The present disclosure relates to a fluid dispenser, and more particularly, to a fluid dispenser for recovering material grown on substrates using a flow of a fluid.
Lab-grown or cultured meat belongs to the emerging field of cellular agriculture and represents a promising technology for delivering products that have so far been produced through livestock. This technological innovation aims to offer a possibility of reducing the negative effects of conventional meat production techniques on humans, livestock, and the environment. The production of cultured meat requires suitable cells and appropriate growth media. Cultured meat could also be an excellent functional food to cover specific dietary needs for people with various ailments. This is due to the capability of the technology to modify the profile of essential amino acids and fats and to be enriched in vitamins, minerals, and bioactive compounds. However, there are various technical questions associated with growing and processing cultured meat. For example, grown cell sheets of cultured meat should be removed from a substrate without damaging the structure of the meat and/or the substrate.
Large-scale cell growth for edible meat production faces particular challenges. Other conventional apparatuses that are designed for the growth of adherent cells are limited in size and incorporate tortuous fluid flow paths to accommodate their size constraints. To grow cultured meat of sufficient physical dimensions (e.g., cell sheets), the growth of one or more cell sheets may require sufficient time where the cells remain adhered to a substrate for a predetermined time period (e.g., growth period). One or more fluids (e.g., growth media, culture media, liquid) may flow through the apparatus in a predetermined flow pattern to perfuse the cells and promote cell growth, differentiation, or adherence on one or more substrates. However, providing a predetermined fluid flow over large surface areas is challenging.
Once the cells are grown (e.g., production of a meat product) on a substrate, the grown meat product needs to be harvested (e.g., removed from the substrate) in a substantially intact manner for further processing. In some embodiments, recovery of one or more cell sheets is aided by a fluidic release mechanism (e.g., fluid-based shear stress), thereby allowing controlled and scalable production and collection of an edible meat product. In some embodiments, a fluid other than the one used for the growth of the cells may be used to separate a produced cell sheet from the substrate as an end product for collection. For example, a system for cell sheet growth may be configured to receive and distribute another fluid to one or more substrates in a predetermined flow pattern sufficient to separate the grown meat product from the substrates. Thus, systems and methods described herein provide significant improvements to conventional systems and techniques for growing cell sheets over substrates and for harvesting cell sheets.
Disclosed embodiments provide an assembly and a system for delivering a fluid using a fluid dispenser.
Consistent with a disclosed embodiment, an assembly for delivering a fluid includes a fluid dispenser connected to a fluid supply conduit. The fluid dispenser includes a fluid outlet positioned along a length of the fluid dispenser. The fluid dispenser is configured to deliver the fluid from the fluid supply conduit at a flow rate that varies along the length of the fluid dispenser.
Consistent with another disclosed embodiment, a system including an enclosure is provided. Further, the system includes a plurality of substrates disposed within the enclosure and having vertical surfaces spaced apart from each other. The system also includes a fluid supply conduit configured to supply a fluid and a fluid dispenser disposed within the enclosure and connected to the fluid supply conduit. The fluid dispenser includes a fluid outlet positioned along a length of the fluid dispenser and configured to discharge the fluid at a flow rate that varies along the length of the fluid dispenser.
The foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the claims.
The accompanying drawings are not necessarily to scale or exhaustive. Instead, the emphasis is generally placed upon illustrating the principles of the embodiments described herein. These drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments consistent with the disclosure, and, together with the detailed description, serve to explain the principles of the disclosure. In the drawings:
Reference will now be made in detail to exemplary embodiments discussed with regard to the accompanying drawings. In some instances, the same reference numbers will be used throughout the drawings and the following description to refer to the same or like parts. Unless otherwise defined, technical and/or scientific terms have the meaning commonly understood by one of ordinary skill in the art. The disclosed embodiments are described in sufficient detail to enable those skilled in the art to practice the disclosed embodiments. It is to be understood that other embodiments may be utilized and that changes may be made without departing from the scope of the disclosed embodiments. Thus, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
Consistent with disclosed embodiments,
The components of system 100 (e.g., enclosure 111, substrates 120, collector 118) may be composed of a material including, but not limited to, one or more of polystyrene, polycarbonate, polychlorotrifluoroethylene, polyetherimide, polysulfone, polypropylene, silicone, polyetheretherketone, polymethylmethacrylate, nylon, acrylic, polyvinylchloride, vinyl, phenolic resin, petroleum-derived polymers, glass, polyethylene, terephthalate, stainless steel, titanium, aluminum, cobalt-chromium, chrome, silicates, glass, alloys, ceramics, carbohydrate polymer, mineraloid matter, and combinations or composites thereof. In some cases, the material comprising one or more components of system 100 may include multiple layers. For example, a component of system 100 may include a coating (e.g., a fluoropolymer coating, such as EPFE, ETFE, and the like, or antimicrobial coating (e.g., coating containing TiO2 particles, copper particles, and the like).
