Fluid dispenser apparatus

Abstract
A fluid dispenser used to administer fixed or adjustable doses of fluids in oral, intranasal, or injectable applications. The dispenser may be used to draw off fluid from a flexible or rigid bulk container or to draw fluid from a mounted flexible or rigid container such as a sealed-end bag or bottle, or a threaded bag or bottle. The fluid dispenser generally comprises: a connection member communicatively connected to a fluid source container; a body member having a dose cylinder communicatively connected to the connection member; a piston member operationally related to the dose cylinder and spring biased in an extended position; and a trigger member attached to the piston member and communicatively connected to the dose cylinder through the piston member. The dispenser may include an automatic venting feature to assist with the smooth, easy flow of fluid during an application and to prevent contaminants from being suctioned back into the container. The dispenser may also include a dispensing mechanism for dispensing measured doses, a protective cap, insulation and padding.
Description




STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT




Not applicable.




REFERENCE TO A MICROFICHE APPENDIX, IF ANY




Not applicable.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates, generally, to apparatus and methods for delivering fluids. More particularly, the invention relates to dispensers used to administer medicine. It has an optimal use in delivering multiple doses of various fluids in oral, intranasal, or injectable applications. However, the invention also may have utility in other applications.




2. Background Information




The state of the art includes various devices and methods for dispensing fluids from containers, including pump bottles, spray cans and spray guns. Fluids such as drugs, nutritional supplements and the like have been dispensed to livestock using pop bottles or similar containers, syringes and gas powered gun-type devices for delivering liquid from bulk containers, and have been dispensed to humans using syringes, spoons, cups, and intravenous dosing.




The gun-type devices provide methods for drawing and delivering liquid for oral, hypodermic and topical applications using compressed gas. Therefore they need to be attached to compressed air lines or carry their own pressurized propellant. Although these gun-type devices can deliver adjustable and repeatable doses automatically, they are they are relatively complex and expensive. Furthermore, their mobility is hampered because they require a pressurized gas source. These gun-type devices are generally shown in the following art: Guerrero (U.S. Pat. No. 5,176,645) which describes a pneumatic modular device for dispensing medicine to animals; Murphy et al. (U.S. Pat. No. 4,826,050) which describes a spraying and dosing apparatus used to dispense liquid herbicides and insecticides; and Dent (U.S. Pat. No. 5,413,255) which describes improvements in gas powered applicators for dispensing measured doses of a liquid.




The syringe type devices provide a generally simpler method of dispensing doses. However, they generally require the user to repeatably and manually draw and then dispense the desired doses. Syringe type devices are generally shown in the following art: Ennis, III (U.S. Pat. No. 4,923,096) which describes a dripless automatic syringe for dispensing fluids; Ennis, III (U.S. Pat. No. 5,344,409) which describes a syringe latch; Ennis, III (U.S. Pat. No. 4,852,772) which describes a dispenser for viscous fluids; Ennis, III (U.S. Pat. No. 4,678,107) which describes a dripless dispenser for liquids and viscous fluids; and Ennis, III (U.S. Pat. No. 4,981,472) which describes a cannula assembly for a syringe.




Known devices and methods are believed to have certain limitations in certain cases, including the inability to dispense accurate doses, to accurately place or inject the doses, to function automatically and quickly, to be efficiently and easily used, maintained and cleaned, to function with various container types, and to be disposable.




Applicant's invention provides a dispenser which overcomes the limitations of the known art. It has an ergonomic design, automatic features, and an ability to accurately dispense accurate doses drawn from a variety of fluid containers. The dispenser can be easily lubricated, cleaned and disinfected. However, the dispenser is also relatively inexpensive, thus making it semi-disposable as warranted by the circumstances.




BRIEF SUMMARY OF THE INVENTION




The present invention provides a fluid dispenser which generally comprises: (1) a connection member having a fluid ingress channel; (2) a body member having a fluid communication channel, a dose cylinder of a predetermined volume, and a dose valve; (3) a piston member having a piston head positioned in the dose cylinder, a distal end, a piston rod connecting the distal end to the piston head, a piston valve, and a fluid egress channel; and (4) a trigger member fixedly connected to the distal end of the piston member.




In operation, an unprimed dispenser contains air in the fluid ingress channel, the fluid communication channel, the dose cylinder, the fluid egress channel and the trigger member. Squeezing the trigger member compresses the piston member and expels the air from the dose cylinder. Releasing the trigger member allows the piston member to undergo an expansion stroke which draws fluid into the fluid ingress channel, the fluid communication channel, and the dose cylinder. The dispenser becomes primed after about two compression and expansion cycles when the dispenser contains fluid in all of its channels and cylinders. A primed fluid dispenser draws the dose or predetermined volume of fluid into the dose cylinder during the expansion stroke of the piston member. The fluid is drawn through the fluid ingress channel and the communication channel. The dose of fluid is expelled from the dose cylinder through the fluid egress channel, the piston valve, and the trigger member during a compression stroke. The dose volume is determined by the predetermined dimensions of the dose cylinder and the predetermined displacement volume of the piston member. The dose volume may either be fixed or adjustable. Different volumes can be attained by replacing the piston member with another having a different configuration, by placing different sized blocks within the dose cylinder, or by using an adjustable dispensing mechanism.




