The present disclosure relates generally to fluid pumps/motors. More particularly, the present disclosure relates to orbiting gerotor type fluid pumps/motors.
An orbiting gerotor motor includes a set of matched gears having a stationary outer ring gear and a rotating inner gear (i.e., a rotor). The inner gear is coupled to an output shaft such that torque can be transferred from the inner gear to the shaft. The outer ring gear has one more tooth than the inner gear. A commutator valve plate rotates at the same rate as the inner gear. The commutator valve plate provides drive fluid pressure and tank fluid pressure to selected displacement chambers between the inner and outer gears to rotate the inner gear relative to the outer gear. Certain georotor motors have been designed with rollers incorporated into the displacement chambers between the inner gears and the outer gears. An example of this type of motor is the Geroler® hydraulic motor sold by Eaton Corporation. In this design, the rollers reduce wear and friction thereby allowing the motors to be efficiently used in higher pressure applications. While such rollers provide enhanced efficiency and friction reduction, further improvements are desirable in this area.
An aspect of the present disclosure relates to a fluid device. The fluid device includes a valve member defining a first plurality of fluid passages in fluid communication with a first fluid port of the fluid device and a second plurality of fluid passages in fluid communication with a second fluid port of the fluid device. A displacement assembly is in commutating fluid communication with the valve member. The displacement assembly includes a ring defining a central bore and a plurality of roll pockets disposed about the central bore. A plurality of rolls is disposed in the plurality of roll pockets. A rotor is disposed in the central bore. The ring, the plurality of rolls and the rotor defining a plurality of expanding and contracting volume chambers. Fluid is communicated to each of the roll pockets so that when the volume chambers immediately adjacent to one of the roll pockets are in fluid communication with one of the first and second ports, that roll pocket is in fluid communication with the other of the first and second ports.
Another aspect of the present disclosure relates to a fluid device. The fluid device includes a valve housing defining a first fluid port and a second fluid port. A valve member is disposed in the valve housing. The valve member defines a first plurality of fluid passages in fluid communication with the first fluid port and a second plurality of fluid passages in fluid communication with the second fluid port. The valve member has a first axial end. A valve plate has a valve surface that contacts the first axial end of the valve member. The valve plate defines a plurality of commutating passages and a plurality of recesses. The commutating passages are in commutating fluid communication with the first and second pluralities of fluid passages of the valve member. A displacement assembly is in commutating fluid communication with the valve member. The displacement assembly includes a ring defining a central bore and a plurality of roll pockets disposed about the central bore. A plurality of rolls is disposed in the plurality of roll pockets. A rotor is disposed in the central bore. The ring, the plurality of rolls and the rotor defining a plurality of expanding and contracting volume chambers. Fluid from the first and second ports is communicated to each of the roll pockets during movement of the rotor so that when the volume chamber immediately before one of the roll pockets and the volume chamber immediately after that roll pocket are both in fluid communication with one of the first and second ports, that roll pocket is in fluid communication with the other of the first and second ports.
Another aspect of the present disclosure relates to a method for pressurizing a roll pocket of a displacement assembly of a fluid device. The method includes providing a fluid device having a displacement assembly. The displacement assembly includes a ring defining a central bore and a plurality of roll pockets disposed about the central bore. A plurality of rolls is disposed in the plurality of roll pockets. A rotor is disposed in the central bore. The ring, the plurality of rolls and the rotor define a plurality of expanding and contracting volume chambers. Fluid is communicated from a first port of the fluid device and a second port of the fluid device to each of the roll pockets so that when the volume chamber immediately before one of the roll pockets and the volume chamber immediately after that roll pocket are both in fluid communication with one of the first and second ports, that roll pocket is in fluid communication with the other of the first and second ports.
A variety of additional aspects will be set forth in the description that follows. These aspects can relate to individual features and to combinations of features. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the broad concepts upon which the embodiments disclosed herein are based.
Reference will now be made in detail to the exemplary aspects of the present disclosure that are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like structure.
Referring now to
In the depicted embodiment, the fluid device 10 includes a mounting plate 12, a displacement assembly 14, a valve plate 16 and a valve housing 18. While the fluid device 10 is shown in
The fluid device 10 includes a first axial end 20 and an oppositely disposed second axial end 22. In the depicted embodiment, the mounting plate 12 is disposed at the first axial end 20 while the valve housing 18 is disposed at the second axial end 22. The displacement assembly 14 is disposed between the mounting plate 12 and the valve housing 18. The valve plate 16 is disposed between the displacement assembly 14 and the valve housing 18.
