Fluid dispensing apparatus

Information

  • Patent Grant
  • 9914124
  • Patent Number
    9,914,124
  • Date Filed
    Monday, June 10, 2013
    11 years ago
  • Date Issued
    Tuesday, March 13, 2018
    6 years ago
Abstract
A fluid dispensing apparatus includes a fluid reservoir and a dispensing assembly. The dispensing assembly includes a housing and a deformable member that define a metering chamber that is configured to receive a predetermined volume of fluid from the fluid reservoir. The deformable member is deformed from a rest position to an eject position and the deformation causes the volume of the metering chamber to change which results in a change in fluid pressure within the metering chamber. An increase in the fluid pressure within metering chamber causes a predetermined volume of fluid within the metering chamber to be ejected and a decrease in the fluid pressure within the metering chamber causes fluid to be drawn into the metering chamber from the reservoir.
Description
FIELD OF THE INVENTION

The present invention relates to biological sample processing systems and in particular to a fluid dispensing apparatus that may be used in a biological sample processing system.


BACKGROUND OF THE INVENTION

While conducting biological tests, it is often necessary to dispense liquids, such as reagents, onto test slides containing tissue specimens. When analyzing tumor tissue for example, a thinly sliced section of the tissue might be placed on a slide and processed through a variety of steps, including dispensing predetermined amounts of liquid reagents onto the tissue. Automated reagent fluid dispensing devices have been developed to precisely apply a sequence of preselected reagents to test slides.


One example of a known reagent dispensing system is illustrated in U.S. Pat. No. 5,232,664 to Krawzak et al. In that system, a reagent dispensing tray can receive plural reagent containers and may include a means for positioning selected reagent containers over slides to receive reagent. An air cylinder or equivalent actuator makes contact with an individual cartridge effecting movement of a spring loaded displacement member. The spring loaded displacement member slides within a cylinder thereby reducing the reagent volume in the cylinder, which in turn causes reagent fluid to be applied over the slides.


One disadvantage associated with such systems is that the dispensing systems often utilize a sliding plunger that is in sealing contact with an internal surface of a cylinder. As a result, the useful life of such systems is limited by wear between the plunger and the cylinder. Systems that include a sliding plunger and cylinder configuration also require precise fitting of the plunger seal so that a fluid seal is maintained between the sliding surfaces during changes in direction of the plunger displacement. In view of these disadvantages, there exists a need for a reagent dispensing system that does not rely upon a sliding seal between a plunger and a cylinder.


An additional disadvantage associated with conventional reagent dispensing systems is the potential misalignment of individual cartridges within mounting apertures of a mounting assembly. In view of this disadvantage, there exists a need for a reagent dispensing system including cartridges that are shaped so as to self-align within similarly-shaped mounting apertures.


SUMMARY OF THE INVENTION

The present invention alleviates to a great extent the above-noted and other disadvantages of known fluid dispensing apparatus by providing a fluid dispensing cartridge that can dispense small amounts of fluids accurately without requiring a sliding seal between a sliding plunger and a cylinder.


One aspect of the present invention involves a fluid dispensing cartridge that includes a fluid reservoir and a dispensing assembly that utilizes a deformable member to create a volumetric change in a metering chamber. In one embodiment, the dispensing assembly includes metering components such as a first valve assembly and a second valve assembly that control the flow of fluid into and out of the metering chamber. The deformable member operates with the valve components to meter a desired volume of fluid from the fluid reservoir into the metering chamber, and then to eject the metered fluid from the metering chamber out of the cartridge. The metered fluid may be ejected onto any desired target such as a fluid bath or a slide.


In an embodiment, the metering components operate in conjunction with a pump assembly that is actuated by an external force to deform the deformable member to the eject position, thereby creating a pressure increase within the metering chamber. The increase creates a pressure differential between the metering chamber and the external environment which causes the second valve to open allowing the contents of the metering chamber to be ejected. When the external force is removed from the pump assembly the deformable member is allowed to return to its resting position creating a pressure differential between the reservoir and the metering chamber. That pressure differential causes the first valve to open allowing fluid to flow into the metering chamber from the reservoir.


The deformable member is preferable a diaphragm and a displacement member or piston of the pump assembly is preferably coupled to the diaphragm so that movement of the piston deforms the diaphragm. The deformation of the diaphragm to the eject position causes a reduction of volume in the metering chamber and a resultant increase in pressure. The piston also may be biased by a spring to return the diaphragm to the rest position. An actuator, such as a solenoid, may be positioned outside of the pump assembly adjacent to an exposed portion of the piston so that movement of the solenoid may be used to move the piston.


The fluid dispensing cartridge of the present invention optionally may be used within a fluid dispensing system that includes a plurality of stations at which fluid dispensing cartridges may be located. The stations preferably include mounting apertures that are shaped to receive the cartridges adjacent to a corresponding external actuator assembly. Although the cartridges may rely on gravitational force to seat within their respective mounting apertures, optionally the cartridges are releasably attached to the fluid dispensing apparatus using a mounting assembly. One example of a mounting assembly includes a tab that is located on the cartridge that is received in a slot adjacent to the respective mounting aperture. The tab may be wedge shaped so that as the tab is received by the slot the fit of the tab within the slot becomes tighter.


An additional aspect of the present invention involves a fluid dispensing apparatus including mounting apertures shaped so as to align similarly shaped cartridges, wherein the cartridges and openings have matching cross-sectional profiles. In one embodiment, the cartridges and mounting apertures include matching cross-sectional profiles that only allow the cartridge to mounted in one orientation.


These and other features and advantages of the present invention will be appreciated from review of the following detailed description of the invention, along with the accompanying figures in which like reference numerals refer to like parts throughout.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a front view of an embodiment of a fluid dispensing apparatus in accordance with the present invention;



FIG. 2 is a cross-sectional view of the fluid dispensing apparatus of FIG. 1 taken along line A-A;



FIG. 3 is, an exploded view of the fluid dispensing apparatus of FIG. 1;



FIG. 4 is a cross-sectional view of a portion of the fluid dispensing apparatus of FIG. 1 in a fully closed configuration;



FIG. 5 is a cross-sectional view of a portion of the fluid dispensing apparatus of FIG. 1 in a partially opened configuration;



FIG. 6 is another cross-sectional view of a portion of the fluid dispensing apparatus of FIG. 1 in a partially opened configuration;



FIG. 7 is a front view of an embodiment of a fluid dispensing apparatus in accordance with the present invention;



FIG. 8 is a cross-sectional view of the fluid dispensing apparatus of FIG. 7 taken along line E-E;



FIG. 9 is an exploded view of the fluid dispensing apparatus of FIG. 7;



FIG. 10 is a cross-sectional view of a portion of the fluid dispensing apparatus of FIG. 7 in a fully closed configuration;



FIG. 11 is a cross-sectional view of a portion of the fluid dispensing apparatus of FIG. 7 in a partially opened configuration;



FIG. 12 is another cross-sectional view of a portion of the fluid dispensing apparatus of FIG. 7 in a partially opened configuration;



FIG. 13 is a top view of a fluid dispensing system in which a fluid dispensing apparatus in accordance with the present invention may be used;



FIG. 14 is a side cross-sectional view of the fluid dispensing system of FIG. 13;



FIG. 15 is a cross-sectional view of a portion of a fluid dispensing system in which a fluid dispensing apparatus according to the present invention is mounted;



FIG. 16 is a top view of a portion of a fluid dispensing system; and



FIG. 17 is a flowchart of an embodiment of a fluid dispensing system incorporating a fluid dispensing apparatus in accordance with the present invention.





DETAILED DESCRIPTION OF THE INVENTION

In the following paragraphs, the present invention will be described in detail by way of example with reference to the attached drawings. Throughout this description, the preferred embodiment and examples shown should be considered as exemplars, rather than as limitations on the present invention. As used herein, the “present invention” refers to any one of the embodiments of the invention described herein, and any equivalents. Furthermore, reference to various feature(s) of the “present invention” throughout this document does not mean that all claimed embodiments or methods must include the referenced feature(s).



FIGS. 1-3 show a preferred embodiment of a fluid dispensing apparatus 10, or cartridge, in accordance with the present invention. Fluid dispensing cartridge 10 generally includes a fluid reservoir 12 that is in fluid communication with a fluid dispensing assembly 14. Fluid reservoir 12 is generally a container that is configured to hold a predetermined amount of a fluid, such as a reagent or a rinsing fluid. Preferably, reservoir 12 is a rigid housing that is constructed from a fluid impermeable material. Fluid reservoir 12 may also include a replaceable fluid bladder or liner (not shown). It should also be appreciated that the reservoir may be constructed from any material suitable for holding liquid such as a chemically inert plastic, for example polyethylene or polypropylene. The reservoir material is preferably gas impermeable to prevent ambient air from contaminating the contents, thereby extending the shelf life of the fluid contained therein. In an embodiment in which a liner or bladder is used, a substantially rigid cover may be included that supports the liner or bladder. Such a rigid cover also may provide a grasping surface for handling and a marking surface so information may be recorded on the cartridge, for example by writing on the surface or affixing a label.