In a first “Draw Off” embodiment, the dispenser further includes a mechanism for drawing off or suctioning fluid from a flexible or rigid fluid source container. A fluid stem containing the fluid ingress channel forms part of the connection member and is constructed to receive a hose. The hose connects the fluid source container to the fluid ingress channel. In a second “Threaded Bottle Mount” embodiment, the connection member has an inverted bottle cap form including internally threaded side walls. A flexible or rigid fluid source container with a threaded neck can be screwed onto the connection member so that the fluid is in direct contact with the fluid ingress channel. This second embodiment includes an air intake system which equalizes the pressure between the inside and outside of the fluid source by replacing the fluid dispensed out of the container with air, thus providing smoother and easier fluid flow. The air intake system also prevents contaminants from being suctioned back into the dispenser and into the medicinal supply. In a third “Spike” embodiment, the connection member includes a spike for puncturing a vile, bag or other sealed end, flexible or rigid fluid source container when that container is mounted on the spike. The third embodiment also contains an air intake system for equalizing the pressure between the inside and the outside of the fluid source container. The spike contains both the fluid ingress channel and the vent channel of the air intake system. In a fourth “Protective Cap” embodiment, a protective cap fits on the connection member and covers a fluid source container that is attached to the connection member. A sleeve may be inserted around the container to provide padding and insulation for the fluid source container. In a fifth “Adjustable Dispensing Mechanism” embodiment, the dispenser includes an adjustable dispensing mechanism for dispensing measured doses. The dispensing mechanism includes a stop member having an engagement part, and further includes at least one abutment formed on the piston member for contacting the engagement part and limiting the motion of the piston member.




The features, benefits and objects of this invention will become clear to those skilled in the art by reference to the following description, claims and drawings.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING





FIG. 1

is a perspective view of a draw off embodiment of the fluid dispenser apparatus of the present invention used to draw off and administer fluid from a bulk container.





FIG. 2

is a view, partially in cross-section, of a hose attached to the fluid stem of the draw off embodiment of FIG.


1


.





FIG. 3

is a side view of a needle attached to a trigger member.





FIG. 4

is a side view of a spike embodiment of the fluid dispenser apparatus of the present invention used to administer fluid from a sealed end pharmaceutical bottle.





FIG. 5

is a top view of the spike embodiment of FIG.


4


.





FIG. 6

is a cross section of the spike embodiment taken along line


6





6


of FIG.


5


.





FIG. 7

is a side view, partially in cross-section, of a threaded bottle mount embodiment of the fluid dispenser apparatus of the present invention used to administer liquid from a wide-mouth threaded container.





FIG. 8

is a rear view of the threaded bottle mount embodiment of FIG.


7


.





FIG. 9

is a top view of the threaded bottle mount embodiment of FIG.


7


.





FIG. 10

is a side view, partially exploded and partially in cross-section for clarity, of the threaded bottle mount embodiment of FIG.


7


.





FIG. 11

is a side view, partially exploded and partially in cross-section for clarity, of the spike embodiment of FIG.


5


.





FIG. 12

is a side view of the elastomeric valve used as the air valve in FIG.


11


.





FIG. 13

is a side view of a check valve that could alternatively be used as the air valve in FIG.


11


.





FIG. 14

is a side view of a protective cap embodiment of the fluid dispenser apparatus of the present invention.





FIG. 15

is a cross-section of the protective cap embodiment taken along line


15





15


of FIG.


14


.





FIG. 16

is an exploded, cross-section view of the protective cap embodiment of FIG.


14


.





FIG. 17

is a side view, partially in cross-section, of an adjustable dispensing mechanism embodiment of the fluid dispenser of the present invention.





FIG. 18

is a view of the adjustable dose embodiment taken along line


18





18


of FIG.


17


.





FIG. 19

is an exploded view, partially in cross-section, of the adjustable dose embodiment of FIG.


17


.





FIG. 20

is a side view, partially in cross-section, of an inverted threaded bottle mount embodiment of the fluid dispenser apparatus of the present invention.





FIG. 21

is a side view of an alternative piston member for the adjustable dispensing mechanism embodiment of the fluid dispenser of the present invention.











DETAILED DESCRIPTION





FIGS. 1-11

show examples of five preferred embodiments of the dispenser apparatus


10


.

FIGS. 1-2

illustrate a “Draw Off” embodiment


12


of the dispenser


10


,

FIGS. 4-6

, and


11


illustrate a “Spike” embodiment


14


of the dispenser


10


,

FIGS. 7-10

illustrate a “Threaded Bottle Mount” embodiment


16


of the dispenser


10


,

FIGS. 14-16

illustrate a “Protective Cap” embodiment


11


of the dispenser


10


, and

FIGS. 17-19

illustrate an “Adjustable Dispensing Mechanism” embodiment


15


of the dispenser


10


. The dispenser


10


of all five embodiments is described below first in terms of its major structural elements and then in terms of its secondary structural and/or functional elements which cooperate to economically and ergonomically dispense fixed doses of fluid accurately and rapidly. The differences for each embodiment will be described in detail after the general discussion of the dispenser


10


.




