The present invention relates to hand operated fluid dispensers comprised of a sealed flexible reservoir chamber containing a fluid, a flexible pump chamber encased by and drawing fluid from the reservoir, and a pump cycled by external pressure applied through a reservoir wall. This class of simple, disposable dispensers is particularly useful in packaging cosmetics, foodstuffs, and healthcare products. As pocketable dispensers they are popular for dispensing small amounts of stored viscous liquids easily damaged when exposure to the atmosphere, a condition where sealed reservoirs coupled with airless pumps working together successfully prevent such product contamination and deterioration.
Dispersement of relatively viscous liquids such as liquid soaps, hand sanitizing fluids, cosmetic creams, insect repellant lotions and similar fluids is often by either squeezable plastic tubes with closable caps or plastic bottles with reciprocating valve push pumps mounted on top. Conventional dispensers of these types dominate the marketplace for dispersing viscous fluids, even for smaller or pocketable containers. Yet these containers are well known for wasting irrevocable product, inconvenient handling, unfortunate leaks, product contamination and product loss through evaporation.
The packaging art has long offered solution to some of these shortcomings. For example, Bensen U.S. Pat. No. 2,777,612 (1957) disclosed a tube dispenser with a collapsible inner product pouch associated with a pneumatic pump system to dispense most of the viscous liquid product while protecting it from atmospheric contamination. Two examples of external pumps using a reciprocating chamber are Nilsson U.S. Pat. No. 5,099,885 (1992) and Thomsen U.S. Pat. No. 5,207,355 (1993). Nilsson disclosed a dispensing pump with an elastic pump chamber, deformable under direct pressure, and the subsequent hydraulic pressure closing an inlet valve and opening an outlet valve. Thomsen discloses an exterior dispensing button pump that relies on a precursor mechanical closing of the inlet passage from the reservoir, permitting subsequent pressure build in pump chamber, and fluid dispensing from the exit valve. An internal pump design is disclosed by Abergel U.S. Pat. No. 6,789,706 (2004). Abergel describes a pump chamber enclosed by a reservoir wall that communicates pressure to the pump building fluid pressure that activates both outlet and inlet valves for discharging and refill. A simple, low-cost pump design is described by Harper U.S. Pat. No. 7,004,354 (2006). Harper discloses a reservoir chamber and dispersement chamber separated by a self-forming choke valve that prevents fluid passage unless purposefully distorted so that pump pressure can build sufficient to exit the outlet passage for dispersement; there is no auto refill feature and the system uses a stripping action more than actual pumping of fluid for dispersement. None of the disclosures describe nor suggest a particularly low-cost, minimal part pump action that is easy to manufacture and operate. The need for a fluid dispenser that employs an internal pump, in a thin compact package of minimal construct has yet to be designed.
The present invention recognizes the abundance of the prior art and contributes a specific advancement over that same art. Accordingly it is a particular intent of the present invention to provide a simple internal pump within a pouch reservoir forming a liquid dispenser of such a size and shape as to be carried in a pocket or hung about a neck and thus promotes convenient access to and timely use of the liquid product held within. Specifically, the pump located inside the liquid reservoir does not employ a one-way inlet valve for controlling liquid entering the pump chamber from the reservoir chamber as disclosed by the prior art. Instead, the common wall between the chambers has a simple aperture, a hole, which is blocked only when external pressure is applied by a finger to the outer reservoir wall which is pushed against the aperture, blocking the now pressurized pump fluid from transferring back to the reservoir chamber. The pressure of the pump fluid grows as the pump chamber is squeezed by an externally hand, when sufficient pressure is obtained the fluid opens the one-way exit valve and is dispersed until the pump chamber is emptied and the fluidic pressure therein drops. Upon removal of the finger and its induced pressure the elastic nature of the pump reforms its original volume and shape, drawing in a new dose of reservoir fluid through the now unblocked aperture in the common wall between chambers, this being the only recharge route available in that the exit valve has returned to it original closed state without pressurized fluid to keep it open. The aperture becomes unblocked absent the external pressure holding the reservoir wall against the aperture and the external wall has separated from the interior common wall and both reformed to their mutually apart relationship.
