A fluid dispenser assembly includes first and second fluid containers that are selectively installable in a fluid dispenser. The first fluid container is refillable from the second fluid container.
Conventional cartridge based soap dispensers use disposable refill cartridges. These disposable refill cartridges are single-use type cartridges and thus incapable of being refilled.
This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key factors or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
In an example, a first fluid container and a second fluid container are provided. At least one of the first fluid container or the second fluid container comprises a body comprising at least one wall that defines a reservoir for storing fluid therein. An input port is in fluid communication with the reservoir. An output port is in fluid communication with the reservoir. A dispensing mechanism is associated with the output port. The dispensing mechanism is selectively operable between a closed position and an opened position. The output port of the second fluid container is configured for insertion into the input port of the first fluid container. When the output port of the second fluid container is inserted into the input port of the first fluid container, the first fluid container facilitates movement of the dispensing mechanism into an opened position to facilitate dispensation of fluid from the reservoir of the second fluid container, through the output port of the second fluid container, through the input port of the first fluid container, and into the reservoir of the first fluid container.
In another example, a fluid container comprises a body comprising at least one wall that defines a reservoir for storing fluid therein. An input port is in fluid communication with the reservoir. An output port is in fluid communication with the reservoir. A dispensing mechanism is associated with the output port. The dispensing mechanism is selectively operable between a closed position, in which the fluid is not dispensed from the reservoir, and an opened position, in which the fluid is dispensed from the reservoir. The output port is configured to interface with at least one of a second input port of a second fluid container or a support of a housing. The input port is configured to interface with a third output port of a third fluid container.
In another example, a fluid container comprises a body comprising at least one wall that defines a reservoir for storing fluid therein. An input port is in fluid communication with the reservoir. An output port is in fluid communication with the reservoir. A dispensing mechanism is associated with the output port. The dispensing mechanism is selectively operable between a closed position, in which the fluid is not dispensed from the reservoir, and an opened position, in which the fluid is dispensed from the reservoir. The output port is configured to interface with a support of a housing. The input port is configured to interface with a second output port of a second fluid container. When the second output port of the second fluid container interfaces with the input port, the dispensing mechanism is selectively operable to move from the closed position to the opened position to facilitate dispensation of a second fluid from a second reservoir of the second fluid container, through the second output port of the second fluid container, through the input port, and into the reservoir of the fluid container.
The following description and annexed drawings set forth certain illustrative aspects and implementations. These are indicative of but a few of the various ways in which one or more aspects can be employed. Other aspects, advantages, and/or novel features of the disclosure will become apparent from the following detailed description when considered in conjunction with the annexed drawings.
Embodiments are hereinafter described in detail in connection with the views of
The fluid dispenser 10 can include a lower support 24 that is configured to support the first fluid container 20. The fluid dispenser 10 can also include a motor 26 and batteries 28 for powering the motor 26. With the first fluid container 20 installed on the lower support 24, the motor 26 can actuate a pump (not shown) to facilitate dispensation of fluid onto a user's hands placed below. The fluid dispenser 10 can include a proximity sensor (not shown) or other detection device that defines a detection zone (not shown) below the fluid dispenser 10. A user can actuate the fluid dispenser 10 by placing his/her hands (or other object) within the detection zone, which can initiate operation of the motor 26 to dispense fluid onto the user's hands. In an alternative embodiment, a user can actuate the fluid dispenser 10 by manually actuating a push bar (not shown) that facilitates dispensation of fluid onto the user's hands.
As shown in
The first fluid container 20 can include a sidewall 32, an upper wall 34, and a lower wall 36 that cooperate with one another to define a reservoir 38 for storing fluid or liquid to be dispensed from the fluid dispenser 10. An output port 40 can be provided at the lower wall 36 and can be in fluid communication with the reservoir 38. The output port 40 can include a neck portion 42 and a flow pump 44 that is releasably secured to the neck portion 42 by a collar member 46. When the first fluid container 20 is installed in the fluid dispenser 10, the collar member 46 can be supported by the lower support 24 with the flow pump 44 extending therethrough such that the lower support 24 does not obstruct dispensation of fluid from the flow pump 44 to the dispensation zone. The output port 40 of the first fluid container 20 can further include a circumferential flange 82 to releasably secure the first fluid container 20 to another fluid container.
