The invention relates to a fluid cooling apparatus comprising at least one heat exchanger unit for cooling at least one working or cooling fluid heated or used during the operation of mobile working machines having an engine covering to cover the engine, motor, or chassis parts, and, furthermore, comprising a tank that contains the working and/or cooling fluid and has a predeterminable outer wall contour.
Cooling devices for working or cooling fluids can be used for a plurality of applications and are readily available in a variety of embodiments on the market. One important area of application of such cooling devices is the use in working machines with a hydraulic system. For example, it can be an open fluid circuit, for example, in the form of working hydraulics or as a closed hydrostatic drive, for example, in the form of a travel drive. For example, DE 10 2008 027 424 A1 discloses a fluid cooling apparatus for hydraulic oil that serves as the working fluid for the hydrostatic drive of a mobile working machine.
The installation of cooling devices inside the covering creates for working machines not only a spatial problem due to the available installation space, but also thermal problems. Even though the available installation space is typically extremely limited, an adequate and safe removal of the heat dissipated by the heat exchanger unit must be guaranteed. As a result, customarily partitions are installed, which partitions form a seal relative to the respective covering to prevent the cooling air, which is heated inside the covering, from being sucked in and flowing back again to the cooling primary air stream. However, such seals have been demonstrated to fail due to vibrations and shocks during the rough operation of mobile working machines and, hence, create thermal problems.
An object of the present invention is to provide an improved fluid cooling apparatus of the type under consideration in such a way that it is better able to satisfy the requirements to be applied to mobile working machines during operational use.
The invention basically achieves this object by a fluid cooling apparatus having at least parts of the outer wall contour of the tank being a component of the engine covering.
Since the tank is a component of the engine covering and the pertinent tank surface is not located under the covering and is exposed to the environment, the tank itself contributes to the improved removal of heat. Since it is possible to dispense with that part of the covering that is taken over by the tank itself, the result is additionally a reduction in the structural weight.
The arrangement can be configured in such an advantageous way that those parts of the outer wall contour of the tank that face the surrounding area merge with the outer engine covering along a connecting point or line as a component of the outer engine covering. As a result, the tank itself can form a connecting point of the outer chassis of the working machine, for example, in the form of a front or rear section that merges with an engine compartment hood at the connecting point.
In this context, the connecting point with a distinct advantage can produce seamlessly the continuous transition between the pertinent outer engine covering, for example, in the form of the engine compartment hood, and the outer wall contour of the tank.
If, at the same time, a gasket, which extends in the shape of a line, is arranged between the outer engine covering, for example, the hood, and the outer wall contour of the tank along the connecting point, then there is the distinct advantage that the tank itself performs the function of a partition that eliminates the risk of being able to suck in its own heated air when in operation.
In view of an especially compact design, advantageously the tank has an integrated receiving channel for receiving a filter unit in the peripheral region of the tank housing, and the tank has a fan device in the region of the tank's face side facing the surrounding area outside the vehicle. This fan device is also integrated with its fan cover into the outer engine covering as a component of the outer engine covering.
To form an especially compact unit, the tank can be provided with a continuous central recess inside the tank housing. The fan blades are driven inside this central recess.
If, in this case, the heat exchanger unit is connected to the tank housing in the manner of an air fin cooler on the side opposite the fan device or is an integral component of the tank housing, then the entire system of the fluid cooling apparatus forms a combined structural unit that requires only a small amount of installation space in the working machine.
The filter device that belongs to the fluid cooling apparatus can have, in an especially advantageous way, valve units that include, for example, a precharge valve, a replenishing valve, or a bypass valve. An uninterrupted supply of fluid, of which the temperature is controlled in a suitable way by the cooling device, to the pertinent consumer is guaranteed.
Other objects, advantages and salient features of the present invention will become apparent from the following detailed description, which, taken in conjunction with the annexed drawings, discloses a preferred embodiment of the present invention.
