The present invention relates generally to the dispensing arts, and more particularly to a soap dispenser for dispensing discrete doses of soap, liquid antimicrobial compositions, hand lotions, creams, and the like. The invention is also applicable to a dispenser for the dispensing of other viscous materials, such as food products.
Hand-operated dispensers are widely used for delivery of liquid soaps, hand lotions, creams, and the like. Such dispensers are typically mounted on a wall and include a housing and a dispensing mechanism. The fluid to be dispensed is stored in a replaceable reservoir, such as a plastic container, within the housing and is delivered, as needed, by actuating the dispensing mechanism. Conventional dispensing mechanisms include rollers or plates that engage a portion of the replaceable reservoir. When the roller or plate engages the portion of the replaceable reservoir, the fluid in the reservoir is forced out through an opening in the reservoir.
A user operating such hand-operated dispensers typically pushes or pulls on a handle that extends beneath the dispenser to receive the dose of soap. However, during the movement of the user's hand, the palm of the hand may move such that some of the soap may not be received in the palm. Wastage of soap often results. More importantly, for antiseptic soaps, decontamination is only assured when a complete dose is applied to the hands. Soap that trickles through the fingers or misses the hand completely does not contribute to thorough decontamination.
There remains a need, therefore, for a dispenser which dispenses discrete doses of fluid accurately and reproducibly. The present invention provides a new and improved fluid dispenser which overcomes the above-referenced problems and others.
In accordance with an embodiment of the present invention, there is provided a fluid dispenser for dispensing a fluid comprised of a housing dimensioned to receive a container for holding a fluid to be dispensed. The housing has a cover that is dimensioned to move between a closed position and an open position. A roller assembly is disposed in the housing. The roller assembly is dimensioned to engage a portion of the container. The roller assembly includes a holder and a roller that is rotatably attached to the holder. The holder is rotatable about an axis of the roller assembly such that the roller is movable along a path between a first container-engaging position and a second container-engaging position. The roller is dimensioned to engage and roll along a portion of the container when the roller moves in a first direction from the first container-engaging position to the second container-engaging position, thereby dispensing the fluid from the container. A motor is operable to rotate the holder in the first direction and in a second direction along the path. The second direction is opposite the first direction. A sensor for sensing an object in a predetermined area located generally beneath the dispenser is disposed within the housing. A light source is operable to emit a beam of visible light. The beam of visible light intersects the predetermined area. A controller is programmed such that when the sensor senses an object in the predetermined area, the controller energizes the light source to illuminate a target location where the fluid from the container is to be dispensed. The controller also initiates a dispensing cycle wherein the motor moves the holder in the first direction such that the roller engages and moves along the path from the first container-engaging position to the second container-engaging position thereby dispensing the fluid from the container.
One advantage of the present invention is a dispenser that dispenses measured doses of an antiseptic soap.
Another advantage of the present invention is a dispenser that dispenses a fluid without the hands of the user touching the dispenser.
Another advantage of the present invention is a dispenser that dispenses a fluid when the hands of a user are in proximity to the dispenser.
Yet another advantage of the present invention is a dispenser as described above that indicates to a user where the fluid will be dispensed.
Yet another advantage of the present invention is a dispenser that projects a beam of visible light that is incident on a hand placed under the dispenser, the beam of light providing a visible target on the hand where soap will impinge when dispensed.
Still another advantage of the present invention is a dispenser that dispenses both small and large doses of soap with a high degree of reproducibility.
Another advantage of the present invention is a dispenser as described above, wherein the amount of fluid dispensed by the dispenser during a dispensing cycle is variable and settable by a maintenance person.
Another advantage of the present invention is a dispenser as described above, that indicates to a maintenance person when the level of fluid in the dispenser is low.
Still further advantages of the present invention will become apparent to those of ordinary skill in the art upon reading and understanding the following detailed description of the preferred embodiment.