Reservoir 12 includes a pressure valve 16 that allows pressure inside reservoir 12 to equalize to the ambient air pressure. In particular, pressure valve 16 may be used to stabilize pressure within reservoir 12 so that a vacuum is not formed within reservoir 12 after a portion of the contents of reservoir 12 is dispensed through dispensing assembly 14. Pressure valve 16 may be any valve that allows fluid to enter reservoir 12. As shown, pressure valve 16 may be a one-way “duck bill” type check valve. It should be appreciated that any valve may be used for pressure valve 16 such as passive check valves or controlled valves.


Fluid dispensing assembly 14 generally includes a pump assembly 20, a metering chamber 21, a reservoir valve 22, a nozzle valve assembly 23 and a nozzle 19. Pump assembly 20 further includes a moveable pump piston 25, a piston spring 26 and a deformable member, such as diaphragm 27, that are housed between a pump housing 24, or cap, and a portion 28 of a dispensing assembly housing 29. Portion 28 of dispensing assembly housing 29 and pump housing 24 are configured to be coupled together aid to collectively define a pump cavity 30 that houses piston 25, piston spring 26 and diaphragm 27. In the present embodiment, pump housing 24 held in place by a plurality of tabs that extend from dispensing assembly housing 29 so that pump housing 24 may be snapped into place with diaphragm 27 interposed between housing 24 and housing 29. It should be appreciated that pump housing 24 may be coupled to dispensing assembly housing 29 by any mechanism known in the art for example, housing 24 may be adhered or welded to housing 29.


Diaphragm 27 is a substantially flexible member that may be deformed between a rest position and an eject position. Diaphragm 27 includes a first mounting portion 31 that is configured to be coupled to portion 28 of dispensing assembly housing 29 and a second mounting portion 32 that is configured to mount to an interior end 33 of piston 25. As shown in FIG. 2, diaphragm 27 is in the rest position, in which it is generally bowl-shaped. In the rest position, the concave interior surface of diaphragm 27 defines a displacement space 34, which forms part of metering chamber 21. Preferably, first mounting portion 31 of diaphragm 27 is fixedly coupled and fluidly sealed to portion 28 of dispensing assembly housing 29 so that fluid within metering chamber 21 is prevented from flowing past diaphragm 27 toward piston 25. As will be described in further detail below, because first mounting portion 31 is stationary with respect to dispensing assembly housing 29 and metering chamber 21, and diaphragm 27 is deformable, pump assembly 20 does not require a sliding fluid seal to create pressure changes within metering chamber 21.


Pump piston 25 is slidably housed within pump housing 24. A portion of piston 25 extends out of pump housing 24 so that a force may be applied to the external portion of piston 25 to actuate dispensing assembly 14. Interior end 33 of pump piston 25 is coupled to second mounting portion 32 of diaphragm 27. Piston 25 and diaphragm 27 are coupled so that second mounting portion 32 of diaphragm 27 translates with translation of piston 25. Diaphragm 27 and piston 25 may be coupled. As shown, second mounting portion 32 of diaphragm 27 includes an annular flange 38 that is received within a circumferential channel 39 of piston 25. Circumferential channel 39 is located substantially adjacent to interior end 33 of piston 25.


The external portion of piston 25 includes an exterior end 35 that extends from pump cavity 30 through an aperture 36 of pump housing 24. In the present embodiment, the length between interior end 33 and exterior end 35 of piston 25 is selected so that exterior end 35 remains exposed when diaphragm 27 is moved between the rest position and the eject position (shown in FIG. 5 and described below). Exterior end 35 of piston 25 provides a surface for external forces to be applied to piston 25 to move diaphragm 27 between the rest position and the eject position.


Spring 26 may be used to position piston 25 when there is no external force applied to piston 25. Spring 26 is interposed between first mounting portion 31 of diaphragm 27 and a spring contact flange 37 of piston 25. In the illustrated embodiment, spring 26 is configured so that it is under compression and biases piston 25 away from pump portion 28 of dispensing assembly housing 29 so that diaphragm 27 is in a rest position. It should be appreciated that spring 26 may be configured to bias piston 25 in any desired direction. It should further be appreciated that spring 26 may be replaced by a plurality of spring members if desired. It should also be appreciated that diaphragm 27 may be configured to provide the spring force to bias piston 25 into a desired position. It should be further appreciated that piston 25 and spring 26 may be omitted so that external force is applied directly to diaphragm 27.


Metering chamber 21 is a cavity configured to hold liquid that is located between reservoir valve 22, diaphragm 27 and nozzle valve assembly 23. Metering chamber 21 provides a holding space for a predetermined volume of fluid that has flown from reservoir 12 into dispensing assembly 14 prior to being ejected from cartridge 10. Metering chamber 21 may be any desired size or shape. Preferably, metering chamber 21 has a volume that closely approximates the volume dispensed during each dispensing cycle of cartridge 10.


The flow of fluid from reservoir 12 into metering chamber 21 is regulated by reservoir valve 22, which is located generally between metering chamber 21 and reservoir 12. In the present embodiment, reservoir valve 22 is a passive, one-way “duck bill” check valve. The deformable flaps of the duck bill valve seal against each other when the valve is closed and separate from each other to form a gap when the valve is opened.


The properties of reservoir valve 22 are chosen so that it allows fluid communication between reservoir 12 and metering chamber 21 when a desired pressure differential between reservoir 12 and metering chamber 21 is created. As described in further detail below, actuation of pump assembly 20 is used to alter the fluid pressure within metering chamber 21 so that the fluid pressure in metering chamber 21 differs from the fluid pressure of reservoir 12 and the ambient environment. In the present embodiment, valve 22 is configured to be closed when there is minimal or no difference in pressure between reservoir 12 and metering chamber 21 or when the pressure in reservoir 12 is less than the pressure in metering chamber 21. When the pressure inside reservoir 12 exceeds the fluid pressure in metering chamber 21 by a selected threshold difference, reservoir valve 22 opens. It should be appreciated that reservoir valve 22 may be any passive or active valve known in the art. Such active valves include solenoid valves and any other actively controlled valve known in the art and the position of the active valve may be automatically or manually controlled through a valve controller.


An optional filter 44 is included adjacent reservoir valve 22. Filter 44 is configured to filter fluid before it flows into reservoir valve 22 from reservoir 12. As shown, filter 44 is a cap that includes narrow slots that are sized to prevent debris from flowing into reservoir valve 22 and filter 44 retains reservoir valve 22 in housing 29. However, it should be appreciated that any filter device may be used such as, for example, a filter made of mesh or foam.


Nozzle valve assembly 23 is used to regulate the flow from metering chamber 21 out of cartridge 10. Nozzle valve assembly 23 is generally located between metering chamber 21 and nozzle 19. In the present embodiment, nozzle valve assembly 23 is a passive valve that includes a diaphragm 52 and a valve spring 56. Diaphragm 52 is a flexible member that includes a pass-through aperture 53 and a peak 54 and is interposed between dispensing assembly housing 29 and nozzle 19. The perimeter of diaphragm 52 is coupled to a sealing surface 58 included on dispensing assembly housing 29 so that fluid within metering chamber 21 is prevented from flowing between sealing surface 58 and diaphragm 52. Pass-through aperture 53 is aligned with a portion of metering chamber 21 so that fluid may flow from metering chamber 21 past diaphragm 52 and into a valve chamber 57, which is a volume defined by the lower surface of diaphragm 52 and the top surface of nozzle 19.


Peak 54 is a cone-shaped protrusion that extends from a surface of diaphragm 52 in the direction of nozzle 19. When fluid dispensing apparatus 14 is in either a resting or filling state, described in greater detail below, peak 54 extends at least partially into a nozzle fluid conduit 60 so that the outer surface of peak 54 seals against the surface of fluid conduit 60. The location of sealing between peak 54 and nozzle 19 is preferably within conduit 60 so that the volume of space between the seal and the outlet of conduit 60 is minimized. Minimizing that volume reduces the likelihood of evaporation of liquid in that space which could cause conduit 60 to become clogged. It should be appreciated that peak 54 may be configured in any way suitable to seal against the surface of conduit 60. For example, if fluid conduit 60 has a square cross-sectional shape, peak 54 may likewise be constructed with a square cross-section such as by creating peak 54 in the shape of a pyramid or a truncated pyramid.