In various embodiments, enclosure 111 may be configured to provide a sealed chamber to allow for the sterile growth of a product. Enclosure 111 may comprise one or more inlets configured to receive fluid and one or more outlets configured to allow the fluid to exit from enclosure 111. In some embodiments, the one or more inlets may be disposed on a first side of the enclosure, and the one or more outlets may be disposed on a second side of the enclosure, opposite the first side of the enclosure, as further discussed herein. Enclosure 111 may be of any suitable size and shape and capable of maintaining a target humidity and temperature environment required for cell growth. For example, enclosure 111 may be designed to be sufficiently thermally insulating for maintaining a target temperature within enclosure 111. In an example embodiment, enclosure 111 may have several walls separated by gaps or recesses (e.g., gaps or recesses may be partly evacuated or filled with gas) to achieve required thermal insulation. Other methods for providing the thermal insulation to enclosure 111 are also contemplated (e.g., a thermally insulating layer placed over enclosure 111).
Substrates 120 may allow for high-density growth of cells. For example, substrates 120 may comprise one or more surfaces configured to promote the adhesion, differentiation, and/or growth of cells to form a comestible product. Once grown to a predetermined size, the grown product may be separated from its respective substrate as described in more detail herein. The substrates of the disclosure can be of any predetermined size or shape. Further, substrates 120 may include roughness, waviness, and/or may be angled to a vertical direction (at least in some regions). It is also contemplated that the substrates may have other textures, for example, dimpled, slotted, etc. Substrates 120 may be composed of solid material and/or semi-solid material (e.g., hydrogel) or may include a mesh. In some embodiments, substrates 120 may comprise textured surfaces to promote the adhesion, differentiation, and growth of the cells/cell sheets. In some embodiments, substrates 120 may be manipulated to enhance one or more characteristics (e.g., coated to improve adhesion).
Substrates 120 may support the growth and retention of cells, including, but not limited to, cells comprising one or more of endoderm, mesoderm, ectoderm, and combinations thereof. Returning to
Consistent with one embodiment of the present disclosure, fluid dispenser 134 may be configured to receive fluid and provide a predetermined fluid flow to one or more of substrates 120. For example, fluid dispenser 134 may be configured to receive and distribute the fluid to a plurality of substrates in a predetermined fluid flow pattern (e.g., using a substantially uniform and laminar flow to promote consistent cell growth across the surface of one or more of substrates 120). It is contemplated that fluid dispenser 134 may be configured to provide any number of different fluid flow patterns (e.g., laminar, transitional, turbulent, pressurized, variable, or a mix of these flow regimes). In some embodiments, the fluid flow through the fluid dispenser 134 may be assisted by gravity. In other embodiments, the fluid flow through fluid dispenser 134 may be driven by an external source, for example, a pump. In some exemplary embodiments, fluid dispenser 134 may be partially or fully submerged within fluid contained in enclosure 111. It is also contemplated that in some exemplary embodiments, fluid dispenser 134 may be disposed in the air or gas filled space above the fluid contained in enclosure 111.
Consistent with disclosed embodiments, fluid dispenser 134, as shown in
Fluid dispenser 134 may include one or more openings 211 for connecting with fluid supply conduit 132. Fluid dispenser 134 may also include one or more cavities 222 configured to receive fluid from fluid supply conduit 132. A flow of fluid, shown schematically by flow lines 213 in
In an example embodiment, fluid dispenser 134 may be configured to deliver a fluid from fluid supply conduit 132 to fluid outlets 230A and 230B. In one exemplary embodiment, a flow rate of the fluid being discharged from a particular location along a fluid outlet may be substantially proportional to a distance d of that location from axis 135. It is contemplated, however, that the flow rate may be uniform or non-uniform at different fluid outlets regardless of their distance from axis 135. It is also contemplated that the flow rate may be varied in numerous ways along a length (or radius) of fluid dispenser 134.
