the vibration effects and component damage caused by impacts between the plug and the seat liner. The valve plug may be pivotable relative to a valve stem so that the plug is capable of aligning itself to a seat liner. Such a configuration reduces the effect of the stack up of dimensional tolerances among manufactured components of the control valve. Thus, the fluid control valve may be manufactured to provide close guidance of the plug proximal to the control surfaces, yet may be manufactured without impracticable dimensional tolerances among the valve components.
In one illustrative embodiment, a flow control device may include a valve body having an internal cavity and a plug to control flow of fluid through the internal cavity. The plug may have a first end and a second end. The device may also include at least one plug guide disposed in the internal cavity. The plug guide may be slidably engaged with the plug proximal to the first end such that the plug is movable in a longitudinal direction from a first operative position to a second operative position. The device may further include a stem having a portion that is coupled to the plug proximal to the second end. The plug may be pivotable relative to the portion of the stem.
In another illustrative embodiment, a method of manufacturing a valve assembly may include coupling a plug to a portion of a stem such that the plug is pivotable relative to the portion of the stem. The plug may have at least one control surface formed proximal to a first end of the plug. The method may also include assembling the plug into an internal cavity of a valve body. The method may further include assembling at least one plug guide into the internal cavity of the valve body. The plug guide may have a guide surface to slidably engage the plug proximal to the first end.
These and other embodiments may be configured to provide one or more of the following advantages. First, the valve plug may be pivotable relative to a portion of the stem so that the plug is adapted to align itself to the seat liner's guiding surface during the longitudinal motion between opened and closed positions. In such circumstances, the fluid control valve may be manufactured to provide close guidance of the plug proximal to the control surfaces, yet may be manufactured without substantial limitations imposed by the accumulation of dimensional tolerances from the machined components. Second, plug's control surfaces and the guide surface of the seat liner can be configured to have a desirable flow velocity constriction without increasing the likelihood of components damage caused by vibrational impact. Third, the valve plug may be coupled to other components such that only compressive forces are applied to the plug. Such a design feature may be particularly useful in embodiments in which the plug comprises a ceramic material, Stellite® material (and other such specially designed alloys), or other materials that are generally more brittle than ductile (e.g., its ultimate compression strength is substantially larger than its ultimate tensile strength). Fourth, because the plug may be closely guided proximal to the fluid control constriction, the stem guide (if any stem guide is utilized) can be smaller and less costly. Also, the stem guide may be positioned further away from the control surfaces of the plug, thereby reducing the likelihood of erosive media entering the stem guide. Fifth, the plug and other valve trim components may be more readily rebuilt into valve devices that are already in the field because the pivotable connection of the plug may cause the alignment of machined features and clearances of the valve components to be less demanding. Sixth, the connection between the plug and the stem may be spring-loaded so as to provide a proper engagement even in circumstances where the thermal expansion of the plug is much lower than the thermal expansion of the stem. Seventh, in some high-pressure embodiments in which great seating loads and impacts are required to shut off the fluid flow, the valve device may be designed to include a metal-to-metal seat contact even though the plug and seat liner may comprise nonmetal materials that are resistant to the erosive effects of the fluid media. One or more of these and other advantages may be provided by the devices described herein.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring to
The valve body 120, when fully assembled, includes an internal cavity 110 in which certain components are disposed. In the embodiment shown in
The valve device 100 may include at least one input port 102 and at least one output port 104. The input port 102 and output port 104 may be configured to mate with adjoining equipment. For example, the input port 102 or the output port 104 may include internal or external threads, flanges, or other mechanical connectors used to engage a tube, pipe, hose, or port from another piece of equipment. In operation, fluid is communicated through the input port 102 and into the internal cavity 110. Depending on the position of the plug 140 in the internal cavity 110, the fluid may pass between the plug 140 and the seat liner 160 to the output port 104. Alternatively, the plug 140 may be positioned so that fluid flow is blocked (described in more detail below in connection with
The plug 140, the seat liner 160, or both may comprise a ceramic material or other material that is more brittle than ductile (e.g., its ultimate compression strength is substantially larger than its ultimate tensile strength). In general, ceramic and other brittle materials perform better under compressive stresses than in conditions where tensile stresses can cause crack propagation and fracture. Also, ceramic and other brittle materials may be more resistant to erosive fluids when the fluid flows substantially parallel to the ceramic surface (rather than flowing at a high velocity normal to the ceramic surface and impacting the ceramic surface). This erosion resistance characteristic may be more apparent when the fluid is a high-temperature, high-velocity fluid having erosive particulates. Certain embodiments of the flow control valve may utilize one or more of these or other characteristics of ceramic materials or other brittle materials to provide a valve device that has a longer operation life and a reduced likelihood of catastrophic failure.