Spring 56 is located in a cavity 68 that is defined by dispensing assembly housing 29 and diaphragm 52 and an aperture 69 is provided so air can escape from cavity 68 during compression of spring 56. Preferably, spring 56 is placed under compression so that it biases peak 54 into conduit 60 when the fluid pressure within metering chamber is at or near ambient pressure and is selected to prevent dripping when the fluid is at that pressure. However, spring 56 is also selected so that a fluid pressure increase within metering chamber 21 and valve chamber 57 caused by actuation of pump assembly 20 will cause at least a portion of diaphragm 52 to be moved upward toward dispensing assembly housing 29 against the biasing force of spring 56. Peak 54 moves with diaphragm 52 away from nozzle 19, which removes the fluid seal between peak 54 and conduit 60. As a result, pressurized fluid becomes free to flow through conduit 60 of nozzle 19 past peak 54.


The properties of diaphragm 52 and spring 56 are chosen so that nozzle valve assembly 23 allows fluid communication between metering chamber 21 and fluid conduit 60 of nozzle 19 when a desired pressure differential between metering chamber 21 and the external environment is created. In the present embodiment, spring 56 is configured to hold diaphragm 52 in a closed position (i.e., there is no fluid communication between metering chamber 21 and conduit 60) when there is minimal or no difference in pressure between metering chamber 21 and the environment. As described in further detail below, actuation of pump assembly 20 alters the fluid pressure within metering chamber 21 and valve chamber 57 so that the pressure differs from the fluid pressure of the external environment. When the force acting upon diaphragm 52 from the fluid within nozzle valve chamber 57 exceeds the force acting upon diaphragm 52 from spring 56, diaphragm 52 is moved upward so that a gap is formed between the outer surface of diaphragm peak 54 and the inner surface of conduit 60. As a result, fluid is permitted to flow from metering chamber 21 through conduit 60. Furthermore, it should be appreciated that an active valve may be used, such as a solenoid or other active valve and the position of the active valve may be controlled automatically or manually through a valve controller. Similar to reservoir valve assembly 22, nozzle valve assembly 23 may be any passive or actively controlled valve known in the art.


The configuration of nozzle 19 and conduit 60 may be selected to create any desired flow attributes out of cartridge 10. For example, dispensing assembly 14 may be configured to provide a directed stream of fluid, a wide fluid spray or fluid droplets. It should be appreciated that the flow attributes of the pressurized fluid through nozzle 19 may selected as desired by selecting the shape of fluid conduit 60 and by tailoring pump assembly 20 to create a desired pressure increase within metering chamber 21. Nozzle 19 may be made of any material and is preferably constructed from a chemically inert hydrophobic hard plastic material so that a last drop of liquid may be prevented after ejection. In addition, as shown in FIG. 3, nozzle may be coupled directly to dispensing assembly housing 29 by tabs so that nozzle 19 is snapped into place. It should be appreciated that nozzle 19 may alternatively, or additionally, be mechanically coupled to dispensing assembly housing 29 by adhesive and/or welding. It should further be appreciated that nozzle may be coupled to fluid dispensing housing 29 through diaphragm 52.


After cartridge 10 is assembled, reservoir 12 may be filled with a reagent or other liquid as desired. Generally, immediately after the initial filling of reservoir 12, metering chamber 21 is substantially empty. In order to prepare cartridge 10 for use, dispensing assembly 14 may be primed by actuating pump assembly 20. As will be appreciated from the description below, actuating pump assembly 20 causes the fluid pressure within metering chamber 21 to increase which causes the contents of metering chamber 21 to be ejected through nozzle 19. During priming, the air that initially occupies metering chamber 21 is ejected and replaced by liquid from reservoir 12.


Referring to FIGS. 4-6 operation of fluid dispensing assembly 14 will be described. During operation, fluid dispensing assembly 14 is configured in one of a resting state (i.e., fully closed), an ejecting state (i.e., partially opened with the nozzle valve opened) or a filling state (i.e., partially opened with the reservoir valve opened). Dispensing assembly 14 is in a resting state when no external force is applied to piston 25 of pump assembly 20. In that state, reservoir valve 22 and nozzle valve assembly 23 are closed, and there is no fluid flow either into dispensing assembly 14 from reservoir 12 or out of dispensing assembly 14 from metering chamber 21. In addition, diaphragm 27 is in the rest position, displacement space 34 has a maximum volume and spring 26 is under compression so that it urges piston 25 away from metering chamber 21. In the present embodiment, when dispensing assembly 14 is in the resting state, the fluid pressure within reservoir 12 and metering chamber 21 are approximately equalized with the external fluid pressure.


Referring to FIG. 5, dispensing assembly 14 may be placed in the ejecting state by applying an external force to piston 25 that is sufficient to overcome the force exerted on piston 25 by spring 26. The force causes piston 25 to move in the direction of arrow B. Movement of piston 25 in the direction of arrow B causes diaphragm 27 to be deformed and transforms it from the bowl-shaped rest position, shown in FIG. 4, into the substantially flat eject position, shown in FIG. 5. Deformation of diaphragm 27 reduces the volume of displacement space 34 and metering chamber 21, which increases the fluid pressure within metering chamber 21. Reservoir valve 22 remains closed in response to the increase in fluid pressure within metering chamber 21. Nozzle valve assembly 23, however, is configured to open when there is a sufficient increase in fluid pressure within metering chamber 21. As a result, the pressurized fluid within metering chamber 21 is ejected through nozzle 19, as shown by arrow C.


Referring to FIG. 6, after the external force on piston 25 is removed, dispensing assembly 14 enters the filling state. During ejection, piston 25 is translated and spring 26 is compressed in reaction to the external force. Upon removal of the external force, the compression force of spring 26 causes piston 25 to translate away from metering chamber 21 in the direction of arrow D. The movement of piston 25 in that direction causes diaphragm 27 to transform from the eject position to the rest position. That deformation results in an increase in the volume of displacement space 34, which creates a partial vacuum (i.e., a reduction in pressure within metering chamber 21 below the fluid pressure in reservoir 12 and the external pressure) within metering chamber 21. The partial vacuum causes reservoir valve 22 to open when a sufficient pressure differential is achieved, and fluid is permitted to flow from reservoir 12 into metering chamber 21, as shown by arrows E. At the same time, nozzle valve assembly 23 closes because the combined force placed on diaphragm 52 by spring 56 is greater than the force caused by the fluid pressure of the environment on diaphragm 52. In this configuration, fluid is allowed to flow from reservoir 12 into metering chamber 21 until the pressure within metering chamber 21 is substantially equal to the fluid pressure within reservoir 12. When the pressure within metering chamber 21 is substantially equal to the fluid pressure within reservoir 12, reservoir valve 22 closes.



FIGS. 7-8 show another embodiment of a fluid dispensing cartridge in accordance with the present invention. It should be appreciated that fluid dispensing cartridge 110 uses similar or identical components to the embodiment previously described and such components are indicated by similar reference numbers. Fluid dispensing cartridge 110 generally includes a fluid reservoir 112 and a fluid dispensing assembly 114 that is in communication with fluid reservoir 112. Fluid reservoir 112 is generally a container that is configured to hold a predetermined amount of a fluid, such as a reagent or a rinsing fluid. It should be appreciated that fluid reservoir 112 may be constructed as described above with respect to the previous embodiment.


Reservoir 112 also includes a pressure valve 116 that allows fluid to enter reservoirs 112 and used to stabilize pressure within reservoir 112 so that a vacuum is not formed within reservoir 112 after a portion of the contents of reservoir 112 is dispensed through dispensing assembly 114.


Fluid dispensing assembly 114 generally includes a pump assembly 120, a metering chamber 121, a reservoir valve assembly 122, a nozzle valve assembly 123 and a nozzle 119. With the exception of reservoir valve assembly 122, nozzle valve assembly 123 and nozzle 119, the components of fluid dispensing assembly 114 are similar to those described above and will not be described again in full detail. Pump assembly 120 includes a moveable pump piston 125, a piston spring 126 and a diaphragm 127, that are housed between a pump housing 124 and a portion 128 of a dispensing assembly housing 129.


Diaphragm 127 is a substantially flexible member that may be deformed between a rest position and an eject position. As shown in FIG. 2, diaphragm 127 is in the rest position, in which it is generally shaped as a concave bowl and defines a displacement space 134, which forms part of metering chamber 121.


Pump piston 125 is slidably housed within pump housing 124 and a portion of piston 125 extends out of pump housing 124 so that a force may be applied to the external portion of piston 125 to actuate dispensing assembly 114. Piston 125 and diaphragm 127 are coupled so that a portion of diaphragm 127 translates with translation of piston 125. Spring 126 positions piston 125 away from metering chamber 121 when there is no external force applied to piston 125, which places diaphragm 127 is in a rest position.