The mounting plate 12, the displacement assembly 14, the valve plate 16 and the valve housing 18 are held in tight sealing engagement by a plurality of fasteners 24 (e.g., bolt, screws, etc.). In the depicted embodiment, the fasteners 24 are in threaded engagement with threaded openings 25 in the mounting plate 12.
Referring now to
The ring assembly 26 includes a ring 30 and a plurality of rolls 32. In the depicted embodiment, the ring 30 is rotationally stationary relative to the fluid device 10. The ring 30 is manufactured from a first material. In one embodiment, the first material is ductile iron. In another embodiment, the first material is grey iron. In another embodiment, the first material is steel. The ring 30 includes a first end face 34 that is generally perpendicular to a central axis 36 of the ring 30 and an oppositely disposed second end face 38. The ring 30 has a width W that is measured from the first end face 34 to the second end face 38.
The ring 30 defines a central bore 40 that extends through the first and second end faces 34, 38. The ring 30 further defines roll pockets 42 that are symmetrically disposed about the central bore 40. In the depicted embodiment, the ring 30 includes nine roll pockets 42. In another embodiment, the ring 30 includes seven roll pockets 42. Each of the roll pockets 42 defines a roll surface 44. The roll surface 44 is partially cylindrical in shape. In the depicted embodiment, each roll surface 44 extends a circumferential angular distance that is less than or equal to about 180 degrees. Each of the roll surfaces 44 is adapted for sliding engagement with one of the rolls 32.
The rolls 32 are disposed in the roll pockets 42 of the ring 30. Each of the rolls 32 defines a central axis 46 about which the corresponding roll 32 rotates. Each of the rolls 32 includes a first end face 48, an oppositely disposed second end face 50 and an outer surface 52 that extends between the first and second end faces 48, 50. The outer surface 52 is generally cylindrical in shape. Each of the rolls 32 has a width measured from the first end face 48 to the second end face 50. The width of the roll 32 is less than the width W of the ring 30.
The rotor 28 of the displacement assembly 14 is eccentrically disposed in the central bore 40 of the ring assembly 26. The rotor 28 is manufactured from a second material. In one embodiment, the second material is different from the first material. In one embodiment, the second material is steel. The rotor 28 includes a first end surface 54 and an oppositely disposed second end surface 56.
The rotor 28 includes a plurality of external tips 58 and a plurality of internal splines 60 that extend between the first and second end surfaces 54, 56. In the depicted embodiment, the number of external tips 58 on the rotor 28 is one less than the number of rolls 32 in the ring assembly 26. The rotor 28 is adapted to orbit about the central axis 36 of the ring 30 and rotate in the central bore 40 of the ring assembly 26 about an axis 62 of the rotor 28. The rotor 28 orbits N times about the central axis 36 of the ring 30 for every complete revolution of the rotor 28 about the axis 62 where N is equal to the number of external tips 58 of the rotor 28. In the depicted embodiment, the rotor 28 orbits eight times per every complete rotation of the rotor 28.
The ring assembly 26 and the external tips 58 of the rotor 28 cooperatively define a plurality of volume chambers 64. As the rotor 28 orbits and rotates in the ring assembly 26, the volume chambers 64 expand and contract.
Referring now to
In the depicted embodiment, the internal splines 60 of the rotor 28 are also in engagement with a first set of external splines 76 formed on a first end 78 of a valve drive 80. The valve drive 80 includes an oppositely disposed second end 82 having a second set of external splines 84. The second set of external splines 84 are in engagement with a set of internal splines 86 formed about an inner periphery of a valve member 88 that is rotatably disposed in a valve bore 90 of the valve housing 18. The valve drive 80 is in splined engagement with the rotor 28 and the valve member 88 to maintain proper timing between the rotor 28 and the valve member 88.
Referring now to
Referring now to
The first plurality of fluid passages 98 of the valve member 88 is in fluid communication with the valve bore 90. The second plurality of fluid passages 100 is in fluid communication with the annular cavity 110.