In example embodiments, outlets 230A and 230B may be located at a bottom surface 241 of fluid dispenser 134 and may form elongated openings, as shown in
Consistent with disclosed embodiments, fluid dispenser 150, as shown in
In one exemplary embodiment as illustrated in
In one exemplary embodiment as illustrated in
It is contemplated that fluid dispenser 134 and/or 150 may be manufactured using various manufacturing methods, including without limitation, machining, welding, brazing, flanging, printing, molding, etc. In some exemplary embodiments, fluid dispenser 134 and/or 150 may be made of stainless steel, although other materials are also contemplated. It is further contemplated that fluid dispenser 134 and/or 150 may dispense one or more of coating material, media, cell culture, cleaning detergents (e.g., water, acid, caustic, disinfection agents, enzymatic cleaners, etc.), steam, wash-buffer, and/or other types of liquids or gases into enclosure 111. One or more of these exemplary materials may be dispensed by fluid dispenser 134 and/or 150 when fluid dispensers 134, 150 are partially or fully submerged or positioned in the air or gas filled portion of enclosure 111. In some exemplary embodiments, fluid dispenser 134 and/or 150 may also be configured to introduce gases such as air, carbon dioxide, oxygen, nitrogen, etc., into enclosure 111. It will be understood that when fluid dispenser 134 and/or 150 are configured to introduce gases while being submerged in the fluid contained within enclosure 111, fluid dispenser 134 and/or 150 may act like a sparger. In some exemplary embodiments, an operating pressure of fluid in fluid dispenser 134 and/or 150 may range between 2 to 10 bars, although other operating pressures are also contemplated.
Although fluid dispenser 134 has been illustrated and described as being positioned adjacent to the top end 152 of enclosure 111, the present disclosure is not so limited. It is contemplated that in some exemplary embodiments, fluid dispenser 134 and/or 150 may be located on a side wall of enclosure 111. In yet other exemplary embodiments, fluid dispenser 134 and/or may be positioned adjacent bottom end 151 and may be configured to direct fluid flow upward toward substrates 120. In some exemplary embodiments, fluid dispenser 134 and/or 150 may be disposed at an intermediate height between top end 152 and bottom end 151, for example, with substrates 120 having two sections separated from each other by a vertical gap to accommodate fluid dispenser 134 and/or 150. Positioning fluid dispenser 134 and/or 150 at an intermediate height may help improve the washing or harvesting efficiency of the culture on substrates 120 or may help to wash the walls of enclosure 111. It is also contemplated that in some exemplary embodiments, fluid dispenser 134 and/or 150 may include extension arms extending from distal ends 137 of, for example, arms 140 or 154, respectively, towards bottom end 151 of enclosure 111. These extension arms may help dispense fluid at intermediate heights between top end 152 and bottom end 151 of enclosure 111.
Returning to dispenser 134 illustrated in
In example embodiments, outlets 230A and 230B may be openings with a cross-sectional shape of the openings having four sides (e.g., outlets 230A and/or 230B may be rectangles). Alternatively, outlets 230A and/or 230B may have trapezoidal shapes). For example, in some embodiments, a width of outlets 230A, 230B may be smaller adjacent to axis 135 and larger adjacent to distal end 137 or vice versa. In some embodiments, a fluid outlet (e.g., outlet 230B) may have a trapezoidal shape having a first side and a second side opposite to the first side, wherein the first side is proximate to a center of fluid dispenser 134 and the second side is proximate to distal end 408 of fluid dispenser 134. In an example embodiment, the second side of fluid outlet 230B may be larger than the first side.
In various embodiments, cavity 222 may be configured to direct fluid from conduit 132 to channels 221A-221D and, subsequently, to outlets 230A and 230B. Cavity 222 may be of any suitable shape. In an example embodiment, a cross-sectional view of cavity 222 is shown in
As indicated by flow line 314, cavity 222 may be connected to a set of channels (e.g., channels 221A-221D) configured to transmit fluid from cavity 222 to fluid outlets 230A or 230B. Any suitable number of channels may be used. Further channels 221A-221D may be of variable size and may be distributed along a length L of fluid dispenser 134 in a selected way. In an example embodiment, channels 221A-221D may have any suitable three-dimensional shape. For example, a channel shape may be a cylinder C1 or a truncated cone C2, as schematically shown in
In various embodiments, channels 410, such as channels A-E, may be of any suitable shape, size, and orientation. For example, channels A-E may have a cylindrical shape, tapered cylindrical shape, and the like. Cross-sections of channels 410 may be of any suitable shape (e.g., circular, elliptical, rectangular, triangular, and the like). In some cases, the cross-sectional shape (or cross-sectional size) of channels 410 may change along the lengths of those channels. Such changes in shape or size of a channel along the length of the channel may promote mixing of the flow within the channel. It is also contemplated that different channels 410 disposed along a length of fluid dispenser 134 may have different cross-sectional shapes and/or sizes. In some exemplary embodiments, fluid-contacting surfaces of channels 410 may be textured to alter the fluid flow regimes and further promote mixing of the flow within channels 410.