Metering chamber 121 is a fluid chamber that is located between reservoir valve assembly 122, diaphragm 127 and nozzle valve assembly 123. Metering chamber 121 provides a holding space for a predetermined volume of fluid that has flown from reservoir 112 prior to being ejected from cartridge 110.


Reservoir valve assembly 122 regulates the flow of fluid from reservoir 112 into metering chamber 121 and valve assembly 122 is located generally between metering chamber 121 and reservoir 112. In the present embodiment, reservoir valve assembly 122 is a passive, one-way check valve that includes a piston 145 and a piston spring 146. Piston 145 is movable between a sealing position and an opened position and piston spring 146 biases piston 145 into the sealing position.


Piston 145 and piston spring 146 are mounted within a reservoir valve chamber 147 that is collectively defined by dispensing assembly housing 129 and a reservoir valve cap 148. Cap 148 includes a reagent conduit 149 that is configured to provide fluid communication between reservoir 112 and metering chamber 121 when piston 145 is in the opened position. Cap 148 includes a sealing surface 150 that is configured to selectively abut a sealing surface 151 on valve piston 145 when it is in the sealing position to prevent fluid communication between reservoir 112 and metering chamber 121. It should be appreciated that reservoir valve assembly 122 may be any passive or active (i.e., actively controlled) valve known in the art.


The properties of spring 146 are chosen so that reservoir valve assembly 122 allows fluid communication between reservoir 112 and metering chamber 121 when a desired pressure differential between reservoir 112 and metering chamber 121 is created. In the present embodiment, spring 126 is configured to bias piston 145 into the sealing position (i.e., there is no fluid communication between reservoir 112 and metering chamber 121) when there is minimal or no difference in pressure between reservoir 112 and metering chamber 121 or when the pressure in reservoir 112 is less than the pressure in metering chamber 121. As described in further detail below, actuation of pump assembly 20 may be used to alter the fluid pressure within metering chamber 121 so that the fluid pressure in metering chamber 121 may differ from the fluid pressure of reservoir 112. When the combined force on piston 145 caused by spring 126 and the fluid pressure within metering chamber 121 is lower than the force exerted on piston 145 from the fluid pressure within reservoir 112 piston 145 is moved downward, toward metering chamber 121 so that a gap is formed between sealing surface 150 and sealing surface 151. As a result, fluid is permitted to flow from reservoir 112 into metering chamber 121. In particular, when the pressure inside reservoir 112 exceeds the fluid pressure in metering chamber 121 by a selected threshold difference reservoir valve assembly 122 opens. It should be appreciated that piston 145 of reservoir valve assembly 122 may be replaced by a ball or any other member that includes a surface that may seal against a sealing surface 150 of the valve cap. Furthermore, is should be appreciated that an active valve may be used, such as a solenoid or other actively controlled valve and the position of the active valve may be automatically or manually controlled through a valve controller.


Nozzle valve assembly 123 regulates the flow of fluid from metering chamber 121 and out of cartridge 110 through nozzle 119. Nozzle valve assembly 123 is generally located between metering chamber 121 and nozzle 119. Similar to reservoir valve assembly 122, nozzle valve assembly 123 may be any passive or actively controlled valve known in the art. In the present embodiment, nozzle valve assembly 123 is a passive, one-way check valve that includes a valve piston 155 and a valve spring 156 that are housed within a nozzle valve chamber 157 collectively defined by dispensing assembly housing 129 and nozzle 119. A sealing surface 158 is included on dispensing assembly housing 129 adjacent to piston 155 that is configured to selectively abut against a sealing surface 159 included on an upper end of piston 155.


The properties of spring 156 are chosen so that nozzle valve assembly 123 allows fluid communication between metering chamber 121 and a fluid conduit 160 of nozzle 119 when a desired pressure differential between metering chamber 121 and the external environment is created. In the present embodiment, spring 156 is configured to be in a closed position (i.e., there is no fluid communication between metering chamber 121 and conduit 160) when there is minimal or no difference in pressure between metering chamber 121 and the environment or when the external pressure is greater than the pressure in metering chamber 121. Actuation of pump assembly 120 alters the fluid pressure within metering chamber 121 so that the pressure within metering chamber 121 differs from the fluid pressure of the external environment. When the combined force on piston 155, caused by spring 156 and the external pressure, is lower that the force exerted on piston 155 from the fluid pressure within metering chamber 121, piston 155 is caused to move downward toward nozzle 119 so that a gap is formed between sealing surface 158 and sealing surface 159. As a result, fluid is permitted to flow from metering chamber 121 through conduit 160 of nozzle 119. It should be appreciated that an active valve may be used, such as a solenoid or other active valve and the position of the active valve may be controlled automatically or manually through a valve controller.


Operation of fluid dispensing assembly 114 is illustrated by FIGS. 10-12. Similar to the previously described embodiment, fluid dispensing assembly 114 is configured in one of a resting state, an ejection state, or a filling state during operation. Reservoir valve assembly 122 and nozzle valve assembly 123 are closed when dispensing assembly 114 is in the resting state, shown in FIG. 10. As a result, there is no fluid flow either into dispensing assembly 114 from reservoir 112 or out of dispensing assembly 114 from metering chamber 121. In that state, diaphragm 127 is in the rest position and displacement space 134 has a maximum volume. In addition, spring 126 is under compression so that piston 125 is urged away from metering chamber 121.


Referring to FIG. 11, dispensing assembly 114 is placed in the ejection state by applying an external force to piston 125. The force causes piston 125 to move in the direction of arrow F. Movement of piston 125 in the direction of arrow F causes diaphragm 127 to be deformed into the substantially flat eject position. Deformation of diaphragm 127 reduces the volume of displacement space 134 and metering chamber 121, which increases the fluid pressure within metering chamber 121. Reservoir valve assembly 122 remains closed in response to the increase in fluid pressure within metering chamber 121, but nozzle valve assembly 123 is configured to open when there is a sufficient increase in fluid pressure within metering chamber 121. As a result, the pressurized fluid within metering chamber 121 is ejected through nozzle 119, as shown by arrow G.


After the external force is removed from piston 125, dispensing assembly 114 enters the filling state, shown in FIG. 12. Upon removal of the external force the compression force of spring 126 causes piston 125 to translate away from metering chamber 121 in the direction of arrow H, which causes diaphragm 127 to transform from the eject position to the rest position. That deformation results in an increase in the volume of displacement space 134, which creates a partial vacuum within metering chamber 121. That vacuum causes reservoir valve assembly 122 to open when a sufficient pressure differential is achieved, and fluid is permitted to flow from reservoir 112 into metering chamber 121, as shown by arrows I. At the same time, nozzle valve assembly 123 closes because the combined force placed on piston 150 by external fluid pressure and spring 156 is greater than the force caused by the fluid pressure within metering chamber 121 on piston 155. In this configuration, fluid is allowed to flow from reservoir 112 into metering chamber 121 until the pressure within metering chamber 121 is substantially equal to the fluid pressure within reservoir 112. When the pressure within metering chamber 121 is substantially equal to the fluid pressure within reservoir 112 reservoir valve assembly 122 closes under the influence of spring 146.


Fluid dispensing cartridges also can be used in connection with a larger fluid dispensing system, such as that described below with respect to FIGS. 13 and 14. In particular, cartridge 10 optionally includes an alignment surface 61 and a shoulder 62 and cartridge 110 includes an alignment surface 161 and a shoulder 162 that are useful for properly orienting the cartridge within the system. As will be described in further detail below, the respective alignment surface interfaces with an aperture in the system so that the fluid conduit of the respective nozzle may be easily aligned with a desired fluid dispensing target. Furthermore, the shoulder may be used to control the distance between the nozzle and the fluid dispensing target. Cartridges 10 and 110 may be manufactured (i.e., machined or molded) so that the respective alignment surfaces and shoulders have low tolerances for accurate alignment of the cartridge within a larger dispensing system. Additional mounting and/or alignment features may also be included on the cartridges. For example, cartridge 10 also includes an alignment surface 68 that is configured to abut a portion of a dispensing system. In addition, cartridge 110 optionally includes a mounting tab 163 that will be described in greater detail below in relation to FIGS. 15 and 16. It should be understood that any form of alignment assisting features may be used that can assist with positioning the cartridge as desired for use in the respective fluid dispensing system.



