The present disclosure relates to fluid-cooled copper lids for arc furnaces. Arc furnaces including the copper lid and methods of making and using the same are also disclosed.
Arc furnaces can be used to produce alloys and purified metals, such as copper-beryllium alloys. Electric arc furnaces include a crucible and a set of electrodes. Electrical current arcs between electrodes and through the material contained within the crucible. This current melts the contents of the crucible. This production process can be performed via batch processes or as a continuous process.
In conventional electrical arc furnaces, the crucible is surrounded on its bottom and side (i.e. the hearth) by highly refractory materials. The crucible is then capped with an inner carbon lid and a water-cooled outer lid made of steel. The carbon lid is also refractory (i.e., chemically and physically stable at high temperatures). Despite its high temperature properties, the extremely high temperatures needed to produce copper-beryllium alloys through carbothermic reduction typically requires temperatures of around 3000° F. (˜1650° C.). This leads to excessive wear of the carbon lid, which results in furnace failure and downtime. Both the inner carbon lid and the steel water-cooled lid are also “single use” lids, requiring regular replacement.
The operation of arc furnaces is also constrained by the deterioration of the inner carbon lid and the outer water-cooled steel lid. For example, certain additives cannot be included in the charged material in the crucible, and the furnace cannot be run at higher power, without “eating” away the carbon lid even faster.
It would be desirable to provide lids for arc furnaces that are resistant to deterioration.
The present disclosure relates to fluid-cooled copper lids for arc furnaces. Using copper is contemplated to remove the problems associated with using steel. In particular, the copper lid can be continually reused, and will not deteriorate. Also, it is contemplated that the copper lid can be used by itself, without the need for the inner carbon lid. This will remove failure modes due to the carbon lid, and can also help reduce contamination of the final alloy formed within the crucible.
Disclosed in various embodiments are outer lids for an arc furnace, comprising: a top surface and a bottom surface; a plurality of electrode ports; an off-gas chute; a charge chute; and at least one cooling circuit within the outer lid for flowing a cooling fluid, each cooling circuit comprising an inlet and an outlet; wherein the outer lid is made of copper or a copper alloy.
The bottom surface of the outer lid can be shaped to promote accretion. For example, the bottom surface may comprise a plurality of pockets for accumulating accretion. Sometimes, the pockets are filled with a carbon refractory material that promotes accretion of, for example, slag.
More particularly, the plurality of electrode ports consists of three electrode ports located within a delta section of the outer lid.
In specific embodiments, the at least one cooling circuit consists of five cooling circuits within the outer lid. Two cooling circuits can be located along an outer perimeter of the outer lid and three cooling circuits can be located around the plurality of electrode ports.
In some particular embodiments, the bottom surface of the outer lid has a frustoconical disk shape.
The outer lid may further comprise a water-cooled sleeve for the off-gas chute; and/or a water-cooled sleeve for the charge chute. The outer lid can also further comprise a plurality of electrode rings, one electrode ring being used in each electrode port. In specific embodiments, each electrode ring is made from two split parts, and the seams of the parts can be shaped to prevent a direct energy path through the seams. Each electrode ring can be made from a refractory material selected from the group consisting of zirconia (ZrO2), silicon carbide, alumina (Al2O3), silica (SiO2), magnesia (MgO), tungsten carbide, boron nitride, hafnium carbide, tantalum hafnium carbide, chromia (Cr2O3), dolomite, and periclase.
In some embodiments, the bottom surface of the outer lid is flat.
Sometimes, the outer lid is formed as a single integral structure. In other embodiments, the outer lid is formed from a delta section and a base ring section which can be joined together. The delta section contains the plurality of electrode ports and contains three cooling circuits. The base ring section contains two cooling circuits.
It is specifically contemplated that the outer lid can be made from the C81100 copper alloy, which is a minimum of 99.7 wt % copper.
The outer lid can be designed so that the cooling fluid is flowed through each cooling circuit at a flow rate of about 40 gallons/minute to about 80 gallons/minute. Desirably, the cooling fluid is flowed through each cooling circuit so that a temperature differential between the inlet and the outlet is at most about 30° F.
Also disclosed herein are arc furnaces, comprising: a crucible; and a roof comprising the outer lid as described above. The roof may further comprise an inner lid comprising carbon. The roof may further comprise a support ring to which the outer lid is attached.
Also disclosed herein are processes for making a beryllium-copper alloy using the outer lid as described above. Briefly, beryllium and copper are fed into a crucible which is capped with the outer lid. The beryllium and copper are then melted to make the beryllium-copper alloy. An organic binder may also be fed into the crucible.
These and other non-limiting characteristics of the disclosure are more particularly disclosed below.
The following is a brief description of the drawings, which are presented for the purposes of illustrating the exemplary embodiments disclosed herein and not for the purposes of limiting the same.