The flow pump 44 can be movable between an opened position and closed position to facilitate selective dispensation of fluid from the output port 40. The flow pump 44 can be biased into the closed position, such as with a biasing member (not shown), to prevent fluid from inadvertently being dispensed from the output port 40. The flow pump 44 can be associated with the motor 26 which can facilitate selective opening of the flow pump 44 to dispense fluid from the first fluid container 20. It is to be appreciated that although a flow pump is described as controlling dispensation of fluid from the output port 40, any of a variety of suitable alternative dispensation mechanisms can be provided, such as, for example, a valve.
The first fluid container 20 can also include an input port 48 that is defined by the upper wall 34 and in fluid communication with the reservoir 38. Referring now to
Referring again to
As illustrated in
When the output port 66 of the second fluid container 22 is inserted into the input port 48 of the first fluid container 20, the first fluid container 20 can facilitate movement of the flow pump 72 into an opened position to facilitate dispensation of fluid from the reservoir 64 of the second fluid container 22. For example, when the output port 66 is inserted into the aperture 52, the concave wall 50 of the input port 48 can contact a tip portion 78 of the flow pump 72 and can urge it into the opened position such that the reservoirs 38, 64 are in fluid communication with each other. Fluid from the second fluid container 22 can thus flow from the reservoir 64, through the output port 66, and into the reservoir 38 of the first fluid container 20 thus refilling the first fluid container 20. As the first fluid container 20 is being refilled, air from the reservoir 38 can urge a plunger 76 of the vent 56 into an opened position to allow air to exhaust therethrough.
In one embodiment, the output port 66 of the second fluid container 22 and the input port 48 of the first fluid container 20 can be configured for selective retention with each other. As illustrated in
The first fluid container 20 can be configured as a one-time refillable container that includes a feature (not shown) that is activated upon removal of the second fluid container 22 to prevent additional refill containers from being installed on the first fluid container 20. In one embodiment, the concave wall 50 of the first fluid container 20 can include a frangible portion (not shown) that breaks away and extends upwardly from the concave wall 50 when the second fluid container 22 is removed. The frangible portion can extend far enough from the concave wall 50 to obstruct another fluid container from being fully installed into the input port 48 of the first fluid container 20. In another embodiment, in lieu of the circumferential groove 80, the concave wall 50 can include tabs (not shown) that are configured to grasp the circumferential flange 83 of the output port 66. The tabs can be configured to break away when the second fluid container 22 is removed to prevent another fluid container from being properly retained to the first fluid container 20. In yet another embodiment, the portion of the concave wall 50 that defines the aperture 52 can break away to define a larger aperture. When a refill container (e.g., a third fluid container) is installed onto the first fluid container 20, the aperture is too large to allow the concave wall to push the flow pump of the refill container open, thus rendering the refill container inoperable.
Refilling of the first fluid container 20 with the second fluid container 22 can be a more cost effective and less wasteful refill solution than some conventional fluid dispenser refill arrangements. For example, conventional self-contained refill cartridges (i.e., non-refillable) must be replaced each time the fluid dispenser should be refilled. For fluid dispensers that are refilled according to a predefined schedule (e.g., weekly), the installed cartridge is oftentimes replaced irrespective of whether any fluid still remains in the cartridge thus resulting in excess waste and cost. The fluid dispenser 10, however, can be refilled with the second fluid container 22 to supplement the fluid in the first fluid container 20 which can thus be more cost effective and less wasteful than conventional arrangements.
In one embodiment, the first and second fluid containers 20, 22 can be substantially identical such that the first or second fluid container 20, 22 are interchangeable. The first and second fluid containers 20, 22 can thus be capable of being installed as either the top container or the bottom container in the fluid dispenser 10 which can encourage efficient installation in the fluid dispenser 10. In addition, since the first and second fluid containers 20, 22 are substantially identical, the same refill cartridge can be used to replace either fluid container 20, 22 thus alleviating the need for different cartridge types for the fluid dispenser 10.