This simple pump, essentially a combination of two film walls, an exit valve, and a hole, requires a minimal number of components and materials. Yet, surprisingly, this design has proven to be very effective, durable, and highly reliable. Because the pump is easily squeezed by a variety of hand and finger configurations it has proven particularly useful to persons with limited hand mobility where a stripping action to discharge the fluid is problematic. Also, by placing the pump within the reservoir an overall flat, even stylish package is formed which significantly facilitates convenient access and timely usage. Finally, the simplicity of the overall design of the pump, reservoir, aperture and one valve, all of which can be constructed of various flexible polymer films of differing elastic properties, is of such a nature as to simply and reliable manufacture at an extremely low-cost while making use of a minimal amount of materials.
It is therefore the principal objective of this invention to provide a finger operated fluid pump dispenser offering the utmost simplicity and economy while also proving high reliable and convenience of use.
A specific object of this invention is to provide a fluid dispenser which is of such few parts and simple design as to be readily adaptable to a straightforward and economical manufacturing process.
Another object of the present invention is to create a fluid dispenser of such minimal weight, size and design that it promotes widespread and convenient product usage while conserving packaging material.
Another object of the present invention is to provide a fluid dispenser designed to disperse all fluid held so as to avoid irretrievable product wastage.
Another object of the present invention is to provide a fluid dispenser capable of easily dispensing multiple measured dose of dispersed fluid product.
Another object of the present invention is to provide a fluid dispenser sealed against both atmospheric contamination from without and loss of fluidic quality and/or quantity from within.
Another object of the present invention is to offer a fluid dispenser capable of being operated by persons with limited hand strength, size and dexterity.
Another object of the present invention is to provide a fluid dispenser that incorporates attachment mechanisms which promote convenient and timely access to the dispensed fluid product.
A final and substantive object of the present invention is to provide a fluid dispenser capable by its design, content and distribution of achieving a heightened degree of health and wellbeing among a population.
These and other objects and advantages of the present invention will become apparent from the following description taken in conjunction where appropriate with the accompanying drawings wherein are set forth, by way of illustrations and example, certain embodiments of this invention. The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.
The invention will be better understood and objects other than those set forth above will become apparent when consideration is given to the following detailed description thereof. Reference is made in the following briefly described drawings, wherein like reference numbers refer to corresponding elements:
While the invention will be described in connection with illustrations, descriptions, and examples of preferred embodiments, it will be understood these are not intended to limit the present invention only to these embodiments. On the contrary, the present invention is to cover all structural and/or functional alternatives as generally described. Following are three embodiments of the present invention which demonstrates both representative forms and applications of the present invention.
In
In
In
It is to be understood that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure, function, and employment of the invention, the disclosures are illustrative only, and changes may be made in details, especially in matters of shape, size, and arrangement of some parts together with content and materials utilized, within the principles of the invention to the full extent indicated by the broad general meaning of the terms are expressed.
Further, throughout this specification various patents are referenced. The disclosures of these references in their entireties are hereby incorporated by reference in order to more fully describe the state of the art to which the invention pertains. What has been illustrated and described herein are improvement in certain types of squeezable articles of manufacture, specifically of fluid dispensers with internal pumps, with the intent to distribute these articles and dispense hand sanitizing fluid from them for hand rubbing and thereby improving hand hygiene in a population with the intent of significantly reducing the frequency of pathogenic transmission and subsequently reduce sickness and infectious disease within that population. Key to any such successful outcome is the timely availability of the dispenser as needed. By hanging the dispenser embodied in Example 1 from the necks of healthcare workers such as nurses and doctors for their ready access a dramatic and substantial reduction in nosocomial infections can be expected in a hospital or clinic population.
While these improvements have been illustrated and described with reference to certain preferred embodiments, the present invention is not limited thereto. In particular, the foregoing specification and embodiments are intended to be illustrative and are not to be taken as limiting. Thus, alternatives, such as structural or mechanical or functional equivalents, and other modifications will become apparent to those skilled in the art upon reading the foregoing description.