A more complete understanding of the components, processes and apparatuses disclosed herein can be obtained by reference to the accompanying drawings. These figures are merely schematic representations based on convenience and the ease of demonstrating the present disclosure, and are, therefore, not intended to indicate relative size and dimensions of the devices or components thereof and/or to define or limit the scope of the exemplary embodiments.
Although specific terms are used in the following description for the sake of clarity, these terms are intended to refer only to the particular structure of the embodiments selected for illustration in the drawings, and are not intended to define or limit the scope of the disclosure. In the drawings and the following description below, it is to be understood that like numeric designations refer to components of like function.
The singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
As used in the specification and in the claims, the term “comprising” may include the embodiments “consisting of” and “consisting essentially of.” The terms “comprise(s),” “include(s),” “having,” “has,” “can,” “contain(s),” and variants thereof, as used herein, are intended to be open-ended transitional phrases, terms, or words that require the presence of the named components/steps and permit the presence of other components/steps. However, such description should be construed as also describing compositions or processes as “consisting of” and “consisting essentially of” the enumerated components/steps, which allows the presence of only the named components/steps, along with any impurities that might result therefrom, and excludes other components/steps.
Numerical values in the specification and claims of this application should be understood to include numerical values which are the same when reduced to the same number of significant figures and numerical values which differ from the stated value by less than the experimental error of conventional measurement technique of the type described in the present application to determine the value.
All ranges disclosed herein are inclusive of the recited endpoint and independently combinable (for example, the range of “from 2 to 10” is inclusive of the endpoints, 2 and 10, and all the intermediate values).
The term “about” can be used to include any numerical value that can vary without changing the basic function of that value. When used with a range, “about” also discloses the range defined by the absolute values of the two endpoints, e.g. “about 2 to about 4” also discloses the range “from 2 to 4.” The term “about” may refer to plus or minus 10% of the indicated number.
The present disclosure relates to copper lids for arc furnaces. Arc furnaces including the lids and methods of making and using the same are also disclosed.
It may be helpful to first describe the lids currently used with arc furnaces, so that a clear understanding of the differences can be attained.
The bottom surface of the lid is flat, and here, the top surface is also flat, so that the steel lid has a relatively constant thickness from the center to the perimeter. In this regard, the inner carbon lid has a thickness of about 14 inches, and the outer steel lid has a thickness of about 1.5 inches.
The inner carbon lid 550 has a diameter that is about equal to that of the crucible 530, and the carbon lid rests on the crucible. In contrast, the steel lid 560 has a diameter sufficient to cover both the crucible 530 and the refractory material 540, and rests on a ledge of the sidewall 510.
As discussed above, one problem with the conventional roof of the furnace is that the carbon lid deteriorates and fails, particularly at the high temperatures needed to make copper-beryllium alloys. It would be desirable to provide a roof that does not need to rely on the inner carbon lid, and if possible it would be desirable to get rid of the carbon lid entirely. This goal can be advanced with the water-cooled outer lids of the present disclosure, which are made of copper or a copper alloy. This lid can be lined with minimal carbon on the underside. Desirably, it is contemplated that an autogenous lining of furnace dross can be formed under the lid, acting as a refractory material instead of needing the inner carbon lid.
The outer lid of the present disclosure is made from pure copper or a copper alloy. In some embodiments, the copper alloy is C81100, which contains a minimum of 99.7 wt % copper. 81100 has an ultimate tensile strength of about 25 ksi and a typical Brinell hardness of 44 at 500 lb load.
Referring first to
In the illustrated system, there are five cooling circuits. The first cooling circuit 306 includes an inlet 306a and an outlet 306b. The second cooling circuit 307 includes an inlet 307a and an outlet 307b. The third cooling circuit 308 includes an inlet 308a and an outlet 308b. The fourth cooling circuit 309 includes an inlet 306a and an outlet 309b. The fifth cooling circuit 310 includes an inlet 310a and an outlet 310b. It is noted that the location of the inlets and outlets can be reversed as desired for each cooling circuit, i.e. the designation of one end as an inlet is arbitrary.
Three of the cooling circuits 306, 307, 308 are relatively short, and are focused in the delta section around the three electrode ports. Each of these cooling circuits 306, 307, 308 completely surrounds the perimeter of one electrode port and a portion of the perimeter of another electrode port. The other two cooling circuits 309, 310 run around the outer perimeter of the lid. The cooling circuits are also arranged to provide space for the off-gas chute and the charge chute. It is noted that in embodiments, the three cooling circuits focused in the delta section have a smaller diameter than the two cooling circuits around the outer perimeter (1.25 inches versus 1.0 inches).