As shown in
In various embodiments, channels may have any suitable orientation. For example, an axis of channel E may be oriented at an angle μE with respect to a normal direction of surface 415 of fluid dispenser 134. Other channels may be oriented at different angles. For example, channel C may be oriented at an angle μC which may be smaller than, larger than, or equal to μE. Such differences in orientation may result in different flow rates between channels C and E. Additionally, or alternatively, the differences in the flow rates for channels C and E (or any other channel from among channels 410) may be affected by a channel's cross-sectional size, shape, obstructions that may be present within the channel, or surface properties of the channel (e.g., surface properties may be influenced by a roughness within the channel, a material forming the channel, and the like). It is also contemplated that one or more of channels C, D, and/or E, 221A-D, and/or openings 158, 160 of fluid dispenser 150 may be oriented such that fluid exiting one or more of these channels may be directed at various desired angles onto one or more side walls of enclosure 111. Doing so may help ensure improved cleaning of enclosure 111 or improved homogenization of the fluid within enclosure 111.
In various embodiments, a flow rate through a channel (e.g., channel E) may depend on a pressure difference across channel E (i.e., a pressure difference between the inlet of channel E and the outlet of channel E), as well as a cross-sectional area of channel E. For example, for a given cross-sectional area, the larger the pressure difference across channel E, the higher the flow rate. Note that the pressure difference across channel E may be a function of a pressure difference across channel D due to a possible pressure drop ΔPDE between channel D and channel E. In some cases, pressure drop, such as ΔPDE may be controlled via obstructions presented in cavity 222, as further described below.
It should be appreciated that fluid outlets 230A and 230B are only illustrative, and other types of outlets may be used. In an example embodiment, fluid outlets 230A and 230B may have a varying width as a function of length L. For instance, in one exemplary embodiment, a width of outlets 230A and 230B may be narrower adjacent to rotational axis 135 and may increase towards distal end 408 of fluid dispenser 134. Although outlets 230A and 230B have been illustrated as extending through a length of fluid dispenser 134, alternatively, a plurality of localized outlets spaced apart from each other along the length of fluid dispenser 134 are also contemplated. For example,
Further, the fluid flow pattern may be determined by a value of a pressure drop ΔP across a nozzle (e.g., nozzle 511B) and a cross-sectional area of the nozzle. For example, for a given cross-sectional area, for high-pressure drop values, nozzle 511B may emit high-velocity fluid jets, while for low-pressure drop values, nozzle 511B may emit low-velocity fluid jets.
Nozzles 511A-511C illustrate one possible embodiment of fluid outlets from fluid dispenser 134. Other types of outlets may include openings, nozzles with adjustable valves, and the like. For instance, valves may be used for each nozzle 511A-511C to adjust the flow rate for the respective nozzle. Additionally, or alternatively, as described above, one or more nozzles 511A-511C may include a thrust vectoring system for adjusting pitch and yaw angles of one or more nozzles. In an example embodiment, pitch and yaw angles for one or more nozzles may be selected based on the desired fluid flow rates and flow patterns for the one or more nozzles. It is also contemplated that in some exemplary embodiments, the pitch and yaw angles may be manually adjusted by manually rotating and orienting the one or more nozzles in any desired direction. It is also contemplated that in some exemplary embodiments, the one or more nozzles may be equipped with mechanical linkages or other devices to allow the pitch and yaw angles of the one or more nozzles to be changed automatically, for example, by an electronic controller. Although only three nozzles 511A-511C are illustrated in
In some exemplary embodiments, a rotation of fluid dispenser 134 may be performed by a suitable motor (e.g., an electric motor). In other exemplary embodiments, a rotation of fluid dispenser 134 may be facilitated by a magnetic force (e.g., fluid dispenser 134 may include a magnet located at one or more ends of fluid dispenser 134, which may be attracted to or repelled by electromagnets placed within or outside enclosure 111).
It should be appreciated that various approaches may be used to control the rotation of fluid dispenser 134. In an example approach, a controller may be used to control the direction and speed of fluid dispenser 134. The controller may include a computing device having a processor, a memory, one or more sensors for determining the position and angular velocity of fluid dispenser 134. The controller may also include instructions for determining a speed and direction of rotation of fluid dispenser 134 based on data obtained from the one or more sensors. The controller may also determine the commands for a motor that is configured to rotate fluid dispenser 134.