As generally shown in

FIGS. 1

,


4


,


7


,


10


-


11


the dispenser


10


includes a connection member


18


, a body member


20


, a piston member


22


, and a trigger member


24


. The connection member


18


provides fluid communication between the dispenser


10


and a fluid source or fluid source container


26


. The connection member


18


is constructed to have a fluid ingress channel


28


through which the fluid flows from fluid source container


26


and into the body member


20


.




The body member


20


is constructed to have a fluid communication channel


30


, a dose cylinder


32


, and a dose valve


34


. The fluid communication channel


30


is communicatively connected to the fluid ingress channel


28


and to the dose cylinder


32


so that fluid flows from the fluid ingress channel, through the fluid communication channel


30


, and into the dose cylinder


32


. The dose cylinder


32


forms a cylinder for the compression and expansion stroke of the piston member


22


. The dose cylinder


32


and piston member


22


are related to each other in such a way as to have a predetermined volume


36


or swept volume that corresponds to the desired dose of the dispensed fluid. As shown in

FIGS. 10-11

this volume


36


may be varied by varying the width of the shoulder


35


integrally formed in the dose cylinder


32


. Alternatively, it may be varied by interchanging the removable block


37


with one with a different width. Furthermore, a removable piston member


22


could be replaced with a piston member


22


that provides a different swept volume. Additionally, an adjustable dispensing mechanism


150


may be used to accurately dispense measured doses. For example, as shown in

FIGS. 17-19

, the adjustable dispenser mechanism


150


may include a stop member


152


having an engagement part, and may further include at least one abutment


154


formed on the piston member


22


. The abutment


154


contacts the engagement part of the stop member


152


and limits the motion of the piston member


22


.




As shown in

FIGS. 6

,


10


-


11


the dose valve


34


is positioned between the fluid communication channel


30


and the dose cylinder


32


. The dose valve


34


permits fluid to flow only in the direction from the fluid communication channel


30


to the dose cylinder


32


when the expansion stroke of the piston member


22


causes a pressure differential between the fluid communication channel


30


and the dose cylinder


32


, but will not permit fluid to flow from the dose cylinder


32


to the communication channel


30


during the compression stroke of the piston member. As shown in greater detail in

FIGS. 10 and 11

, a one-way helix valve


90


is used as the dose valve


34


. The helix valve


90


includes a helical portion


92


that fits within the fluid communication channel


30


and a valve stem


94


moveably positioned within the helical portion


92


such that it will form a seal when the pressure in the dose cylinder


32


is greater than the pressure in the communication channel


30


. It is anticipated that other pressure-sensitive, one-way valves could be used as the dose valve


34


.




As shown in

FIGS. 6 and 7

, the piston member


22


generally includes a piston head


38


, an annular gasket


40


, a piston valve


42


, and a piston rod


44


. A fluid egress channel


48


extends through the piston head


38


and piston rod


44


to a distal end


46


of the piston rod


44


. The piston head


38


has an outer periphery sized and shaped to have a functionally sealing fit with the interior surface


54


of the dose cylinder


32


. The piston head has a circumferential groove


56


about its outer periphery sized to receive the annular gasket


40


. The gasket


40


provides the functionally sealing fit with the interior surface


54


of the dose cylinder


32


. The piston valve


42


is positioned at the distal end


46


of the piston member


22


. As shown in more detail in

FIGS. 10 and 11

, the piston valve


42


has a form of an elastomeric band that provides a one-way seal around the outlet ports


95


of the fluid egress channel


48


. The piston valve


42


permits fluid to only flow out of the fluid egress channel


48


when the compression stroke of the piston member


22


increases the pressure in the fluid egress channel


48


. The piston member


22


or plunger provides a non-conventional delivery system for the fluid. Whereas conventional syringes expel fluid through their barrel end, the present invention expels fluid through the piston member


22


.




The trigger member


24


is attached to the distal end


48


of the piston rod


44


. A nozzle channel


50


within the trigger member


24


is communicatively attached to the fluid egress channel


46


and extends through the nozzle portion


52


of the trigger member


24


. As required by the pharmaceutical dispensing application, the nozzle portion


52


of any of the embodiments may have the form of an oral tip


58


for oral or intranasal applications, or it may take the form of an injectable tip


60


, such as a Luer slip or Luer lock tip, that can be fitted with a needle


62


for injectable applications. The body member


20


may also include a needle storage holder or storage container


72


. The trigger member


24


is formed with grips


64


that interface with an operator's fingers when the body member


20


is placed in the operator's palm. An operator squeezes his or her fingers to pull the trigger member


24


toward the body member


20


. This action compresses the piston member


22


within the dose cylinder


32


and expels the dose volume of the fluid through the fluid egress channel


48


, the piston valve


42


, the nozzle channel


50


, and out of the nozzle portion


52


.




A spring


66


surrounds the piston rod


44


and extends between the trigger member


24


and the dose cylinder


34


. The spring


66


biases the piston member


22


in an extended position and, upon the operator's release of the trigger member


24


, will automatically produce the expansion stroke by returning the piston member


22


to the extended position. The expansion stroke draws the dose volume of fluid into the dose cylinder


32


.