A valve-seating mechanism 112 biases the valve member 88 toward a valve surface 114 of the valve plate 16 so that the first axial end 92 of the valve member 88 contacts the valve surface 114 of the valve plate 16. A valve-seating mechanism suitable for use with the fluid device 10 has been described in U.S. Pat. No. 7,530,801, which is hereby incorporated by reference in its entirety.
Referring now to
The valve plate 16 defines a plurality of commutating passages 118. The number of commutating passages 118 is equal to the number of volume chambers 64 in the displacement assembly 14. In the depicted embodiment, the number of commutating passages 118 is equal to nine. The commutating passages 118 extend through the valve surface 114 and the ring surface 116 of the valve plate 16. Each of the commutating passages 118 includes a valve opening 120 at the valve surface 114 and a volume chamber opening 122 at the ring surface 116. In the depicted embodiment, the commutating passages 118 are aligned with the volume chambers 64 of the displacement assembly 14 when the valve plate 16 is disposed in the fluid device 10. Each commutating passage 118 is adapted to provide commutating fluid communication between the first and second pluralities of fluid passages 98, 100 of the valve member 88 and the corresponding volume chamber 64.
The valve plate 16 further defines a plurality of recesses 124. Each of the recesses 124 includes an opening 126 at the valve surface 114 of the valve plate 16. In the depicted embodiment, the recesses 124 do not extend through the ring surface 116. The recesses 124 and the commutating passages 118 are alternately disposed on the valve surface 114 of the valve plate 16.
As the valve member 88 rotates, the first axial end 92 of the valve member 88 slides in a rotary motion against the valve surface 114 of the valve plate 16. The valve member 88 and the valve plate 16 provide commutating fluid communication to the volume chambers 64 of the displacement assembly 14. When the fluid device 10 is operated as a fluid motor, pressurized fluid enters the volume chambers 64 through the commutating fluid communication between the valve member 88 and the valve plate 16. The pressurized fluid in the volume chambers 64 of the displacement assembly 14 generates torque which causes the rotor 28 to rotate and orbit in the ring assembly 26. As the rotor 28 rotates and orbits in the ring assembly 26, the main drive shaft 66 rotates.
Starting torque is a value that is measured in order to determine the starting capability of a fluid device. Starting torque is the amount of torque developed by a fluid motor on startup in response to pressurized fluid in the volume chambers. Typically, starting torque is less than running torque of the fluid motor. Starting torque is influenced by the mechanical efficiency of the fluid motor.
Referring now to
Each of the roll pockets 42 of the ring 30 of the displacement assembly 14 defines a channel 152. In one embodiment, the channel 152 extends at least a portion of the length of the roll 32. In another embodiment, the channel 152 extends the length of the roll 32. In another embodiment, the channel 152 extends through the first and second end faces 34, 38 of the ring 30. The channel 152 includes an opening at the roll surface 44. In the depicted embodiment, the channel 152 is generally aligned with a location in the roll pocket 42 having the greatest radial distance from the central axis 36 of the central bore 40.
In the depicted embodiment, the channel 152 is arcuate in shape. In the subject embodiment, the channel 152 includes a radius that is less than a radius of the roll pocket 42. When the roll 32 is disposed in the roll pocket 42, the channel 152 provides a clearance space 154 between the roll 32 and the roll pocket 42. The clearance space 154 is adapted to receive fluid.
Referring now to
In the depicted embodiment, each of the fluid passages 156 includes a fluid restriction 162. The fluid restriction 162 is a fixed orifice having an inner diameter that is less than an inner diameter of the fluid passage 156. The fluid restriction 162 is sized to substantially restrict fluid flow through the fluid passage 156 when the fluid device 10 is operated above a speed threshold. In one embodiment, the speed threshold is less than or equal to about 10 revolutions per minute (RPM). In another embodiment, the speed threshold is less than or equal to about 5 RPM. In another embodiment, the speed threshold is in a range of about 3 to about 5 RPM.
Referring now to
As the fluid device 10 continues operating, the fluid restrictions 162 of the fluid passages 156 get saturated as the speed of the fluid device 10 increases above the speed threshold. As the fluid restrictions become saturated, fluid communication between the fluid passages 156 and the channel 152 become substantially blocked. As the speed of the fluid device 10 increases above the speed threshold, pressurized fluid in the channels 152, which is supplied through the fluid passages 156, is not required since the rolls 32 will rotate about their central axes 46 in the roll pockets 42.