Additionally, or alternatively, the rotation of fluid dispenser 134 may be due to a fluid being ejected by fluid dispenser 134, such that the fluid has a velocity component. For instance, ejecting the fluid having velocity component vθ results in a reactional force acting on fluid dispenser 134, which may cause fluid dispenser 134 to rotate in a direction opposite to a direction of velocity vθ of the ejected fluid. In an example embodiment, when fluid dispenser 134 is rotated due to the fluid being ejected from one or more fluid outlets of the fluid dispenser 134 (e.g., fluid outlets 230A and 230B, as shown in
In some cases, fluid dispenser 134 may have a first outlet configured to eject fluid with a positive velocity vθ (e.g., the positive velocity vθ may be directed in a clockwise direction) and a second outlet configured to eject fluid with a negative velocity vθ (e.g., the negative velocity vθ may be directed in a counter-clockwise direction). Arranging the outlets to eject fluid with opposing velocities, may allow the controller to control a direction of rotation of fluid dispenser 134 more precisely. For example, the controller may be able to stop the fluid dispenser 134 from rotation by ejecting fluid from the two outlets at equal and opposite velocities. Alternatively, the controller may increase or decrease the magnitude of the velocity from one of the two outlets to cause fluid dispenser 134 to rotate at a desired rotational speed in a clockwise or counter-clockwise direction. For instance,
In some example embodiments, fluid dispenser 134 may include openings 641 and 643 configured to eject fluid to rotate fluid dispenser 134. For example, as illustrated in
It should be appreciated that fluid dispenser 134 may be configured to be rotated by combining the action of a motor as well as torques generated by fluid exiting from various positions at one or more fluid outlets. In an example embodiment, a controller may include processor instructions for performing operations that may include obtaining data from various sensors (e.g., sensors for determining a position of fluid dispenser 134, sensors for determining angular velocity of fluid dispenser 134, sensors for determining fluid pressure within fluid dispenser 134, sensors for determining volume flow rate at different positions at one or more fluid outlets, sensors for determining torques applied to fluid dispenser 134 due to a fluid released by fluid dispenser 134, or any other suitable sensors) and determining torques that may be produced by the motor to yield a target rotation rate for fluid dispenser 134. Additionally, or alternatively, the controller may modify torques exerted by the fluid released by fluid dispenser 134 to yield the target rotation rate for fluid dispenser 134.
Fluid dispenser 134 and/or 150 may be configured to rotate at a speed ranging between 1 and 120 rpm (revolutions per minute) when fluid dispensers 134, 150 are located in the air filled or gas filled portion of enclosure 111. It is to be understood that the rotational speed of fluid dispenser 134 and/or 150 when partially or fully submerged in the fluid in enclosure 111 may be smaller than when fluid dispenser 134 and/or 150 is not submerged in the fluid. It is also contemplated that one or more of the rotational techniques discussed above (e.g., directed fluid jets, motors, magnetic materials) may be used to rotate fluid dispensers 134, 150 continuously or discontinuously (e.g., in a pulsed manner, rotating for some time and stopping in between subsequent rotations).
Additionally, or alternatively, the velocity of a fluid jet may be modified by modifying a pressure within fluid dispenser 134. For example, for supplying nutrients to cell culture, low-pressure values may be used, while for removing cell culture from substrate 120, high pressure values may be used. In general, any characteristic of the fluid jet may be modified to suit its particular purpose (e.g. supplying nutrients, removing cells), such as variations in angle, pressure, volume, etc. These variations may be uniformly applied across the fluid jets, or individual fluid jets may have settings that vary from one another.
A required pressure or flow rate of fluid delivered through fluid dispenser 134 or 150 may be determined based on adhesive properties of cell culture to substrates 120. For example,
It should be appreciated that depending on the dimensions of substrate 120, only some angles may be realized for fluid jets at some locations of substrates 120. For example, in regions away from the top portion of substrates 120, angles α˜0° may only be realized (i.e., fluid jets may be configured to be substantially tangential to surfaces of substrates 120 in those regions).
If it is desirable to deliver the same amount of fluid (e.g., same mass flow rate or volume flow rate) per unit of an arc length, then one solution may be to cause fluid outlet 815C to deliver fluid at a larger mass or volume flow rate than fluid outlet 815A or 815B. Similarly, fluid outlet 815B may deliver a larger mass or volume flow rate than fluid outlet 815A. For example, if the volume flow rates for fluid outlets 815A, 815B, 815C are given, respectively, by qA, qB, and qC, then if the same amount of volume flow rate is desired to be delivered per arc length, then qA/(ϕ rA)=qB(ϕ rB)=qC/(ϕ rC), or equivalently, qA/rA=qB/rB=qC/rC. Thus, in an example embodiment, fluid dispenser 134 may be configured such that the volume flow rate emitted from one or more outlets (or from one or more positions of an outlet) is increasing in a direction from center point 836 to an end point 812 linearly as a function of radial distance r. Alternatively, flow velocity may linearly or progressively increase in a direction from center point 836 to an end point 812 as a function of radial distance r, while fluid volume flow rate may remain static or linearly or progressively decrease in the same direction. Other variations of mass or volume flow rate and/or fluid velocity along a length of fluid dispenser 134 or 150 are also contemplated.
Consistent with described embodiments, a volume flow rate of fluid emitted from fluid dispenser 134 may vary along a length of fluid dispenser 134 (e.g., may vary along a fluid outlet 230A, as shown in
In some embodiments, baffle 910 may be configured to be completely filled with fluid, and in other embodiments, baffle 910 may include regions containing gas. In some cases, the regions containing gas may be pressurized to result in target pressures within baffle 910.