The figures show the piston member


22


and the trigger member


24


extending from the body member


20


at a near right angle. However, the piston member


22


and trigger member


24


could be aligned with the body member


20


such that it is in the general location of the shown position for the storage container


72


.




Many elements of the dispenser


10


preferably are manufactured from a clear or relatively transparent plastic material. The body member and connection member are generally molded as a unitary piece of plastic, as is the piston member. This material provides a strong, light weight and inexpensive dispenser


10


. Furthermore, the transparent nature of the material allows an operator to visually monitor the device in operation. The dispenser


10


is manufactured to be easily cleaned, sanitized and lubricated. However, it is also inexpensive enough to be considered semi-disposable; that is, it can be disposed after an application or a series of applications as warranted by the circumstances.




The Draw Off embodiment


12


shown in

FIG. 1

has an injectable tip


60


for receiving a needle


62


as shown in FIG.


3


. The body member


20


is constructed to have a storage container


72


designed to store spare and/or used needles. The storage container


72


is closed with a removable cap


74


, plug or other closure. The Draw Off embodiment


12


is designed to dispense fluid from flexible or rigid bulk fluid source containers of various sizes and shapes. The connection member


18


is constructed with a fluid stem


68


that contains the fluid ingress channel


28


. The fluid stem


68


is designed to receive a hose


70


that provides a communicative path between the external fluid source container and the fluid ingress channel


28


. The connection member


18


also has continuous side walls


70


, which in this embodiment are flange-like.




The Spike embodiment


14


shown in

FIGS. 4-6

is shown to have an injectable tip


60


for receiving a needle


62


as shown in FIG.


3


. The body member


20


is constructed to have a storage container


72


designed to store spare and/or used needles. The storage container


72


is closed with a removable cap


74


, plug or other closure. The Spike embodiment


14


is designed to directly mount a vile or other sealed end fluid source container


26


onto the dispenser


10


. The connection member


18


is constructed with a spike


76


designed to puncture through the sealed end of a flexible or rigid fluid source container


26


, and with a continuous side wall


70


designed to support the fluid source container


26


in a mounted position. The Spike embodiment includes an air intake system


78


that replaces fluid drawn from the fluid source container


26


with ambient air as an automatic venting function. The air intake system


78


provides for smoother fluid flow and easier operation by equalizing the pressure between the interior and exterior of the fluid source container


26


. The air intake system


78


generally comprises a vent channel


80


, an air valve


82


, and an air intake port


84


. The vent channel


80


provides the means for transferring ambient air from the air intake port


84


, through the air valve


82


, and into the fluid source container


26


. A pressure differential is created between the outside and inside of the container


26


when fluid is dispensed. The air valve


82


allows air to enter the container


26


when there is a pressure differential, and it prevents fluid from flowing out of the container


26


the vent channel


80


. The spike


76


contains both the fluid ingress channel


28


and the vent channel


80


. The spike


76


may be formed to extend and remain in fluid communication with the contents of the fluid source container


26


if the dispenser


10


is used in an inverted position, as generally illustrated in FIG.


20


.




As shown in

FIGS. 11

,


12


and


13


, the air valve


82


may use different types of one-way pressure sensitive valves.

FIGS. 11 and 12

show an air valve


82


that uses a wedge-like, elastomeric valve


96


. The elastomeric valve


96


has a generally cylindrical shaped proximate end


98


and a distal end


100


. The distal end


100


has a slit that is normally closed, thus preventing fluid from flowing out the air intake system


78


, but opens relatively easily to allow air to flow into the container


26


. Alternatively as shown in

FIG. 13

, a check valve


102


containing a check ball


104


and spring


106


could be use to provide the one-way valve function.




The Threaded Bottle Mount embodiment


16


shown in

FIGS. 7-10

has an oral tip


58


. This embodiment is designed to directly attach a bottle or fluid source container


26


onto the dispenser


10


by screwing it onto the connection member


18


. The connection member


18


is constructed to have a form similar to an inverted bottle cap, including continuous side walls


70


having interiorly disposed threads


86


designed to mate with exteriorly disposed threads


88


on the container


26


, such as a wide mouth threaded container. The connection member


18


has a bottom surface


71


disposed between and joined to the side walls


70


.

FIG. 10

shows the connection member


18


exploded as a separate element for clarity. However, the connection member


18


is typically molded with the body member


20


as a unitary piece. The fluid ingress channel


28


is formed by an aperture in the bottom surface


71


. The Threaded Bottle Mount embodiment includes an air intake system


78


that replaces fluid drawn from the fluid source container


26


with ambient air as an automatic venting function. The air intake system


78


provides for smoother fluid flow easier operation by equalizing the pressure between the interior and exterior of the fluid source container


26


, which prevents the fluid from being suctioned back into the container


26


and possibly contaminating the medicinal source. The air intake system


78


generally comprises a vent channel


80


, an air valve


82


, and an air intake port


84


. The vent channel


80


provides the means for transferring ambient air from the air intake port


84


, through the air valve


82


, and into the fluid source container


26


. A pressure differential is created between the inside and outside of the container


26


when fluid is dispensed. The air valve


82


allows air to enter the container


26


when there is a pressure differential, but it prevents fluid from flowing out of the container


26


through the vent channel


80


. The air valve


82


shown in

FIG. 10

is a helix valve


90


that contains a helical portion


92


and a valve stem


94


. It is anticipated that other one-way, pressure sensitive valves could be used. The connection member


18


is constructed to contain the vent channel


80


. The bottle mount embodiment shown in

FIG. 7

does not have a “stem” extending between the dose cylinder


32


and the fluid source container


26


. Rather gravity pulls the contents of the fluid source container


26


over the fluid ingress channel aperture and, upon an expansion stroke, into the dose cylinder


32


.