Referring now to
The first and second openings 102, 104 are alternately disposed on the first axial end 92 of the valve member 88. The first openings 102 are in fluid communication with the first port 106 of the valve housing 18 while the second openings 104 are in fluid communication with the second port 108 of the valve housing 18. In one example, the first port 108 receives fluid from a fluid source (e.g., a fluid pump) while the second port 108 communicates fluid to a fluid reservoir (e.g., tank).
As the valve member 88 rotates, the first and second openings 102, 104 provide fluid to the commutating passages 118, which provide fluid to the volume chambers 64, and the recesses 124, which provide fluid to the channels 152, in the valve plate 16. In the depicted embodiment, each commutating passage 118 of the valve plate 16 is in fluid communication with the first and second openings 102, 104 during a single orbit of the rotor 28 while each recess 124 is in fluid communication with the first and second openings 102, 104 during the single orbit of the rotor 28.
As the volume chambers 64 are in fluid communication with the commutating passages 118 and the channels 152 are in fluid communication with the recesses 124, each volume chamber 64 and channel 152 is in fluid communication with the first and second ports 106, 108 during a single orbit of the rotor 28. When the volume chamber 64 that is immediately before a roll pocket 42 and the volume chamber 64 that is immediately after the roll pocket 42 (hereinafter referred to as the volume chambers 64 that are immediately adjacent to the roll pocket 42) are both in fluid communication with one of the first and second ports 106, 108, the channel 152 of that roll pocket 42 is in fluid communication with the other of the first and second ports 106, 108. Therefore, when the volume chambers 64 that are immediately adjacent to the roll pocket 42 are both receiving fluid from one of the first and second ports 106, 108, the channel 152 of that roll pocket 42 is receiving fluid from the other of the first and second ports 106, 108.
When the volume chambers 64 that are immediately adjacent to a roll pocket 42 are subjected to fluid at high pressure (e.g., fluid from the first port 106), the rotor 28 is being pushed away from the roll 32 in that roll pocket 42. Therefore, it is not necessary to provide fluid at high pressure to the channel 152 of the roll pocket 42. However, when the volume chambers 64 that are immediately adjacent to a roll pocket 42 are subjected to fluid at low pressure (e.g., fluid from the second port 108), the rotor 28 is being pushed into the roll 32 in that roll pocket 42 from high pressure fluid acting on the other side of the rotor 28. Therefore, in order to increase the mechanical efficiency, fluid at high pressure is communicated to the channel 152 of that roll pocket 42.
Various modifications and alterations of this disclosure will become apparent to those skilled in the art without departing from the scope and spirit of this disclosure, and it should be understood that the scope of this disclosure is not to be unduly limited to the illustrative embodiments set forth herein.
This application is a National Stage Application of PCT/US2011/058272, filed 28 Oct. 2011, which claims benefit of U.S. Patent Application Ser. No. 61/408,318 filed on 29 Oct. 2010, and which applications are incorporated herein by reference. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2011/058272 | 10/28/2011 | WO | 00 | 7/25/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/058527 | 5/3/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2905095 | Hartmann et al. | Sep 1959 | A |
3401641 | Adams et al. | Sep 1968 | A |
3591320 | Woodling | Jul 1971 | A |
3680987 | Ohrberg | Aug 1972 | A |
3692439 | Woodling | Sep 1972 | A |
3718411 | Pollman | Feb 1973 | A |
3915603 | Swedberg | Oct 1975 | A |
3930766 | Swedberg | Jan 1976 | A |
4008015 | McDermott | Feb 1977 | A |
4082480 | McDermott | Apr 1978 | A |
4480971 | Swedberg | Nov 1984 | A |
7530801 | Hicks | May 2009 | B2 |
7726958 | Pedersen et al. | Jun 2010 | B2 |
Number | Date | Country |
---|---|---|
1 394 128 | May 1975 | GB |
Entry |
---|
International Search Report and Written Opinion for PCT/US2011/058272 mailed Jun. 26, 2013. |
“Industrial Hydraulics Manual: Your Comprehensive Guide to Industrial Hydraulics”, Eaton Corporation, Eaton Fuid Power Training, 2010, Chapter 7: Hydraulic Actuators, pp. 147-182. |
Number | Date | Country | |
---|---|---|---|
20140147321 A1 | May 2014 | US |
Number | Date | Country | |
---|---|---|---|
61408318 | Oct 2010 | US |