The invention may take physical form in certain parts and arrangements of parts, one embodiment of which will be described in detail in the specification and illustrated in the accompanying drawings which form a part hereof, and wherein:
Referring now to the drawings wherein the showings are for the purpose of illustrating one embodiment of the invention only, and not for the purpose of limiting the same,
Dispenser 10 is dimensioned to accept a replaceable fluid reservoir 30. Reservoir 30, as seen in
Dispensing tube 32 is approximately 5-8 cm in length and has side walls which taper inwardly from a top portion, or upstream end, adjacent container 34, towards a dispensing, or downstream end of dispensing tube 32. The taper is preferably 0-15 degrees from the vertical, with a particularly preferred taper of 4-6 degrees. Dispensing tube 32 is made from a material that has a memory, i.e., it can be compressed and then returns to its original shape, when released. A preferred material for dispensing tube 32 is silicone rubber, although other resiliently flexible materials are also contemplated.
A self sealing valve 38 is disposed in the free end of dispensing tube 32. Valve 38 limits air ingress into container 34 through dispensing tube 32 and thereby prevents bioburden from entering into the soap product.
Vent system 36 is disposed in an indented region in a top portion of container 34. The indentation protects vent system 36 from accidental activation during shipment and storage of reservoir 30. Vent system 36 includes a filter system, that covers an opening in the top portion of the container wall.
In one embodiment, the filter system includes three layers that selectively seal the opening during storage and allow filtered air to pass into container 34 to replace soap as it is dispensed. The layers are a top, or filter layer formed from an expandable filter material, such as polytetrafluoroethylene (PTFE), an intermediate, or barrier layer of aluminum foil or other occlusive material that is non-reactive with the soap in reservoir 30, and a lower, or bonding layer which bonds readily to the top portion of the container wall around the opening. Where container 34 is formed from polyethylene, the bonding layer is preferably formed from a polyethylene film. The filter layer filters out particles from incoming air down to about 0.3 microns. The barrier layer prevents ingress of air into reservoir 30 during transportation and storage and also prevents blocking of the filter with deposits from the cleaning fluid. The layers are bonded to the container wall around a depression in the wall that surrounds the opening.
Referring now to
Dispensing system 90 is provided to dispense measured doses of a fluid from fluid dispenser 10. Dispensing system 90 is designed to be an integrated part of dispenser 10, or a unit that may be retrofitted into an existing dispenser 10, as illustrated in
Referring now to
Housing 102 is dimensioned to mount to back plate 54. Housing 102 defines a cavity 102a. An inlet 102b and an outlet 102c are formed in housing 102 to communicate with cavity 102a in housing 102. Inlet 102b is disposed on the top of housing 102 and outlet 102c is disposed on the bottom of housing 102. Inlet 102b and outlet 102c of housing 102 are aligned and are dimensioned to allow dispensing tube 32 of reservoir 30 to extend therethrough along one side of cavity 102a. Cavity 102a is dimensioned to accept holder 112.
Holder 112 is operable to rotate within cavity 102a of housing 102. As shown in
Roller 116 is disposed between first disk 112a and second disk 112b of holder 112. A shaft 116b extends through roller 116. One end of shaft 116b of roller 116 is rotatably attached to first disk 112a and another end of shaft 116b of roller 116 is rotatably attached to second disk 112b. A central axis of first roller 116 is parallel to central axis “A” of holder 112. Springs 117 are disposed on first disk 112a and second disk 112b of holder 112. Only spring 117 on second disk 112b is shown in
Gear assembly 114 is designed to matingly engage gear teeth 113 of first disk 112a of holder 112. A reversible motor 126 includes a gear 126a that matingly engages gear assembly 114. In this respect, motor 126 is operable to turn gear assembly 114 and holder 112. Motor 126 is operable to turn in a first direction and a second direction. The second direction being opposite the first direction. Gear assembly 114, in turn, is operable to cause holder 112 to rotate about axis “A” within cavity 102a of housing 102, when motor 126 is actuated. Motor 126 includes wires that are connectable to circuit board 150.
The controller is programmed to control the operation of dispensing system 90. The controller is attached to circuit board 150, shown in
As seen in
Dispense adjuster, or volume regulator 154 provides a signal to the controller indicative of a desired volume to be dispensed. Volume regulator 154 has a number of fixed positions. Each position provides a signal to the controller indicative of a desired volume of the fluid to be dispensed with each actuation stroke. In the embodiment shown, volume regulator 154 has three (3) such fixed positions that nominally dispense 1 ml, 1½ ml, and 2 ml of fluid, respectively. It is also contemplated that volume regulator 154 may have more or less than three (3) fixed positions.