In various embodiments, a volume flow rate of fluids emitted from fluid dispenser 134 may be a function of time. For example, fluid released by flow outlets 920A-920C may increase or decrease as a function of time or may pulsate as a function of time. In some cases, directions of fluid jets emitted by flow outlets 920A-920C may change as a function of time. For example, when flow outlets 920A-920C correspond to nozzles 511A-511C, thrust vectoring systems corresponding to nozzles 511A-511C may be used to facilitate changes in the direction of nozzles 511A-511C as a function of time. For instance, a suitable controller, as discussed above, may be configured to send electrical signals to one or more electro-mechanical actuators, such as one or more electrical motors of a thrust vector system for nozzle 511A, to change the orientation of nozzle 511A. Additionally, or alternatively, cross-sectional shapes of fluid jets emitted from outlets 920A-920C may change as a function of time. For example, cross-sectional shapes of an example fluid jet may be changed by changing the size or shape of an outlet area of an example outlet (e.g., outlet 920A). The change in size or shape of an outlet area may be achieved using any suitable known approaches such as mechanical diaphragms, valves, and the like.
In some cases, fluid resisting elements such as elements 913 and 915 may be configured to move relative to each other. For instance, baffle 910 may include surfaces containing one or more holes (herein, also referred to as meshes) configured to be movable (e.g., rotatable) relative to each other. In an example embodiment, when holes of a pair of meshes align (e.g., a hole of one mesh is substantially below a hole of another mesh), fluid flow may increase (at a region where the holes are aligned) and may decrease at a region where the holes are misaligned. In various embodiments, meshes may have a non-uniform distribution of holes of variable sizes. In some cases, meshes may extend throughout baffle 910, and in other cases, meshes may be positioned above various flow outlets, such as outlets 920A-920C.
The volume flow rate from various fluid outlets, such as outlets 920A-920C, may be controlled by suitable valves. In an example embodiment, one or more valves may be placed at a fluid outlet to control the volume flow rate from that outlet. One or more valves may allow for a fine volume flow rate control. The valves may be opened or closed using any suitable mechanism (e.g., the valve may be electrically operated). Further, the valves may be controlled by a suitable controller, which may include a computing device having a processor, a memory, as well as one or more sensors for determining various flow parameters related to various fluid outlets (e.g., flow parameters may include the direction of flow from the fluid outlets, volume flow rates from the fluid outlets, cross-sectional shapes of fluid jets from the fluid outlets, and the like), as well as parameters related to a position and an angular velocity of fluid dispenser 134. Further, the controller may include instructions for controlling the operation of one or more valves.
In some embodiments, various fluids may be distributed by fluid dispenser 134. For example, fluid dispenser 134 may be configured to distribute water, nutrients dissolved in water, water-based cleaning fluids, or any other suitable liquids. In some embodiments, fluid dispenser 134 may distribute fluids comprising gases (e.g., steam, hot air, nitrogen, oxygen, CO2, or any other suitable gases or combinations thereof). In some embodiments, fluid dispenser 134 may be configured to emit simultaneously several different types of fluids. For example, fluid dispenser 134 may release from a fluid outlet water containing gas bubbles, or it may release from a first outlet a liquid (e.g., water) and from a second fluid outlet a gas (e.g., air). In an example embodiment, when the first outlet is in the proximity of the second outlet, a jet of air may be used to control the spreading and orientation of a jet of water. For example, a jet of air may be used to guide the jet of water towards a particular surface of substrates 120. It should be appreciated that any number of liquid and gas jets may be combined to result in a required distribution of a liquid over a set of surfaces of substrates 120.
Consistent with disclosed embodiments, fluid dispenser 134 may operate in several modes. In a first nurturing mode of operation, fluid dispenser 134 may be configured to release nutrients dissolved in a suitable fluid. In such an operational mode, fluid dispensed by fluid dispenser 134 may be in the form of a mist. In the nurturing mode, the fluid flow may be configured to be sufficiently gentle to prevent damage or removal of cell culture grown on substrates 120. In some embodiments, substrates 120 may be immersed in a liquid pool, and liquid containing nutrients may be slowly added to the liquid pool. Alternatively, substrates 120 may be surrounded by gas, and mist jets may be used to deliver nutrients to cell culture grown on surfaces of substrates 120.
In an alternative embodiment, fluid dispenser 134 may operate in a second harvesting mode. In the harvesting mode, high-velocity fluid jets (and/or high-volume flow rate fluid jets) having a required combination of shear and turbulence may be used to remove cell culture from substrates 120. These high-velocity fluid jets may be configured to remove cell culture from some of the surfaces of substrates 120 by directing fluid jets to these surfaces. Alternatively, high-velocity fluid jets may be configured to remove cell culture from all surfaces of substrates 120.