Referring to the drawings that form a part of this disclosure:
The hydraulic circuit diagram of the fluid cooling apparatus 5 shown in
Furthermore, as clear from
In every instance, a definable return amount flows to the filter device 12 with its first filter element 34. Then the resulting filtered and, therefore, cleaned fluid flows through the output line 36 to a second filter element 38, which is located upstream of the consumer 14 with the feed pump. In an additional secondary branch 40, the output line 36 subsequently opens into a replenishing device 42. The replenishing device 42 is oriented relative to the tank side 44 in the secondary branch 40 and has a precharge valve 46 that passes over to the tank side 44 in its open position. In the opposite direction, precharge valve 46 assumes its closed position shown in
The first filter element 34 in a parallel connection has a bypass valve 50 that is designed as a spring-loaded check valve, opens toward the tank side 44 and, otherwise, is set to a bypass opening pressure of, for example, 2 bar. If the filter element 34 of the filter device 12 is fouled and is thus blocked, the amount of fluid can travel to the hydraulic consumer 14 when the bypass valve 50 is opened. In such a bypass case, the filtration of the return amount to the consumer 14 is carried out by the second filter element 38.
The precharge pressure of, for example, 0.5 bar on the precharge valve 46 ensures that pressurized fluid coming from the filter device 12 is available to the hydraulic consumer 14. If the precharge pressure of the fluid return amount, which travels from the first filter element 34 into the output line 36 and the secondary branch 40, rises, the precharge valve 46 opens toward the tank side and relieves the return amount until the nominal pressure provided for the consumer 14, in the present case 0.5 bar, is reached. If too little fluid flows subsequently into the hydraulic circuit 20 by way of the first and second connecting point 26, 28, the intake side of the feed pump for the consumer 14 allows a replenishment from a tank storage amount in that the replenishing valve 48 of the replenishing device 42 opens in the direction of the consumer 14 to ensure a continued flow of the fluid medium. Hence, when the consumer 14 is operating, there is never an undersupply of consumer fluid, a feature that for safety reasons constitutes a necessity for operating hydrostatic travel drives.
In the region of the front wall 25, the central recess 33 of the tank housing accommodates a fan device 35 having fan blades 37 that are driven by a hydraulic motor 18 (
The tank 9, made preferably of a synthetic plastic material, such as polyamide PA6, in a rotational molding process or made as a molded sheet metal part, has a fill port 51 located in a centered manner at the top, on the rear wall 27. The interior of the tank 9 is fluidically connected directly to the receiving channel 31 containing the filter device 12, so that a direct fluid connection with the replenishing line 52 (
Instead of a central filling option for the fluid tank 9, tank filling on the edge or in any other position is also possible. The outer shape of the tank can be adapted to the contour of the engine covering and can also have a shape according to the drawing in
While one embodiment has been chosen to illustrate the invention, it will be understood by those skilled in the art that various changes and modifications can be made therein without departing from the scope of the invention as defined in the claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2010 045 795 | Sep 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/004052 | 8/12/2011 | WO | 00 | 5/10/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/034623 | 3/22/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1081023 | Fevre | Dec 1913 | A |
1192218 | Masury | Jul 1916 | A |
1311528 | Muir | Jul 1919 | A |
1978892 | Bolkcom | Oct 1934 | A |
2979205 | Allin | Apr 1961 | A |
3996999 | Termont et al. | Dec 1976 | A |
4771844 | Bassett | Sep 1988 | A |
5285863 | Miki | Feb 1994 | A |
6179043 | Betz | Jan 2001 | B1 |
6871697 | Albright et al. | Mar 2005 | B2 |
6929739 | Pohl et al. | Aug 2005 | B2 |
20050077062 | Fukazawa et al. | Apr 2005 | A1 |
20080023174 | Nakae et al. | Jan 2008 | A1 |
20080135209 | Lowe et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
25 02 242 | Aug 1975 | DE |
11 2005 000 535 | Jan 2007 | DE |
10 2008 026 200 | Dec 2009 | DE |
10 2008 027 424 | Dec 2009 | DE |
102008026200 | Dec 2009 | DE |
2 426 277 | Mar 2012 | EP |
57133450 | Aug 1982 | JP |
Entry |
---|
Translation of Japanese Patent Document JP 57133450 U entitled Translation-JP 57133450 U, translated Dec. 2015. |
Translation of German Patent Document DE 102008026200 Al entitled Translation-DE 102008026200 A1, translated Apr. 2015. |
Number | Date | Country | |
---|---|---|---|
20130220574 A1 | Aug 2013 | US |