As seen in
As seen in
Triggering assembly 170 is attached to the bottom of circuit board 150. A lens 175 of housing 102 is disposed between triggering assembly 170 and the surrounding environment. Triggering assembly 170 provides a signal to the controller indicative of the presence of an object in a triggering field. The triggering field, as illustrated in
Target light 190 is disposed on a bottom of circuit board 150 to one side of diode 172 and radiation sensor 174, as shown in
A low level indicator assembly 210, as shown in
The present invention shall now be described with reference to the operation of dispenser 10. As stated above, dispensing system 90 is designed to dispense measured doses of a fluid. The fluid is ejected through valve 38 at the end of dispensing tube 32 of reservoir 30. A typical dispensing cycle includes an actuation stroke, in which fluid is dispensed, and a return stroke, in which the moveable parts of dispensing system 90 return to an at-rest orientation.
When dispensing system 90 is in the at-rest orientation, as best seen in
The initiation of the dispensing cycle of dispensing system 90 is controlled by triggering assembly 170. As described above, diode 172 emits radiation therefrom. The radiation from diode 172, illustrated by line “B” in
Radiation sensor 174 detects the reflected radiation and sends a signal to the controller. The controller energizes target light 190 and indicator light 162. Target light 190 emits a visible light beam that illuminates the triggering field, as illustrated by lines “D” in
When triggering assembly 170 detects the presence of an object in the triggering field, the controller initiates a dispensing cycle, whether the object remains in the triggering field or not. The controller energizes motor 126 such that gear assembly 114 turns in a first direction. Gear assembly 114, in turn, causes holder 112 in dispensing assembly 90 to turn in a first direction. As holder 112 turns, roller 116 rotates about axis “A” of holder 112, as shown in
As the fluid is dispensed from reservoir 30, vent system 36 allows air to enter reservoir 30 to replace the fluid. Vent system 36 removes bioburden, such as particles of dust and microorganisms, from the air as it enters reservoir 30. Container 34 of reservoir 30 is preferably formed from a relatively rigid material, such as polyethylene or polypropylene. The filtered air entering reservoir 30 quickly returns the pressure in the region of space above the fluid within reservoir 30 to atmospheric pressure as fluid is dispensed. This reduces the suction effect that would otherwise tend to draw unfiltered air into dispensing tube 32 at the completion of the actuation stroke. Vent system 36 therefore cooperates with dispensing system 90 to reduce the possibility of unfiltered air entering pathway 32a of dispensing tube 32 and container 34. Vent system 36 also assists in insuring that a full dose is dispensed with each actuation by minimizing the amount of air entering dispensing tube 32.
In an alternate embodiment, container 34 of reservoir 30 is formed from a non-rigid material that collapses as fluid is dispensed. For non-rigid containers 34, vent system 36 may be eliminated, because the walls of container 34 progressively collapse as the fluid is dispensed.
The controller continues to cause motor 126 to move in the first direction until roller 116 is disposed in a second container-engaging position, as seen in
The controller is programmed not to allow another dispensing cycle to be initiated until a predetermined time delay has elapsed. Repeated actuations of dispenser 10, without a proper delay, may result in incomplete doses of the fluid being dispensed. The present invention thus provides a dispensing system 90 that is controlled to allow pathway 32a of dispensing tube 32 to completely fill with fluid prior to initiating another dispensing cycle.
When the level of fluid in reservoir 30 has reached a predetermined low level, low level indicator assembly 210 provides a signal to the controller. The controller intermittently energizes indicator light 162 to signal to a maintenance person that the level of fluid in reservoir 30 has reached a predetermined low level. The maintenance person then opens the front cover 52 to replace the fluid reservoir 30 with a full reservoir. As shown in
When front cover 52 is opened, limit switch 152 on the controller senses that front cover 52 has moved away from back plate 54. The controller then initiates a door open cycle. During the door open cycle, the controller energizes reversible motor 126 to turn holder 112 in a second direction, opposite to the first direction of rotation of holder 112 during the dispensing cycle. As motor 126 turns holder 112 in the second direction, as shown in
As holder 112 rotates in the second direction, tabs 115 pass through slot 158a in sensor 158. Sensor 158 is operable to provide a signal to the controller indicative of the presence of one of the plurality of tabs 115 in slot 158a of sensor 158. Based on the number of tabs 115 that pass through slot 158a in sensor 158, the controller determines when roller 116 is in the uppermost or first container-engaging position. Once roller 116 is in the first container-engaging position, the controller causes motor 126 to stop rotating holder 112, thereby ending the door open cycle. As a result, fluid disposed above valve 38 of reservoir 30 is forced into a lower portion of container 34 of reservoir 30. The present invention thus provides a dispensing system 90 that reduces the likelihood of fluid accidentally dripping from reservoir 30 when reservoir 30 is removed from dispenser 10.