Referring to
Fluid may flow from the input port 102 to the output port 104 of the valve device 100 when the plug 140 is disposed in an opened position. In such circumstances, fluid may flow into the internal cavity 100 and along the control surfaces 142, which are the surfaces that are exposed to the fluid flow along the valve trim where the fluid flow area is constricted (e.g., where the fluid velocity is substantially increased). In the embodiment depicted in
In addition, some embodiments of the plug 140 comprising ceramic or other brittle material may be manufactured using relatively straightforward machining techniques. For example, the ceramic plug 140 may be manufactured without the costly tooling that is often required for ceramic material machining. First, the base part that ultimately forms the plug 140 may be a basic cylinder or shaft of ceramic material. Molding and sintering a base shape of such a relatively simple shape is generally less costly than forming a ceramic base part having more complex geometries. Second, the grooves in the ceramic plug 140 may be formed in situ or cut into the base shape using relatively noncomplex cuts from a circular saw blade, a grinding disc, or the like. The length and depth of the grooves that at least partially define the control surfaces 142 may be selected according to the desired flow characteristics of the valve device 100.
It should be understood that the configuration of the plug 140 and seat liner 160 is not limited to the embodiment depicted in
Referring to
The plug 140 may be guided proximal to the control surfaces 142 by the inner surface 161 of the seat liner 160. The clearance between the outer circumferential surface 141 of the plug 140 and the inner surface 161 of the seat liner 160 may be sufficiently small so that the plug 140 is closely guided by the seat liner 160. In operation, the stem 130 may be actuated to cause the plug 140 to reciprocate relative to the seat liner 160. The circumferential surface 141 of the plug 140 may be slidably engaged with the seat liner surface 161 so as to guide the plug 140 as it moves between an opened position and a closed position. In some circumstances, the close tolerances of the plug 140 proximal to the plug's control constriction surfaces may limit the ability of the plug 140 to sway laterally and impact the seat liner 160, thereby reducing the likelihood of vibration effects and damage to the liner 160, the plug 140, and other components of the valve device 100.
Because the plug 140 may pivot relative to the stem 130 so as to align itself with the guiding surface 161 of the seat liner 160, the plug 140 may be closely guided proximal to the control surfaces even if the guidance and alignment of the stem 130 is not precise. Accordingly, the upper stem guide 133 may be smaller in size and may have less demanding manufacturing tolerances, which can reduce the cost of the upper stem guide 133 and its assembly into the valve device 100. In one example, the upper stem guide may comprise a firmly packed, graphite rope material that serves as both a guide and a wiper seal for the upper stem portion 134. Also, the upper stem guide 133 may be positioned further away from the fluid flow in the internal cavity 110, which can reduce the erosive wear upon the upper stem guide 130.
Still referring to
The plug head 145 may be configured to pivot within the cavity of the carrier member 135. In some embodiments, the plug head 145 may include a spherical top surface 146 that slidably engages the spring member 136. The plug head 145 may also include a curved side surface 147 that slidably engages at least one inner wall of the carrier member 135. The spherical top surface 146 and the curved side surface 147 may have a substantially similar radius of curvature, which permits the surfaces 146 and 147 to slidably adjust in a motion that is somewhat similar to a ball-and-socket engagement. As such, the plug head 145 may swivel or otherwise adjust within the cavity of the carrier member 135, which permits the plug 140 to align itself to the seat liner's inner surface 161 during the longitudinal motion of the plug 140.