Consistent with another embodiment, fluid dispenser 134 may operate in a third cleaning mode. In the cleaning mode, fluid dispenser 134 may deliver cleaning fluids using any suitable volume flow rate towards substrates 120 and towards internal surfaces of enclosure 111. In some cases, cleaning fluids may include steam, hot air, disinfecting fluids, and the like. Various cleaning fluids may be delivered via high-velocity fluid jets or via mist, as needed. Although fluid dispensers 134, 150 have been described above as being configured to deliver fluid from fluid conduit 132 to enclosure 111, it is contemplated that in some situations, fluid dispensers 134, 150 may allow a reverse flow of liquids or gases. For example, when enclosure 111 is supplied with fluid using a fluid inlet located adjacent to bottom end 151 of enclosure 111, the rising fluid in enclosure 111 may compress the air or gas present in enclosure 111. The compressed air or gas may flow through the openings, outlets, and/or channels of fluid dispensers 134, 150 towards fluid conduit 132 in a reverse flow to be removed from enclosure 111. Similarly, when enclosure 111 is completely filled with fluid, when additional fluid is introduced into enclosure 111 from a fluid inlet located adjacent to bottom end 151, excess fluid in enclosure 111 may flow through the openings, outlets, and/or channels of fluid dispensers 134, 150 towards fluid conduit 132 in a reverse flow to be removed from enclosure 111.
In various embodiments, when transferring from one mode of operation towards another mode of operation, fluid dispenser 134 may be cleaned or rinsed. For example, if fluid dispenser 134 first operates in the cleaning mode and then operates in the nurturing or seeding mode, fluid dispenser 134 may require to be cleaned and/or rinsed prior to operating in the nurturing or seeding mode. In an example embodiment, fluid dispenser 134 may be configured to be removable from enclosure 111 for cleaning and rinsing. For example, fluid dispenser 134 may be moved up and out of enclosure 111, drained, cleaned, rinsed, and/or steamed at a suitable cleaning and rinsing station, and then reinserted into enclosure 111. Such movements of fluid dispenser 134 may be facilitated by a suitable mechanism (e.g., a robotic arm).
In an alternative embodiment, fluid dispenser 134 may be cleaned and rinsed without being removed from enclosure 111. In order to prevent cleaning and rinsing liquids from entering enclosure 111, fluid dispenser 134 may be configured to encapsulate the cleaning and rinsing liquids. In an example embodiment, shown in
Consistent with disclosed embodiments, system 100 may include various sensors located, for example, within enclosure 111 and configured to provide feedback to a controller on how well fluid dispenser 134 performs any of the three modes of operations described above. In an example embodiment, sensors may include cameras, electrically conductive elements, or any other suitable sensors configured to monitor growth and removal of cell culture as well as cleaning of system 100.
In an example embodiment, a sensor, such as a camera for capturing visible or infrared images, may be configured to monitor growth characteristics of cell culture over substrates 120 and provide feedback to the controller. For example, if a cell culture is not sufficiently grown over at least some substrates 120 (or over some of the regions of substrates 120), a sensor (or several sensors) may provide required feedback that may be used by the controller to add more nutrients to regions in which cell culture is not sufficiently grown.
Consistent with another disclosed embodiment, a sensor (e.g., a camera for capturing visible or infrared images) may be configured to monitor how well cell culture is being removed from substrates 120. For example, if cell culture is not removed from at least some substrates 120 (or from some of the regions of substrates 120), a sensor (or several sensors) may provide required feedback that may be used by the controller to direct high-velocity fluid jets to regions in which cell culture is not removed from substrates 120. In some cases, suitable sensors may measure electrical conductivity through various regions of substrates 120 to determine whether cell culture is removed from these regions. Alternatively, electrical conductivity measurements may be used to determine whether regions of substrates 120 have been sufficiently cleaned. In some cases, sensors may determine reflectivity (e.g., a degree of specular/diffusive reflectivity) of substrates 120 to determine how well substrates 120 are cleaned.
It should be appreciated that substrates 120 may undergo other movements besides rotation about axis 1211. For instance, substrates 120 may be configured to be rotated about vertical axis 135 or configured to execute vibrational motions (e.g., vibrational rotational motions around axis 135, vibrational lateral motions, or vibrational vertical motions to facilitate removal of cell culture from surfaces of substrates 120).
The foregoing description has been presented for purposes of illustration. It is not exhaustive and is not limited to precise forms or embodiments disclosed. Modifications and adaptations of the embodiments will be apparent from a consideration of the specification and practice of the disclosed embodiments. For example, while certain components have been described as being coupled to one another, such components may be integrated with one another or distributed in any suitable fashion.