FIGS. 13 and 14 show an exemplary embodiment of a fluid dispensing system 70 that incorporates one or more fluid dispensing cartridges according to the present invention. System 70 generally includes a cartridge mounting assembly 71 and a sample support assembly 72. Cartridge mounting assembly 71 includes a plurality of stations 73 at which fluid dispensing cartridges 10 are mounted. Stations 73 preferably include mounting apertures 74 that are configured to receive and position the fluid dispensing cartridges adjacent to an actuator assembly 75. It should be understood that any form of fluid dispensing system 70 may be used that can receive the cartridge and actuate the dispensing assembly to dispense reagents as desired.


Fluid dispensing system 70 also includes a plurality of receiving members 76 mounted on sample support assembly 72. Receiving members 76 may be any item upon which it is desired to dispense fluids from cartridges 10. Examples of suitable receiving members 76 include slide retaining trays, sample containers and mixing baths. Preferably, receiving members 76 are microscope slide retaining trays holding slides that have tissue samples positioned on them, wherein the slides are positioned face down on the respective tray 76. In such a system the reagent from a fluid dispensing apparatus 10 is not dispensed onto the slide or the sample it contains, but rather is dispensed onto a receiving surface of the slide tray 76 and optionally flows such as via vacuum induced pressure differentials or capillary action underneath the slide that is positioned on the slide tray 76. Optionally, receiving members 76 may be mounted on heating pads 77 that are configured to provide selective heating of the slides or other portions of receiving members 76. Heating pads 77 may optionally be spring-loaded to improve contact between receiving members 76 and one or more of heating pads 77.


Receiving member support assembly 72 is positioned generally below cartridge mounting assembly 71 so that gravity may be used to deliver fluids from cartridges 10 to receiving members 76 as described above. Preferably, cartridge mounting assembly 71 is movable with respect to the stationary receiving member support assembly 72 so that cartridges 10 may be positioned to dispense fluids on any desired receiving member 76. In an alternative embodiment, both cartridge mounting assembly 71 and sample support assembly 72 are movable relative to one another so dispensing fluids is achieved by moving both relative to one another. As shown in FIG. 13, the receiving members 76 may all be the same, such as microscope slides, or alternatively receiving members 76 may include different types of items such as microscope slides and sample containers.


Cartridge mounting assembly 71 may be rotated so that selected fluid dispensing cartridges 10 may be positioned adjacent actuators 78, 79, 80 of actuator assembly 75. Alternatively, an actuator, such as the type shown as actuators 78, 79, and 80, may be positioned adjacent each cartridge 10 so that rotation of cartridge mounting assembly 71 is not required for actuation of a particular cartridge 10. Actuator assembly 75 can be any actuator device that triggers cartridge 10 to emit a controlled amount of fluid. For example, actuator assembly 75 may include a plurality of linear actuators, such as solenoids, that are aligned with exterior end 35 of pump piston 25 so that movement of the actuator applies force to move pump piston 25 within pump assembly 20.


Preferably, cartridge mounting assembly 71 may be both translated and rotated with respect to sample support assembly 72 so that an individual cartridge 10 can be selectively positioned above any receiving member 76. Once cartridge 10 is positioned above a selected receiving member 76, actuator assembly 75 triggers cartridge 10 to eject a controlled amount of fluid onto receiving member 76.


As seen in FIGS. 13 and 14, cartridge mounting assembly 71 may be rotatably coupled to a support member 81 and actuator assembly 75 may be fixedly attached to support member 81 so that cartridges 10 can be rotated with respect to actuator assembly 75. Preferably, support member 81 may be translated horizontally so the cartridges 10 can be both rotated and translated with respect to stationary receiving members 76. In this manner, a chosen cartridge 10 can be selectively positioned above any receiving member 76.


As seen in the illustrated embodiment, actuator assembly 75 may optionally include three actuators 78, 79, 80 used to dispense fluid onto respective rows 82, 83, 84 of receiving members 76. In operation, actuator 78 is adapted to dispense fluids onto receiving members 76 in row 82, actuator 79 is adapted to dispense fluids onto receiving members 76 in row 83 and actuator 80 is adapted to dispense fluids onto receiving members 76 in row 84. Of course, as will be understood by those of skill in the art, any number of actuators and/or receiving members can be employed without departing from the scope of the present invention.


As shown in FIG. 14, the system 70 optionally includes supply containers 85, waste containers 86 and valves 87. Supply containers 85 may be used to hold liquids such as water for rinsing receiving members 76 or reagents that may be distributed through a fluid distribution assembly included in system 70. Valves 87 can include switches for directing the flow of liquids through system 70 such as for rinsing receiving members 76. In addition, valves 87 may be used to direct the flow of liquids into waste containers 86 after the liquids have been used to rinse receiving members 76.


It is preferred that the shape of cartridges 10 is selected so that cartridge may only be installed in cartridge mounting assembly 71 in one orientation. For example, the cross-sectional shape of cartridge 10 taken through alignment surface 61 may be substantially trapezoidal and mounting apertures 74 in cartridge mounting assembly 71 are similarly shaped, thereby limiting the installation of cartridges 10 to one orientation. Additionally, one or more keys 66 may be included that are received within complementary features of mounting apertures 74. FIGS. 13 and 14 show examples of cartridges 10 having substantially trapezoidal cross-sections which are adapted to fit within substantially trapezoidal mounting apertures 74 (as shown in FIG. 13). In other embodiments, mounting apertures 74 and cartridges 10 have other similarly oriented shapes or include orientation features, such as a tab and slot, that limit installation of cartridge 10 in one orientation.


Referring to FIGS. 15 and 16, an optional mounting feature included on cartridge 110 will be described. The mounting feature that can be utilized to releasably attach a cartridge 110 within a corresponding mounting aperture 74 of cartridge mounting assembly 71. As shown, cartridge 110 includes a mounting tab 163 that may be used to lock cartridge 110 into place after it has been aligned within a larger system. As shown, mounting tab 163 includes an outer portion 164 and an inner portion 165 that combine so that mounting tab 163 has a generally T-shaped cross section. The dimensions of outer portion 164 and/or inner portion 165 may vary over their length so that a friction fit between mounting tab 163 and a mounting slot 67 included in cartridge mounting assembly 71 may become tighter as mounting tab 163 is inserted further into slot 67.


With reference to FIG. 17, actuator assembly 75 is preferably activated using a controller 90 and control switches 91 that may be used to activate any one of actuators 78, 79, 80. Preferably, controller 90 is a programmable computer. Controller also may be integrated into a main controller or control system for a fluid dispensing system 70 and programming steps for actuation of actuators 78, 79, 80 may be included in a main tissue processing program. Controller 90 may be any device that causes actuator assembly 75 to be automatically or manually activated. Furthermore, controller 90 may be located so that it does not move relative to cartridge mounting assembly 71. Alternatively, controller 90 may be located such that it moves relative to cartridge mounting assembly 71 and a hardwired or wireless communication link 92 may be provided between controller 90 and actuator assembly 75. Once activated, actuator assembly 75 applies a mechanical force 93 to pump assembly 20 of cartridge 10 to cause dispensing assembly 14 to dispense a stream or drip of fluid 94 onto receiving member 76.


Thus, it is seen that a fluid dispensing reagent cartridge is provided. One skilled in the art will appreciate that the present invention can be practiced by other than the preferred embodiments which are presented in this description for purposes of illustration and not of limitation, and the present invention is limited only by the claims that follow. It is noted that equivalents for the particular embodiments discussed in this description may practice the invention as well.

Claims
  • 1. A fluid dispensing system, comprising: a cartridge mounting assembly having a plurality of fluid dispensing cartridge mounting stations each of which includes a cartridge mounting feature;a plurality of fluid dispensing cartridges each including a reservoir and a fluid dispensing assembly comprising an alignment surface, and a dispensing assembly housing extending from the alignment surface, the dispensing assembly housing comprising a metering chamber, a piston and a deformable member that is configured to alter the volume of the metering chamber when deformed by the piston, the cartridges being mounted to respective mounting stations;at least one actuator that is operable to apply a force to the piston of one of the plurality of dispensing cartridges; anda sample support assembly configured to support a plurality of tissue samples substantially below the fluid dispensing assembly,wherein the cartridge mounting feature comprises a shape to match a corresponding horizontal cross-sectional shape of the alignment surface of the fluid dispensing assembly,wherein the dispensing assembly of each of the plurality of fluid dispensing cartridges comprises a key that is operable to be received within an aperture in each of the plurality of fluid dispensing cartridge mounting stations,wherein each of the plurality of fluid dispensing cartridge mounting stations includes a cartridge retaining feature configured to selectively interlock with a cartridge feature, andwherein the cartridge feature is a mounting tab and the cartridge retaining feature is a slot configured to receive the mounting tab and to provide a friction fit between the mounting tab and the slot, wherein the slot is integrally formed with a bottom wall of each of the plurality of fluid dispensing cartridge mounting stations and the friction fit between the mounting tab and the slot becomes tighter as the mounting tab is inserted further into the slot toward the bottom wall.
  • 2. The fluid dispensing system of claim 1 wherein the cartridge mounting feature is an aperture.
  • 3. The fluid dispensing system of claim 1 wherein the cartridge mounting feature is an indentation.
  • 4. The fluid dispensing system of claim 1 wherein the cartridge mounting assembly includes at least two mounting stations having differently shaped cartridge mounting features.
CROSS-REFERENCE TO RELATED APPLICATION

The application is a divisional of U.S. patent application Ser. No. 11/441,668, filed May 25, 2006 (now U.S. Pat. No. 8,459,509) and incorporated herein by reference.