FIG. 20

illustrates an inverted bottle mount embodiment. The fluid is drawn up into the dose cylinder


32


through an extended stem


156


upon each expansion stroke.




The protective cap embodiment


11


include a protective cap


162


sized to fit on the connection member


18


and cover the fluid source container


26


, such as a closed end pharmaceutical bottle


164


as shown in

FIGS. 14 and 16

. The protective cap


162


has a margin


166


that has a slightly greater diameter than the diameter of the continuous wall


70


. The margin


166


is sized to promote a secure fit between the protective cap


162


and the connection member


18


and to promote quick and easy removal and reattachment of the protective cap


162


to the connection member


18


. The protective cap


162


is preferably formed from polyethylene, polypropylene, or another hard plastic which provides protection against accidental breakage of the fluid source container


26


. A sleeve


170


, preferably made of foam rubber, may be inserted within the continuous wall


70


and the protective cap


162


. The sleeve


170


surrounds the fluid source container


26


. The sponge-like sleeve


170


provides additional protection or cushion against accidental breakage of the fluid source container


26


. Additionally, the sleeve


170


insulates the contents of the fluid source container


26


from the environment in order to keep cool contents cool and warm contents warm.




Referring to

FIGS. 17-19

, the adjustable dispensing mechanism embodiment


15


includes an adjustable dispensing mechanism


150


for dispensing measured doses. The dispensing mechanism


150


is designed to limit the motion of the piston member


22


within the dose cylinder


32


. A stop member


152


is attached to the dispenser


10


in a predetermined position with respect to the dose cylinder


32


. The piston member


22


is formed with a plurality of abutments


154


spaced axially around the piston rod


44


. At least one projection or engagement part


192


extending from the stop member


152


relates or contacts with these abutments


154


. The abutments


154


are preferably formed from predetermined arrangement of a plurality of grooves


194


formed in the surface of the piston rod


44


. Preferably, the grooves


194


extend longitudinally along the plunger and are axially spaced around the circumference of the piston rod


44


. Furthermore, it is preferable that a first end of the grooves are circumferencially aligned along the plunger at a point corresponding to the completion of a compression stroke. The respective end walls at the second end of each of the grooves form the abutments. A circumferencial groove


196


preferably intersects each of the longitudinal grooves


194


at a point so that the projection


192


extends into the circumferencial groove


196


when the piston rod


44


has completed a compression stroke. Each of the differently-sized longitudinal grooves


194


extend away from the circumferencial groove


196


. The projection


192


fits within the grooves


194


and


196


, tracks within the longitudinal grooves


194


during the compression and expansion strokes, and tracks from one longitudinal groove to another through the circumferencial groove


196


.




During an expansion stroke, the piston rod


44


will move until the projection


192


contacts the end wall or abutment


154


for that groove. Therefore, the length of a longitudinal groove


196


determines the movement of the piston rod


44


, and thus corresponds to a predetermined volume of fluid that is drawn into the dose


32


cylinder during an expansion stroke. During the compression stroke, the piston member


22


expels the predetermined volume of fluid from the dose


32


cylinder. After the compression stroke, the projection


192


is in alignment with the circumferencial groove


196


, allowing the piston member


22


and projection


192


to be rotated with respect to each other until the projection


192


aligns with the longitudinal groove


194


that corresponds to a new desired dose volume. Alternatively, rather than using a circumferencial groove


196


, the projection


192


could be retracted out of a longitudinal groove, realigned with another longitudinal groove, and reinserted. Another alternative is to have a plurality of retractable projections pre-aligned with the longitudinal grooves, wherein a desired dose volume is selected by inserting a projection into the desired groove. The stop member


152


shown in

FIGS. 17-19

has two diametrically-opposed projections or engagement parts


192


. Similarly, the piston rod


44


has sets of grooves, wherein each set is comprised of two diametrically-opposed grooves of equal length. The diametrically-opposed projections


192


evenly distribute the biasing force and prevents the piston member


22


from becoming skewed within the dose cylinder


32


.