According to another embodiment of the present invention, as best seen in
In this embodiment, second roller 118 is disposed in a lower portion of cavity 102a of housing 102 and does not engage dispensing tube 32 of reservoir 30 during the dispensing cycle. However, during the door open cycle, motor 126 turns holder 112 in the second direction such that second roller 118 engages a lower portion of dispensing tube 32. As shown in
In another aspect of the present invention, the controller is programmed to maintain a count of the number of actuations of dispensing system 90 and the volume dispensed for each actuation. For a known initial volume of fluid in reservoir 30, the controller determines when the volume of the fluid in reservoir 30 is below a preset volume based on the number of actuations and the amount of fluid dispensed for each dispensing cycle. The controller then notifies the user that the volume of fluid in reservoir 30 is below a predetermined low level by intermittently energizing indicator light 162.
The present invention thus provides a dispenser that illuminates a triggering field at the initiation of a dispensing cycle. As a result, the likelihood of a user receiving an incomplete dose is reduced. Moreover, the present invention provides a dispenser wherein an indicator light notifies a user when a dispensing cycle has been initiated. The indicator light also notifies a maintenance person when the level of fluid in the dispenser is below a predetermined low level. As a result, the maintenance person is notified prior to a dispenser being empty of a fluid to be dispensed.
The foregoing description is specific embodiments of the present invention. It should be appreciated that these embodiments are described for purposes of illustration only, and that numerous alterations and modifications may be practiced by those skilled in the art without departing from the spirit and scope of the invention. It is intended that all such modifications and alterations be included insofar as they come within the scope of the invention as claimed or the equivalents thereof.
This application claims the benefit of U.S. Provisional Application No. 61/061,311, filed Jun. 13, 2008, which is fully incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4178975 | Crespi | Dec 1979 | A |
4667854 | McDermott et al. | May 1987 | A |
4722372 | Hoffman et al. | Feb 1988 | A |
4921150 | Lagergren et al. | May 1990 | A |
4946070 | Albert et al. | Aug 1990 | A |
5031258 | Shaw | Jul 1991 | A |
5105992 | Fender et al. | Apr 1992 | A |
5248066 | Olson et al. | Sep 1993 | A |
5333758 | Jamison et al. | Aug 1994 | A |
5353963 | Gorski et al. | Oct 1994 | A |
5377871 | Banks et al. | Jan 1995 | A |
5540362 | Azuma et al. | Jul 1996 | A |
6036056 | Lee et al. | Mar 2000 | A |
6131773 | Wade et al. | Oct 2000 | A |
6189740 | Wade et al. | Feb 2001 | B1 |
6209752 | Mitchell et al. | Apr 2001 | B1 |
6347724 | Chen et al. | Feb 2002 | B1 |
6598765 | Pagel et al. | Jul 2003 | B2 |
6938795 | Barton et al. | Sep 2005 | B2 |
6948638 | Tu | Sep 2005 | B2 |
7281643 | Lin | Oct 2007 | B2 |
7364053 | Ophardt | Apr 2008 | B2 |
7651010 | Orzech et al. | Jan 2010 | B2 |
7845593 | Formon et al. | Dec 2010 | B2 |
20040226962 | Mazursky et al. | Nov 2004 | A1 |
20060292021 | Tu | Dec 2006 | A1 |
20070068966 | Orzech et al. | Mar 2007 | A1 |
20070194045 | Py et al. | Aug 2007 | A1 |
20080121662 | Gehl | May 2008 | A1 |
20110017778 | Kadiks et al. | Jan 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20090308887 A1 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
61061311 | Jun 2008 | US |