US Referenced Citations (351)
Number Name Date Kind
1621097 Zammataro Mar 1927 A
2709025 Scott May 1955 A
2772817 Jauch Dec 1956 A
3008611 Mancusi, Jr. Nov 1961 A
3294290 Erickson et al. Dec 1966 A
3881641 Pliml, Jr. et al. May 1975 A
3904079 Kross Sep 1975 A
3987938 Cooprider et al. Oct 1976 A
4018363 Cassia Apr 1977 A
4025241 Clemens May 1977 A
4039775 Andra Aug 1977 A
4099483 Henderson Jul 1978 A
4149573 Cassia Apr 1979 A
4149633 Nilson Apr 1979 A
4199558 Henderson Apr 1980 A
4258759 Achen Mar 1981 A
4345627 Cassia Aug 1982 A
4356727 Brown et al. Nov 1982 A
4440323 Benson Apr 1984 A
4561571 Chen Dec 1985 A
4604964 Gordon et al. Aug 1986 A
4615476 Hobbs et al. Oct 1986 A
4667854 McDermott et al. May 1987 A
4673109 Cassia Jun 1987 A
4678752 Thorne et al. Jul 1987 A
4722372 Hoffman et al. Feb 1988 A
4731335 Brigati Mar 1988 A
4741898 Mallik et al. May 1988 A
4764342 Kelln et al. Aug 1988 A
4790640 Nason Dec 1988 A
4798311 Workum Jan 1989 A
4801431 Cuomo et al. Jan 1989 A
4834019 Gordon et al. May 1989 A
4838457 Swahl et al. Jun 1989 A
4846636 Danby et al. Jul 1989 A
4867347 Wass et al. Sep 1989 A
4880149 Scholefield et al. Nov 1989 A
4886192 Cassia Dec 1989 A
4917265 Chiang Apr 1990 A
4921136 Roggenburg, Jr. May 1990 A
4927061 Leigh et al. May 1990 A
4946076 Hackmann et al. Aug 1990 A
4955512 Sharples Sep 1990 A
4961508 Weimer et al. Oct 1990 A
4969581 Seifert et al. Nov 1990 A
4972978 DeLuca Nov 1990 A
4974754 Wirz Dec 1990 A
4978036 Burd Dec 1990 A
4985206 Bowman et al. Jan 1991 A
5002736 Babbitt et al. Mar 1991 A
5033656 Blette et al. Jul 1991 A
5035350 Blette et al. Jul 1991 A
5068091 Toya Nov 1991 A
5073504 Bogen Dec 1991 A
5082150 Steiner et al. Jan 1992 A
5209377 Steiner May 1993 A
5225325 Miller et al. Jul 1993 A
5232664 Krawzak et al. Aug 1993 A
5242081 van der Heyden et al. Sep 1993 A
5242083 Christine et al. Sep 1993 A
5244787 Key et al. Sep 1993 A
5252293 Drbal et al. Oct 1993 A
5253774 Honig et al. Oct 1993 A
5255822 Mease et al. Oct 1993 A
5273905 Muller et al. Dec 1993 A
5275309 Baron et al. Jan 1994 A
5316452 Bogen et al. May 1994 A
5322771 Rybski et al. Jun 1994 A
5338358 Mizusawa et al. Aug 1994 A
5355439 Bernstein et al. Oct 1994 A
5356039 Christine et al. Oct 1994 A
5390822 Lataix Feb 1995 A
5418138 Miller et al. May 1995 A
5421489 Holzner, Sr. et al. Jun 1995 A
5424036 Ushikubo Jun 1995 A
5425918 Healey et al. Jun 1995 A
5433351 Okuyama et al. Jul 1995 A
5439649 Tseung et al. Aug 1995 A
5474212 Ichikawa et al. Dec 1995 A
5525300 Danssaert et al. Jun 1996 A
5534114 Cutright et al. Jul 1996 A
5561556 Weissman et al. Oct 1996 A
5578452 Shi et al. Nov 1996 A
5579945 Ichikawa et al. Dec 1996 A
5580523 Bard Dec 1996 A
5595707 Copeland et al. Jan 1997 A
5602674 Weissman et al. Feb 1997 A
5609822 Carey et al. Mar 1997 A
5626262 Fitten et al. May 1997 A
5639423 Northrup et al. Jun 1997 A
5645114 Bogen et al. Jul 1997 A
5650327 Copeland et al. Jul 1997 A
5654199 Copeland et al. Aug 1997 A
5654200 Copeland et al. Aug 1997 A
5675715 Bernstein et al. Oct 1997 A
5700346 Edwards Dec 1997 A
5810204 Devlin et al. Sep 1998 A
5819842 Potter et al. Oct 1998 A
5836482 Ophardt et al. Nov 1998 A
5839091 Rhett et al. Nov 1998 A
5843700 Kerrod et al. Dec 1998 A
5846396 Zanzucchi et al. Dec 1998 A
5851488 Saul et al. Dec 1998 A
5855302 Fisscher Jan 1999 A
5857595 Nilson Jan 1999 A
5885530 Babson et al. Mar 1999 A
5947167 Bogen et al. Sep 1999 A
5948359 Kalra et al. Sep 1999 A
5950874 Sindoni Sep 1999 A
5950878 Wade et al. Sep 1999 A
5954167 Richardson et al. Sep 1999 A
5958341 Chu Sep 1999 A
5964454 Volpel Oct 1999 A
5965454 Farmilo et al. Oct 1999 A
5968731 Layne et al. Oct 1999 A
5971223 Fisscher Oct 1999 A
6001309 Gamble et al. Dec 1999 A
6012613 Chen Jan 2000 A
6017495 Ljungmann Jan 2000 A
6020995 Dreyer et al. Feb 2000 A
6045759 Ford et al. Apr 2000 A
6076583 Edwards Jun 2000 A
6092695 Loeffler Jul 2000 A
6093574 Druyor-Sanchez et al. Jul 2000 A
6096271 Bogen et al. Aug 2000 A
6180061 Bogen et al. Jan 2001 B1
6183693 Bogen et al. Feb 2001 B1
6189740 Wade et al. Feb 2001 B1
6192945 Ford et al. Feb 2001 B1
6202895 Fox Mar 2001 B1
6206238 Ophardt Mar 2001 B1
6216916 Maddox et al. Apr 2001 B1
6238910 Custance et al. May 2001 B1
6244474 Loeffler Jun 2001 B1
6259956 Myers et al. Jul 2001 B1
6273298 Post Aug 2001 B1
6286725 Gerber Sep 2001 B1
6296809 Richards et al. Oct 2001 B1
6335166 Ammann et al. Jan 2002 B1
6343716 Baudin et al. Feb 2002 B1
6349264 Rhett et al. Feb 2002 B1
6352861 Copeland et al. Mar 2002 B1
6387326 Edwards et al. May 2002 B1
6415961 Bonningue Jul 2002 B2
6416713 Ford et al. Jul 2002 B1
6451551 Zhan et al. Sep 2002 B1
6472217 Richards et al. Oct 2002 B1
6489171 Aghassi et al. Dec 2002 B1
6495106 Kalra et al. Dec 2002 B1
6516620 Lang Feb 2003 B2
6534008 Angros Mar 2003 B1
6540117 Powling Apr 2003 B2
6541261 Bogen et al. Apr 2003 B1
6543652 Kelder et al. Apr 2003 B1
6544798 Christensen et al. Apr 2003 B1
6553145 Kang et al. Apr 2003 B1
6580056 Tacha Jun 2003 B1
6582962 Richards et al. Jun 2003 B1
6594537 Bernstein et al. Jul 2003 B1
6605213 Ammann et al. Aug 2003 B1
6607103 Gerenraich et al. Aug 2003 B2
6632598 Zhang et al. Oct 2003 B1
6635225 Thiem et al. Oct 2003 B1
6673620 Loeffler et al. Jan 2004 B1
6703247 Chu Mar 2004 B1
6720888 Eagleson et al. Apr 2004 B2
6729502 Lewis et al. May 2004 B2
6735531 Rhett et al. May 2004 B2
6746851 Tseung et al. Jun 2004 B1
6758360 Van Giezen et al. Jul 2004 B2
6783733 Bogen et al. Aug 2004 B2
6805264 Houvras Oct 2004 B2
6827900 Thiem et al. Dec 2004 B2
6827901 Copeland et al. Dec 2004 B2
6855292 Angros Feb 2005 B2
6855552 Towne et al. Feb 2005 B2
6855559 Christensen et al. Feb 2005 B1
6899283 Ohnishi et al. May 2005 B2
6943029 Copeland et al. Sep 2005 B2
6945128 Ford et al. Sep 2005 B2
6991934 Walton et al. Jan 2006 B2