The stop member


152


forms an annular cap having an aperture sized to permit the plunger to slidingly fit within the cap and is sized to fit over an edge of the dose cylinder


32


. The stop member


152


and its projection


192


are preferably rotatable on the edge. The stop member


152


may be held in place using the spring


66


as shown in

FIGS. 17 and 19

, or alternatively the stop member


152


may be rotatably coupled to the dose cylinder


32


. If the stop member


152


is affixed to the dose cylinder


32


, the piston member


22


should be rotatable. A scale or other markings


198


correlating to the dose volume for an aligned groove could be provided on the dose cylinder


32


and stop member


152


, or alternatively on the piston rod


44


and stop member


152


. A plug


180


fits within the dose cylinder


32


. The piston rod


44


slides within an aperture of the plug


180


. The plug


180


preferably has projections that fit within the longest set of longitudinal grooves


194


, which corresponds to the longest stroke that can be selected by a user. The projections within the plug


180


prevent the piston member


22


from rotating within the dose cylinder


32


. The stop member


152


is rotatable about the plug


180


and the dose cylinder


32


when the projection


192


is within the circumferencial groove


196


of the piston. A user limits the stroke of the piston member


22


by rotating the stop member


152


until its projection(s) align with shorter longitudinal grooves


194


. The piston member


22


, the plug


180


and the stop member


152


are all easily removed from and reattached to the dose cylinder


32


.




In the embodiment shown in

FIGS. 17-19

, the circumferencial groove


196


intersects each of the longitudinal grooves


194


near the base of the trigger member


24


. The projection


192


of the stop member


152


tracks from one longitudinal groove to another via the circumferencial groove


196


. Thus the dose volume drawn into the cylinder can be adjusted by squeezing the trigger member completely so that the projection enters the circumferencial groove, aligning the projection with a desired groove using the scale


198


, and releasing the trigger member until the projection contacts the corresponding abutment.




Alternatively, as illustrated in

FIG. 21

, the circumferencial groove


196


may intersect each of the longitudinal grooves


194


corresponding to the place on the piston rod


44


proximate to the projection


192


when the piston member


22


has undergone a completed expansion stroke. The projection


192


extends inwardly from the stop member


152


and limits the compression stroke of the piston member


22


, depending on the particular groove


194


in which the projection


192


has entered. Thus, this embodiment can be used to meter desired volumes of material from pre-filled dispenser. Cough syrup, for example, may be metered or dispensed in this manner. The length of each groove


194


corresponds to an incremental increase in the volume dispensed. In operation, the projection


192


is initially aligned with the shortest groove and the piston member


22


is pushed into the dose cylinder


32


to distribute the first desired volume interval. The piston member


22


is then retracted back to its original position where the projection


192


is aligned with the circumferencial groove


196


. The piston member


22


is then rotated so that a longer groove


194


is aligned with the projection


192


. The piston member


22


is then pushed into the dose cylinder


32


an incremental amount further than the first time, which distributes a second desired volume interval. This process can be repeated until the dispenser is empty.




The descriptions above and the accompanying drawings should be interpreted in the illustrative and not the limited sense. While the invention has been disclosed in connection with the preferred embodiment or embodiments thereof, it should be understood that there may be other embodiments which fall within the scope of the invention as defined by the following claims. Where a claim is expressed as a means or step for performing a specified function it is intended that such claim be construed to cover the corresponding structure, material, or acts described in the specification and equivalents thereof, including both structural equivalents and equivalent structures.