The first and second fluid containers 120, 122 can be similar to, or the same in many respects as, the first and second fluid containers 20, 22 illustrated in
As illustrated in
Referring again to
The hollow conduit 190 can include upper and lower sleeves 196, 198 that surround the hollow conduit 190 at the respective upper and lower ends 192, 194. Each of the upper and lower sleeves 196, 198 can be slidably coupled with the hollow conduit 190 and slidable between a concealing position (
The upper support 184 can be slidably coupled with a rear wall 117 of the base 114 of the housing 112 and slidable between a released position (
The second fluid container 122 can then be installed on the upper support 184 by inserting the output port 166 into the U-shaped slot 188 with the second fluid container 122 at an angle. It is to be appreciated that, in some embodiments, the output port 166 can be inserted into the U-shaped slot 188 with enough downward force to cause the upper support 184 to move to the actuated position simultaneously with the installation of the second fluid container 122, while in other embodiments, the upper support 184 can be moved to the actuated position prior to installation of the second fluid container 122 (e.g., with a user's hand).
The second fluid container 122 can then be pivoted into the upright position which can cause the barbed tip 193 of the upper end 192 of the hollow conduit 190 to pierce the lower wall 162 of the second fluid container 122 and allow the upper end 192 of the hollow conduit 190 to extend into the reservoir 164. The lower wall 162 of the second fluid container 122 can include a frangible area (similar to 199) that allows for easy puncturing of the lower wall 162 with the barbed tip 193.
The reservoirs 138, 164 of the first and second fluid containers 120, 122 can be in fluid communication with each other via the hollow conduit 190 to allow refill fluid from the second fluid container 122 to flow from the reservoir 164, through the hollow conduit 190, and into the reservoir 138 of the first fluid container 120.
Once the first and second fluid containers 120, 122 are properly installed in the housing 112, the lid 116 can be secured to the base 114. As illustrated in
The foregoing description of embodiments and examples has been presented for purposes of illustration and description. It is not intended to be exhaustive or limiting to the forms described. Numerous modifications are possible in light of the above teachings. Some of those modifications have been discussed and others will be understood by those skilled in the art. The embodiments were chosen and described for illustration of various embodiments. The scope is, of course, not limited to the examples or embodiments set forth herein, but can be employed in any number of applications and equivalent devices by those of ordinary skill in the art. Rather it is hereby intended the scope be defined by the claims appended hereto. Also, for any methods claimed and/or described, regardless of whether the method is described in conjunction with a flow diagram, it should be understood that unless otherwise specified or required by context, any explicit or implicit ordering of steps performed in the execution of a method does not imply that those steps must be performed in the order presented and may be performed in a different order or in parallel.
This application is a divisional of and claims priority to U.S. Non-Provisional patent application Ser. No. 15/927,071, titled “FLUID DISPENSER AND FIRST AND SECOND FLUID CONTAINERS FOR A FLUID DISPENSER” and filed on Mar. 20, 2018, which is a divisional of and claims priority to U.S. patent application Ser. No. 15/000,185, titled “FLUID DISPENSER AND FIRST AND SECOND FLUID CONTAINERS FOR A FLUID DISPENSER” and filed on Jan. 19, 2016, which claims priority to U.S. Provisional Patent Application No. 62/110,810, titled “FLUID DISPENSER AND FIRST AND SECOND FLUID CONTAINERS FOR A FLUID DISPENSER” and filed on Feb. 2, 2015. U.S. Non-Provisional patent application Ser. No. 15/927,071, U.S. Non-Provisional patent application Ser. No. 15/000,185, and U.S. Provisional Patent Application No. 62/110,810 are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62110810 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15927071 | Mar 2018 | US |
Child | 16908077 | US | |
Parent | 15000185 | Jan 2016 | US |
Child | 15927071 | US |