6998270 Tseung et al. Feb 2006 B2
7007824 Danby et al. Mar 2006 B2
7025937 Plank Apr 2006 B2
7057808 Dooling Jun 2006 B2
7070951 Zhang et al. Jul 2006 B2
7083106 Albany Aug 2006 B2
7118918 Copeland et al. Oct 2006 B2
7156814 Williamson et al. Jan 2007 B1
7165722 Shafer et al. Jan 2007 B2
7169601 Northrup Jan 2007 B1
7178416 Whelan et al. Feb 2007 B2
7179424 Williamson, IV et al. Feb 2007 B2
7187286 Morris et al. Mar 2007 B2
7199712 Tafas et al. Apr 2007 B2
7201295 Sitzberger Apr 2007 B1
7209042 Martin et al. Apr 2007 B2
7217392 Bogen et al. May 2007 B2
7220589 Richards et al. May 2007 B2
7226788 De La Torre-Bueno Jun 2007 B2
7233250 Forster Jun 2007 B2
7250301 Angros Jul 2007 B2
7264142 Py Sep 2007 B2
7270785 Lemme et al. Sep 2007 B1
7275682 Excoffier et al. Oct 2007 B2
7278554 Armstrong Oct 2007 B2
7294478 Hinchcliffe Nov 2007 B1
7303725 Reinhardt et al. Dec 2007 B2
7314238 Robert Jan 2008 B2
7323491 Lohray et al. Jan 2008 B2
7338803 Mizzer et al. Mar 2008 B2
7382258 Oldham et al. Jun 2008 B2
7395974 Albany Jul 2008 B2
7400983 Feingold et al. Jul 2008 B2
7405056 Lam et al. Jul 2008 B2
7425306 Kram Sep 2008 B1
7435381 Pugia et al. Oct 2008 B2
7435383 Tseung et al. Oct 2008 B2
7468161 Reinhardt et al. Dec 2008 B2
7470401 Morales Dec 2008 B2
7470541 Copeland et al. Dec 2008 B2
7476362 Angros Jan 2009 B2
7501283 Hersch et al. Mar 2009 B2
7553672 Bogen Jun 2009 B2
7593787 Feingold et al. Sep 2009 B2
7603201 Feingold et al. Oct 2009 B2
7622077 Angros Nov 2009 B2
7632461 Angros Dec 2009 B2
7639139 Tafas et al. Dec 2009 B2
7642093 Tseung et al. Jan 2010 B2
7651010 Orzech et al. Jan 2010 B2
7718435 Bogen et al. May 2010 B1
7722811 Konrad et al. May 2010 B2
7744817 Bui Jun 2010 B2
7760428 Sieckmann Jul 2010 B2
7838283 Erickson et al. Nov 2010 B2
7840109 Lu et al. Nov 2010 B2
7850912 Favuzzi et al. Dec 2010 B2
7880617 Morris et al. Feb 2011 B2
7887755 Mingerink et al. Feb 2011 B2
7897106 Angros Mar 2011 B2
7901941 Tseung et al. Mar 2011 B2
7922986 Byrnard et al. Apr 2011 B2
7937228 Feingold et al. May 2011 B2
7951612 Angros May 2011 B2
7960178 Key et al. Jun 2011 B2
8007720 Angros Aug 2011 B2
8007721 Angros Aug 2011 B2
8039262 Konrad et al. Oct 2011 B2
8052927 Angros Nov 2011 B2
8058010 Erickson et al. Nov 2011 B2
8071023 Angros Dec 2011 B2
8071026 Rapp et al. Dec 2011 B2
8092742 Angros Jan 2012 B2
8137619 Ford et al. Mar 2012 B2
8142739 Tseung et al. Mar 2012 B2
8216846 Ljungmann et al. Jul 2012 B2
8236255 Takayama et al. Aug 2012 B2
8257968 Sweet et al. Sep 2012 B2
8283176 Bland et al. Oct 2012 B2
8288086 Metzner et al. Oct 2012 B2
8298815 Buchanan et al. Oct 2012 B2
8315899 Samuhel et al. Nov 2012 B2
8386195 Feingold et al. Feb 2013 B2
8394322 Windeyer et al. Mar 2013 B2
8394635 Key et al. Mar 2013 B2
8396669 Cocks Mar 2013 B2
20010044603 Harold Nov 2001 A1
20020013194 Kitano et al. Jan 2002 A1
20020079318 Wurzinger Jun 2002 A1
20020110494 Lemme et al. Aug 2002 A1
20020114733 Copeland et al. Aug 2002 A1
20020182115 Aghassi et al. Dec 2002 A1
20030100043 Kalra et al. May 2003 A1
20030157545 Jevons et al. Aug 2003 A1
20030203493 Lemme et al. Oct 2003 A1
20040033163 Tseung et al. Feb 2004 A1
20040033169 Shah Feb 2004 A1
20040091395 Ward et al. May 2004 A1
20040120862 Lang et al. Jun 2004 A1
20040191128 Bogen et al. Sep 2004 A1
20040197230 Lemme et al. Oct 2004 A1
20040266015 Favuzzi et al. Dec 2004 A1
20050019902 Mathies et al. Jan 2005 A1
20050035156 Hersch et al. Feb 2005 A1
20050064535 Favuzzi et al. Mar 2005 A1
20050135972 Lemme et al. Jun 2005 A1
20050150911 Bach Jul 2005 A1
20050153453 Copeland et al. Jul 2005 A1
20050164374 Kram Jul 2005 A1
20050186114 Reinhardt et al. Aug 2005 A1
20050191214 Tseung et al. Sep 2005 A1
20050250211 Reinhardt et al. Nov 2005 A1
20050281711 Testa et al. Dec 2005 A1
20060019332 Zhang et al. Jan 2006 A1
20060040341 Bland et al. Feb 2006 A1
20060045806 Winther et al. Mar 2006 A1
20060063265 Welcher et al. Mar 2006 A1
20060088928 Sweet et al. Apr 2006 A1
20060088940 Feingold et al. Apr 2006 A1
20060105359 Favuzzi et al. May 2006 A1
20060120921 Elliot et al. Jun 2006 A1
20060127283 Tseung et al. Jun 2006 A1
20060134793 Key et al. Jun 2006 A1
20060147351 Falb et al. Jul 2006 A1
20060148063 Fauzzi et al. Jul 2006 A1
20060151051 Py et al. Jul 2006 A1
20060169719 Bui Aug 2006 A1
20060172426 Buchanan Aug 2006 A1
20060190185 Ford et al. Aug 2006 A1
20060191952 Kalra et al. Aug 2006 A1
20060191956 Mink et al. Aug 2006 A1
20060252025 Nitta et al. Nov 2006 A1
20060263268 Tseung et al. Nov 2006 A9
20060265133 Cocks et al. Nov 2006 A1
20060269985 Kitayama Nov 2006 A1
20070010912 Feingold et al. Jan 2007 A1
20070038491 Samuhel et al. Feb 2007 A1
20070068969 Orzech et al. Mar 2007 A1
20070160494 Sands Jul 2007 A1
20070270714 Cushner et al. Nov 2007 A1
20070272710 Bui Nov 2007 A1
20080102006 Kram et al. May 2008 A1
20080118378 Baron et al. May 2008 A1
20080135583 Caswell et al. Jun 2008 A1
20080215625 Veitch et al. Sep 2008 A1
20080217246 Benn et al. Sep 2008 A1
20080226508 Byrnard et al. Sep 2008 A1
20080235055 Mattingly et al. Sep 2008 A1
20080254503 Ljungmann et al. Oct 2008 A1
20080286753 Erickson et al. Nov 2008 A1
20080305515 Burgart et al. Dec 2008 A1
20090004691 Erickson et al. Jan 2009 A1
20090028757 Lihl et al. Jan 2009 A1
20090241751 Walter Oct 2009 A1
20090308887 Woo et al. Dec 2009 A1
20090325309 Favuzzi et al. Dec 2009 A1
20100017030 Feingold et al. Jan 2010 A1
20100028978 Angros Feb 2010 A1
20100068757 Angros Mar 2010 A1
20100099133 Egle et al. Apr 2010 A1
20100178668 Elliot et al. Jul 2010 A1
20110079615 Ophardt et al. Apr 2011 A1
20110167930 Feingold et al. Jul 2011 A1
20110176977 Tseung et al. Jul 2011 A1
20110269238 Key et al. Nov 2011 A1
20120003679 Haberkorn Jan 2012 A1
20120179293 Feingold et al. Jul 2012 A1
20120309044 Ljungmann et al. Dec 2012 A1
20130029409 Sweet et al. Jan 2013 A1