Claims
  • 1. A fluid dispenser, comprising:(a) a body member having a fluid communication channel and a dose cylinder of a predetermined volume, said fluid communication channel being communicatively connected with said dose cylinder; (b) a fluid egress conduit communicatively connected to said dose cylinder; (c) a dose valve positioned and arranged to govern fluid flow from said fluid communication channel to said dose cylinder; (d) a piston valve positioned and arranged to govern fluid flow out of said fluid egress conduit; (e) a piston member having a piston head, a distal end and a piston rod connecting said piston head to said distal end, said piston head being sealingly disposed within said dose cylinder; (f) a trigger member attached to said distal end of said piston member; and (g) a dispensing mechanism positioned and arranged to dispense measured doses out of said fluid egress conduit, said dispensing mechanism including: (i) a stop member having an engagement part; and (ii) at least one abutment formed on said piston member for contacting said engagement part and for limiting motion of said piston member, and wherein said piston rod has a cylindrically-shaped surface, said at least one abutment comprising a plurality of abutments circumferentially spaced around and staggered lengthwise on said piston rod surface, each of said plurality of abutments corresponding to a predetermined range of longitudinal movement by said piston member.
  • 2. The fluid dispenser of claim 1, wherein said trigger member includes at least one grip for contact with at least one finger of a user and further includes a nozzle portion and a nozzle channel communicatively connected to said fluid egress conduit, whereby said body member is adapted to rest in a user's palm and a user's finger squeezes said grip toward said body member to provide force for said compression stroke of said piston member.
  • 3. The fluid dispenser of claim 1, wherein said piston member has a fluid egress channel that forms said fluid egress conduit and extends through said piston head and said piston rod to said distal end.
  • 4. The fluid dispenser of claim 1, wherein said piston member is biased in an extended position by a spring, said spring being positioned around said piston member and in between said trigger member and said dose cylinder, whereby said spring provides force for said expansion stroke of said piston member.
  • 5. The fluid dispenser of claim 1, wherein said piston head has a circumference, a groove formed around said circumference, and an annular gasket placed within said groove, said gasket providing said fit within said dose cylinder, said piston member being easily removed and reinstalled into said dose cylinder to promote cleaning.
  • 6. The fluid dispenser of claim 1, wherein said stop member has an annular shape and said piston rod extends through said stop member, said engagement part being a projection extending radially inward from said stop member.
  • 7. The fluid dispenser of claim 1, wherein said stop member moves relative with respect to said piston member, said relative movement including longitude movement and rotational movement.
  • 8. The fluid dispenser of claim 7, wherein said piston member is non-rotatable with respect to said dose cylinder and said stop member is rotatable with respect to said dose cylinder.
  • 9. The fluid dispenser of claim 1, wherein each of said at least one abutment comprises an end wall of a longitudinal groove formed on said piston rod, said engagement part fitting and tracking within said at least one longitudinal groove during expansion and compression strokes of said piston member.
  • 10. The fluid dispenser of claim 9, wherein said piston rod is further formed with a circumferencial groove intersecting said at least one longitudinal groove, wherein relative rotational motion between said stop member and said plunger is effected when said engagement part is disposed within said circumferencial groove.
  • 11. The fluid dispenser of claim 10, wherein said circumferencial groove intersects said at least one longitudinal groove at a point on said piston rod so that said engagement part enters said circumferencial groove when said piston member is fully compressed.
  • 12. The fluid dispenser of claim 1, wherein said dispensing mechanism further includes a scale for indicating a dose volume corresponding to each of said at least one abutments.
  • 13. The fluid dispenser of claim 1, further comprising a connection member having a fluid ingress channel communicatively connected to a fluid source container and to said fluid communication channel, said fluid source container having an interior and an exterior.
  • 14. The fluid dispenser of claim 13, where in said connection member has a continuous side wall, said continuous side wall having a predetermined size and shape for receiving and supporting said fluid source container.
  • 15. The fluid dispenser of claim 14, wherein said connection member has a continuous side wall and a bottom surface joined with said side wall, said continuous side wall having interior threads, said fluid source container having external threads, said fluid source container being connected to said connection member by mating said interior threads with said external threads, said bottom surface having an aperture which forms said fluid ingress channel.
  • 16. The fluid dispenser of claim 14, further comprising a protective cap sized to fit on said connection member and cover said fluid source container.
  • 17. The fluid dispenser of claim 16, wherein said protective cap has a margin sized and adapted to fit over said continuous side wall.
  • 18. The fluid dispenser of claim 16, further comprising a sleeve positioned within said continuous side wall, said fluid source container being received within said sleeve, said protective cap covering said sleeve and said fluid source container, said sleeve providing insulation and padding for said fluid source container.
  • 19. The fluid dispenser of claim 14, further comprising insulation and padding for said fluid source container.
  • 20. The fluid dispenser of claim 19, wherein said insulation and said padding are provided by a foam rubber sleeve positioned within said continuous side wall and said protective cap.
  • 21. The fluid dispenser of claim 13, wherein said connection member has a fluid stem, said fluid ingress channel being contained within said fluid stem.
  • 22. The fluid dispenser of claim 21, wherein said fluid stem is formed to receive a hose for drawing fluid from said fluid source container, said hose being communicatively connected between said fluid source container and said fluid stem.
  • 23. The fluid dispenser of claim 21, wherein said fluid stem is a spike designed to penetrate said fluid source container when said fluid source container is directly mounted onto said spike.
  • 24. The fluid dispenser of claim 23, further including an air intake system to equalize pressure between the interior and the exterior of said fluid source container when fluid is drawn out of said fluid source container, said air intake system including an air intake port, a vent channel communicatively connected from said air intake port to said fluid source, and an air valve designed to allow ambient air to flow through said vent channel into said fluid source container upon a pressure differential between the interior and the exterior of said fluid source container and to prevent fluid from flowing out of said fluid source container through said vent channel, wherein said spike further includes a vent channel.
  • 25. The fluid dispenser of claim 21, wherein fluid source container is positioned below said dose cylinder, said fluid stem extending into said fluid source container to draw fluid up into said fluid ingress channel and said dose cylinder.
  • 26. The fluid dispenser of claim 13, wherein said fluid source container is positioned above said dose cylinder and wherein gravity pulls fluid from said fluid source container into said fluid ingress channel and said dose cylinder.
  • 27. The fluid dispenser of claim 13, further including an air intake system to equalize pressure between the interior and the exterior of said fluid source container when fluid is drawn out of said fluid source container.
  • 28. The fluid dispenser of claim 27, wherein said air intake system includes an air intake port, a vent channel communicatively connected from said air intake port to said fluid source, and an air valve designed to allow ambient air to flow through said vent channel into said fluid source container upon a pressure differential between the exterior and the interior of said fluid source container and to prevent fluid from flowing out of said fluid source container through said vent channel.
  • 29. A fluid dispenser, comprising:(a) a body member having a fluid communication channel and a dose cylinder of a predetermined volume, said fluid communication channel being communicatively joined with said dose cylinder; (b) a fluid egress conduit communicatively connected to said dose cylinder; (c) a dose valve positioned and arranged to govern fluid flow from said fluid communication channel to said dose cylinder; (d) a piston valve positioned and arranged to govern fluid flow out of said fluid egress conduit; (e) a piston member having a piston head, a distal end, a piston rod connecting said piston head to said distal end, and a fluid egress channel communicatively connected to said dose cylinder, said fluid egress channel extending through said piston head and said piston rod to said distal end, said fluid egress channel forming said fluid egress conduit, said piston head being sealingly fit within said dose cylinder; (f) a trigger member attached to said distal end of said piston member, said trigger member having a nozzle portion and a nozzle channel communicatively connected to said fluid egress channel, said nozzle portion extending through said nozzle portion; (g) a connection member having a fluid ingress channel communicatively connected to a fluid source container and to said fluid communication channel; and (h) a dispensing mechanism for dispensing measured doses out of said fluid egress conduit, said dispensing mechanism including a stop member having an engagement part, and further including at least one abutment formed on said piston member for contacting said engagement part and for limiting motion of said piston member, each of said at least one abutment comprising an end wall of a longitudinal groove formed on said piston rod, said engagement part fitting and tracking within said at least one longitudinal groove during expansion and compression strokes of said piston member, said piston rod having a circumferencial groove intersecting said at least one longitudinal groove, wherein relative rotational motion between said stop member and said piston member is effected when said engagement part is within said circumferencial groove.
  • 30. A fluid dispenser, comprising:(a) a connection member having a fluid stem constructed to receive a hose, said fluid stem containing a fluid ingress channel communicatively connected to a fluid source container through said hose, said fluid source container having an interior and an exterior; (b) a body member having a fluid communication channel, a dose cylinder of a predetermined volume, and a dose valve, said fluid communication channel being communicatively joined with said fluid ingress channel and said dose cylinder, said dose valve being positioned between said fluid communication channel and said dose cylinder, said dose valve governing fluid flow from said fluid communication channel to said dose cylinder, said body member further having a storage container sized to store a plurality of needles, said storage container having a closure; (c) a piston member having a piston head, a distal end, a piston valve, and a fluid egress channel communicatively connected to said dose cylinder, said fluid egress channel extending through said piston head and said piston rod to said distal end, said piston head having a circumference, a groove formed around said circumference, an annular gasket placed within said groove to form a sealing fit within said dose cylinder, said piston valve being positioned and arranged to govern fluid flow out of said fluid egress channel, said piston member being biased in an extended position by a spring, said spring being positioned around said piston member; and (d) a trigger member attached to said distal end of said piston member, said trigger member having a nozzle channel communicatively connected to said fluid egress channel, said trigger member including at least one grip formed to interface with at least one finger, said spring being positioned in between said trigger member and said dose cylinder.
  • 31. A fluid dispenser, comprising:(a) a body member having a fluid communication channel and a dose cylinder of a predetermined volume, said fluid communication channel being communicatively connected with said dose cylinder; (b) a fluid egress conduit communicatively connected to said dose cylinder; (c) a dose valve positioned and arranged to govern fluid flow from said fluid communication channel to said dose cylinder; (d) a piston valve positioned and arranged to govern fluid flow out of said fluid egress conduit; (e) a piston member having a piston head, a distal end and a piston rod connecting said piston head to said distal end, said piston head being sealingly disposed within said dose cylinder; (f) a trigger member attached to said distal end of said piston member; and (g) a dispensing mechanism positioned and arranged to dispense measured doses out of said fluid egress conduit, said dispensing mechanism including: (i) a stop member having an engagement part; and (ii) at least one abutment formed on said piston member for contacting said engagement part and for limiting motion of said piston member, wherein said at least one abutment comprises an end wall of a longitudinal groove formed on said piston rod, said engagement part fitting and tracking within said at least one longitudinal groove during expansion and compression strokes of said piston member.
CROSS-REFERENCE TO RELATED APPLICATIONS, IF ANY