Moreover, while illustrative embodiments have been described herein, the scope includes any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations based on the present disclosure. The elements in the claims are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the present specification or during the prosecution of the application; such examples are to be construed as nonexclusive.
The features and advantages of the disclosure are apparent from the detailed specification, and thus, it is intended that the appended claims cover all systems and methods falling within the true spirit and scope of the disclosure. As used herein, the indefinite articles “a” and “an” mean “one or more.” Similarly, the use of a plural term does not necessarily denote a plurality unless it is unambiguous in the given context. Words such as “and” or “or” mean “and/or” unless specifically directed otherwise. Further, since numerous modifications and variations will readily occur from studying the present disclosure, it is not desired to limit the disclosure to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents which may be resorted to fall within the scope of the disclosure.
Other embodiments will be apparent from a consideration of the specification and practice of the embodiments disclosed herein. It is intended that the specification and examples be considered as an example only, with a true scope and spirit of the disclosed embodiments being indicated by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3833173 | Rose | Sep 1974 | A |
5241975 | Yanagihara | Sep 1993 | A |
6245557 | Fouts | Jun 2001 | B1 |
6736340 | Wang | May 2004 | B1 |
7032604 | Welch | Apr 2006 | B2 |
7235402 | Aubry et al. | Jun 2007 | B2 |
7493907 | Roh | Feb 2009 | B2 |
7617996 | Lee | Nov 2009 | B2 |
7629167 | Hodge et al. | Dec 2009 | B2 |
8092613 | Strothoff | Jan 2012 | B2 |
8507263 | Asnaghi | Aug 2013 | B2 |
9109193 | Galliher et al. | Aug 2015 | B2 |
9120111 | Nations | Sep 2015 | B2 |
9578885 | Glascock | Feb 2017 | B1 |
9908664 | Galliher et al. | Mar 2018 | B2 |
10100408 | Ha | Oct 2018 | B2 |
10406545 | Spang, Jr. | Sep 2019 | B2 |
10524491 | Eskamani | Jan 2020 | B2 |
10588480 | Lee | Mar 2020 | B2 |
10610080 | Dogan | Apr 2020 | B2 |
10889793 | Silverman | Jan 2021 | B2 |
11254902 | Wang | Feb 2022 | B2 |
20030213503 | Price | Nov 2003 | A1 |
20040187898 | Chen | Sep 2004 | A1 |
20050058013 | Warf, Jr. | Mar 2005 | A1 |
20080206735 | Asgari | Aug 2008 | A1 |
20090101185 | Pardini | Apr 2009 | A1 |
20110212493 | Hirschel et al. | Sep 2011 | A1 |
20110266373 | Struck | Nov 2011 | A1 |
20130334344 | Leeser | Dec 2013 | A1 |
20160020074 | Mohn | Jan 2016 | A1 |
20160138158 | Wamura | May 2016 | A1 |
20160236924 | Hortmanns et al. | Aug 2016 | A1 |
20160262371 | Hiddema et al. | Sep 2016 | A1 |
20170216853 | Wang | Aug 2017 | A1 |
20180169682 | Miller | Jun 2018 | A1 |
20180184880 | Lee | Jul 2018 | A1 |
20180249881 | Noriega | Sep 2018 | A1 |
20180282678 | Castillo | Oct 2018 | A1 |
20190211294 | Karnieli | Jul 2019 | A1 |
20200163524 | Jung | May 2020 | A1 |
20200255783 | Ferrie | Aug 2020 | A1 |
20200397213 | Kwon | Dec 2020 | A1 |
20210130760 | Castillo | May 2021 | A1 |
20210348103 | Park | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
105349409 | Feb 2016 | CN |
106479883 | Mar 2017 | CN |
107475099 | Dec 2017 | CN |
109294876 | Feb 2019 | CN |
110241023 | Sep 2019 | CN |
19617973 | Jan 1998 | DE |
1252856 | Oct 2002 | EP |
2019204 | Oct 1979 | GB |
WO 2019122239 | Jun 2019 | WO |
2020243324 | Dec 2020 | WO |
2021102375 | May 2021 | WO |
WO-2022097139 | May 2022 | WO |
Entry |
---|
International Search Report and the Written Opinion for International Application No. PCT/US2021/037786 dated Mar. 15, 2022, 9 pages. |
U.S. Appl. No. 17/647,554, May 23, 2022, Office Action. |
U.S. Appl. No. 17/647,554, Sep. 1, 2022, Office Action. |
U.S. Appl. No. 17/647,554, Dec. 13, 2022, Office Action. |
U.S. Appl. No. 17/647,554, May 3, 2023, Office Action. |
U.S. Appl. No. 17/647,554, Jul. 28, 2023, Notice of Allowance. |
Number | Date | Country | |
---|---|---|---|
20220401973 A1 | Dec 2022 | US |