Cooling fluid flows through the cooling circuits to remove heat. Generally, the cooling fluid can be flowed through each circuit at a flow rate of about 40 gallons/minute (GPM) to about 80 GPM, including from about 45 GPM to about 65 GPM. The flow rate should be such that the temperature differential between the inlet and the outlet is at most about 30° F., more ideally about 20° F. One advantage of this cooling system is that each cooling circuit can be individually controlled to provide additional cooling fluid to those areas of the copper lid that may be exposed to higher temperatures. In contrast, the prior art system in
Referring now to
In
Referring to
It is noted that one aspect of the copper lid 111 is its smaller diameter when compared to the steel lid 560 of
Referring now to
The electrode rings 400 can be made as one integral piece. However, in some particular embodiments, the electrode ring is made from a pair of split parts. FIG. 9 is a perspective view of one such split part 405. As can be seen, two such split parts will together form a solid ring. The split part is in the form of cylindrical sidewall that has been cut in half by a plane oriented along the cylinder's axis of symmetry. The part has a curved face 406 at one end and a complementary curved face 408 on the other end (along the plane that cut the cylinder in half). This shape allows for replacement of the electrode ring without having to remove the copper lid and/or electrodes from the furnace. This design does not allow for a direct energy path through the seams of the electrode ring, either. A lip 410 is present as well on a top end. The electrode ring can be made from a refractory material selected from the group consisting of zirconia (ZrO2), silicon carbide, alumina (Al2O3), silica (SiO2), magnesia (MgO), tungsten carbide, boron nitride, hafnium carbide, tantalum hafnium carbide, chromia (Cr2O3), dolomite, and periclase. In particular embodiments, silicon carbide (SiC) is used.
It is particularly contemplated that the arc furnace using the copper outer lid is used to make a beryllium-containing alloy (e.g., a copper-beryllium alloy). In some embodiments, the copper-beryllium alloy further contains nickel and/or cobalt.
In particular embodiments, the alloy is a beryllium-copper master alloy containing from about 3.5 wt % to about 4.5 wt % of beryllium, and balance copper, which has a density of about 0.29 lbs/in3 and a typical melting temperature of about 1600° F. Alternatively, the alloy is a beryllium-copper master alloy containing from about 9.5 wt % to about 10.5 wt % of beryllium, and balance copper, which has a density of about 0.29 lbs/in3 and a typical melting temperature of about 1625° F.
The alloy may be C17000. C17000 has the following composition:
The alloy may be C17200. C17200 has the following composition:
The alloy may be C17410. C17410 has the following composition:
The alloy may be C17500. C17500 has the following composition:
The alloy may be C17510. C17510 has the following composition:
The alloy may be Brush Alloy 310. Brush Alloy 310 has the following composition:
The alloy may be Materion Alloy 390. Alloy 390 has the following composition:
Not having to worry about lid deterioration allows increased flexibility for several operating parameters. For example, an organic binder can be used for pellet production. Use of an organic binder produces better pellets in a conventional furnace, but is detrimental to the carbon lid. The furnace could also be run at higher power, which would increase the reaction speed and produce more beryllium. In furnaces containing conventional carbon lids, higher power “eats” away at the lids.
The copper lid can be retrofit to an existing arc furnace or be a component of a new arc furnace. Optionally, fluid-cooled copper panels can also be used along the side of the furnace.
The present disclosure has been described with reference to exemplary embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the present disclosure be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application claims priority to U.S. Provisional Patent Application Ser. No. 62/173,051, filed Jun. 9, 2015, the entirety of which is fully incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
2766736 | Del Buono | Oct 1956 | A |
3396954 | Krogsrud | Aug 1968 | A |
3665085 | Dumont-Fillon | May 1972 | A |
3967048 | Longenecker | Jun 1976 | A |
4021603 | Nanjyo | May 1977 | A |
4197422 | Fuchs | Apr 1980 | A |
4425656 | Kuhlmann | Jan 1984 | A |
4443880 | Buhler | Apr 1984 | A |
4491952 | Honkaniemi | Jan 1985 | A |
4587658 | Ball | May 1986 | A |
4654076 | Camacho | Mar 1987 | A |
6084902 | Hawk | Jul 2000 | A |
6280681 | MacRae | Aug 2001 | B1 |
8780952 | Schwer | Jul 2014 | B2 |
20020027939 | Tischenko | Mar 2002 | A1 |
20080192795 | Ronnberg | Aug 2008 | A1 |
20080296006 | Manasek | Dec 2008 | A1 |
20110243179 | Schwer | Oct 2011 | A1 |
20130316295 | Maggioli | Nov 2013 | A1 |
20140029643 | Lee | Jan 2014 | A1 |
20160229698 | Nabeta | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
62033731 | Feb 1987 | JP |
2001-215087 | Aug 2001 | JP |
Entry |
---|
Machine translation of Japan Patent document No. 2001-215,087, Oct. 2018. |
Number | Date | Country | |
---|---|---|---|
62173051 | Jun 2015 | US |