This application is a continuation-in-part of application Ser. No. 08/870,918, filed Jun. 6, 1997, status pending.

US Referenced Citations (37)
Number Name Date Kind
D. 287211 Weiss Dec 1986
1496126 Livingstone Jun 1924
2086467 Bryan Jul 1937
2172521 Shoner Sep 1939
2753079 Hersey Jul 1956
2825334 Kas, Sr. Mar 1958
3209951 Greene et al. Oct 1965
3215171 Mitchell Nov 1965
3228564 Olson Jan 1966
3526225 Isobe Sep 1970
3604592 Bacon et al. Sep 1971
3827601 Magrath et al. Aug 1974
3952918 Poitras et al. Apr 1976
3952919 Hansen et al. Apr 1976
4185755 Sachs et al. Jan 1980
4564360 Young et al. Jan 1986
4678107 Ennis, III Jul 1987
4826050 Murphy et al. May 1989
4852772 Ennis, III Aug 1989
4871092 Maerte Oct 1989
4923096 Ennis, III May 1990
4923448 Ennis, III May 1990
4981472 Ennis, III et al. Jan 1991
4995867 Zollinger Feb 1991
5176645 Guerrero Jan 1993
5188610 Rains Feb 1993
5190191 Reyman Mar 1993
5217442 Davis Jun 1993
5344409 Ennis, III et al. Sep 1994
5413255 Dent May 1995
5435462 Fujii Jul 1995
5482095 De Chollet Jan 1996
5553750 Foster Sep 1996
5600958 Henning et al. Feb 1997
5695090 Burdick Dec 1997
5816453 Spencer et al. Oct 1998
5934510 Anderson Aug 1999
Continuation in Parts (1)
Number Date Country
Parent 08/870918 Jun 1997 US
Child 09/304297 US