In some circumstances, the stem 130 may be not perfectly aligned with the seat liner 160. For example, the manufacturing dimension tolerances of the stem 130, the stem guide 133, the upper body portion 122, the lower body portion 124, the seat liner 160, and other components may cause the final assembly of the these machined components to have a significant tolerance stack-up. Such a stack-up of dimensional tolerances may cause the stem 130 to be slightly nonaligned with the seat liner 160 after the valve device 100 is fully assembled. However, the pivoting engagement between the plug 140 and the stem 130 may permit the plug 140 to align itself with the seat liner 160 (which serves as a plug guide) even if the stem 130 is slightly nonaligned with the seat liner 160. For example, if the central axis 138 of the stem 130 is not aligned with the central axis 148 of the plug 140, the plug 140 may pivot relative to the stem 130 as the plug 140 is shifted between the opened and closed positions. The plug's pivoting engagement with the stem 130 and the plug's slidable engagement with the seat liner 160 may collectively permit the plug 140 to be closely guided by the seat liner 160. Accordingly, the valve device 100 may be manufactured to provide close guidance of the plug 140 proximal to the control surfaces 142, yet may be manufactured without substantial limitations imposed by the accumulation of dimensional tolerances from the machined components. It should be understood that, in some embodiments, a valve device may not include a seat liner, in which case the seat itself may be configured to serve as a plug guide proximal to the control surfaces 142.
In addition, some valve components such as the plug 140 and the seat liner 160 may be replaced while the valve device 100 is in the field. Replacing only certain components and reassembling the valve device 100 may cause the stem 130 to be slightly nonaligned with the seat liner 160. As previously described, the pivoting engagement between the plug 140 and the stem 130 may permit the plug 140 to align itself with the seat liner 160 even if the stem 130 is slightly nonaligned with the seat liner 160. Thus, in some embodiments, the pivoting engagement between the plug 140 and the stem 130 may simplify the maintenance and reassembly of the of valve device 100 that is operating in the service field.
Referring now to
The valve body 220, when fully assembled, may include an internal cavity 210, a stem 230, an upper stem guide 233, a plug 240, a seat liner 260, an outlet liner 280, and other components. Similar to the previously described embodiments, the plug 240 may be shifted between any partially or fully opened position and a closed position (as shown in
Still referring to
Referring to
As previously described, the plug 240 may be pivotably engaged with the stem 230 so that the plug 240 is capable of aligning itself to the seat liner 260. In the embodiment shown in
Still referring to
In some embodiments, the valve device 200 may be configured to be used in refining applications to control the flow of erosive fluid. For example, some refining applications include an erosive fluid that comprises crude oil with erosive particulates (e.g., dirt and/or catalyzing agents). The valve device 200 may control this erosive fluid under conditions where the fluid is heated to a temperature of about 600° F. to about 1,200° F. and the pressure drop across the valve device could be in the range of about 1,000 psi to about 3,500 psi. In such circumstances, the valve device 200 may have an input port size from about 1 inch to about 8 inches in diameter, and in some embodiments, the input port could be as large as 24 inches in diameter. Furthermore, certain embodiments of the plug 240 may have a longitudinal length of more than 6 inches, and the internal cavity 210 of the valve body 220 is sufficiently sized to retain such a plug 240. In these embodiments, the fluid may flow through the control constriction in a direction that is substantially parallel to the control surfaces 242 of the plug 240, which can increase the operational life of the trim components in the valve device 200.
In some alternative embodiments, the plug 240, the seat liner 260, and the outlet liner 280 may comprise another material that has characteristics similar to ceramic materials. For example, the plug and liners may comprise a certain tooling steel or a Stellite® material, which is a specially designed alloy supplied by Deloro Stellite, Inc. of Belleville, Ontario. Similar to ceramic materials, some tooling steels and the Stellite® material are generally more brittle than ductile (e.g., its ultimate compression strength is substantially larger than its ultimate tensile strength), very hard, and sufficiently resistant to erosive fluids. Because the plug and liners may operate substantially free of tensile stress concentrations, the likelihood of crack propagation or tensile fracture in the substantially brittle and hard material is reduced.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.