20130084567 Buchanan et al. Apr 2013 A1
Foreign Referenced Citations (38)
Number Date Country
2004266226 Mar 2005 AU
2390207 Aug 2000 CN
385159 Nov 1923 DE
3902476 Aug 1990 DE
0185330 Jun 1986 EP
0557871 Sep 1993 EP
1028320 Aug 2000 EP
2037255 Jul 1980 GB
61200966 Dec 1986 JP
3148067 Jun 1991 JP
6510860 Dec 1994 JP
9503060 Mar 1997 JP
10501167 Feb 1998 JP
11170558 Jun 1999 JP
11258243 Sep 1999 JP
2000167318 Jun 2000 JP
2001509727 Jul 2001 JP
2001512823 Aug 2001 JP
2001522033 Nov 2001 JP
2002507738 Mar 2002 JP
2002522065 Jul 2002 JP
2003057246 Feb 2003 JP
2004533605 Nov 2004 JP
WO-9508774 Mar 1995 WO
WO-9526796 Oct 1995 WO
WO-9639260 Dec 1996 WO
WO-9908090 Feb 1999 WO
WO-9922867 May 1999 WO
WO-0009650 Feb 2000 WO
WO-0012994 Mar 2000 WO
WO-0141918 Jun 2001 WO
WO-02072264 Sep 2002 WO
WO-03054553 Jul 2003 WO
WO-03091710 Nov 2003 WO
WO-03106033 Dec 2003 WO
WO-2004059288 Jul 2004 WO
WO-2004074847 Sep 2004 WO
WO-2005000731 Jan 2005 WO
Non-Patent Literature Citations (50)
Entry
Sakura Finetek, Final Office Action dated May 1, 2012 for U.S. Appl. No. 11/349,663.
Sakura Finetek U.S.A. Inc., CN Office Action dated May 10, 2010 for Chinese Appln. No. 200610007366.7.
Sakura Finetek U.S.A. Inc., Final office action dated May 25, 2010 for U.S. Appl. No. 11/441,668.
Sakura Finetek, Final Office Action dated Aug. 31, 2011 for U.S. Appl. No. 11/349,663.
Sakura Finetek, Non-Final Office Action dated Jan. 31, 2012 for U.S. Appl. No. 11/349,663.
Sakura Finetek, Australian Office Action dated Jan. 3, 2012 for 2007267881, 5 pages.
Sakura Finetek, Chinese office action dated Jan. 18, 2012 for CN 200780019204.8.
Sakura Finetek, Japanese Office Action dated Mar. 1, 2012 for App No. 2008-141687, 8 pages.
Sakura Finetek, Final Office Action dated Mar. 5, 2012 for U.S. Appl. No. 11/349,663.
Sakura Finetek, Chinese Office Action dated Feb. 16, 2012 for Chinese App 200610004479.1, 23 pages.
Sakura Finetek, Japanese Office Action dated Mar. 12, 2012 for Application No. 2008-141687, 7 pages.
Sakura Finetek, Non-Final Office Action dated Mar. 27, 2012 for U.S. Appl. No. 11/441,668.
Sakura Finetek, Japanese Office Action dated Jan. 30, 2012 for Application No. 2009-512152, 6 pages.
Sakura Finetek, Final Office Action dated Jan. 19, 2011 for U.S. Appl. No. 11/349,663.
Sakura Finetek, Non-final Office Action dated Feb. 18, 2011 for U.S. Appl. No. 11/441,668.
Sakura Finetek, Chinese Office Action dated Mar. 31, 2011 for Appln. No. 200610007366.7, 6 pages.
Sakura Finetek, Japanese Office Action dated Apr. 3, 2012 for Divisional Application No. 2006-34571, 3 pages.
Sakura Finetek, Extended Search Report dated Jun. 4, 2012 for European App No. 12153210.5, 6 pages.
Sakura Finetek, Japanese Office Action dated Jul. 19, 2012 for Appln. No. 2009-512152.
Sakura Finetek, CN Notification of Reexamination dated Sep. 18, 2012 for Chinese Appln. No. 200610007366.7.
Sakura Finetek, Australian Office Action dated Sep. 21, 2012 for Application No. 2007267881.
Sakura Finetek, Non-final Office Action dated Aug. 2, 2011 for U.S. Appl. No. 11/441,668.
Sakura Finetek U.S.A., First office action dated Mar. 31, 2011 for EP Appln. No. 04780745.8, 3 pgs.
Sakura Finetek U.S.A., Third Office Action dated Jun. 9, 2011 for CN Appln. No. 200610007365.2, 6 pages.
Sakura Finetek U.S.A., Sixth Office Action dated Mar. 31, 2011 for Chinese Appln. No. 200610007366.7, 6 pages.
Sakura Finetek U.S.A., Chinese Office Action dated Jun. 9, 2011 for Appln. No. 2006100073652, 6 pages.
Sakura Finetek U.S.A., Japanese office action dated Jul. 6, 2011 for JP Appln. No. 2008-141687.
Sakura Finetek U.S.A., Inc., Office Action dated Feb. 26, 2009 for U.S. Appl. No. 11/441,668.
Sakura Finetek U.S.A., Inc., CN Office Action dated May 8, 2009 for Chinese Appln. No. 200610007366.7.
Sakura Finetek U.S.A., Inc., European Office Action dated Mar. 18, 2008 for EP Appln No. 06101497.3.
Sakura Finetek U.S.A., Inc., Office Action dated Jul. 27, 2010; Australian Application No. 2008229802.
Sakura Finetek U.S.A., Inc., Office Action dated Aug. 13, 2010; Australian Appln No. 2006200549.
Sakura Finetek U.S.A., Inc., Office Action dated Oct. 11, 2010; European Appln No. 07795292.7-1234.
Sakura Finetek, Non-Final Office Action dated Oct. 23, 2012 for U.S. Appl. No. 13/018,609.
Sakura Finetek U.S.A., Inc., “EP Office Action dated Jun. 27, 2008”, EP Appln No. 06101498.1, 9 pages.
Sakura Finetek U.S.A., Inc., “EP Search Report dated Jun. 20, 2006”, EP Appln No. 06101498.1, 6 pages.
Sakura Finetek U.S.A., Inc., “EP Search Report dated Jun. 20, 2006”, EP Appln No. 06101497.3, 6 pages.
Sakura Finetek U.S.A., Inc., “EP Search Report dated Dec. 18, 2006”, EP Appln No. 06101495.7, 10 pages.
Sakura Finetek U.S.A., Inc., “JP Office Action dated Dec. 26, 2008”, Japanese Appln No. 2006-34547.
Sakura Finetek U.S.A., Inc., “JP Office Action dated Feb. 27, 2008”, Japanese Appln No. 2006-34571.
Sakura Finetek U.S.A., Inc., “JP Office Action dated Feb. 27, 2008”, Japanese Appln No. 2006-030350.
Sakura Finetek U.S.A., Inc., “JP Office Action dated Nov. 30, 2007”, Japanese Appln No. 2006523317, 9 pages.
Sakura Finetek U.S.A., Inc., “Office Action dated Jul. 23, 2007”, EPO Application No. 06101495.7.
Sakura Finetek U.S.A., Inc., “PCT Search Report dated Aug. 8, 2006”, PCT Appln No. PCT/US04/25960, 10 pages.
Sakura Finetek U.S.A., Inc., “PCT Search Report dated Nov. 16, 2007”, PCT Appln No. PCT/US2007/012400, 13 pages.
Sakura Finetek USA Inc., Office Action dated Jun. 25, 2012; European Appln No. 07795292.7, 6 pages.
Sakura Finetek USA, Inc., Canadian Office Action dated Feb. 25, 2013 for Appln. No. 2652898.
Sakura Finetek USA, Inc., Final Office Action dated Mar. 14, 2013 for U.S. Appl. No. 13/018,609.
Shi, Shan-Rong, et al., “Enhancement of immunochemical staining in aldehyde-fixed tissue”, Reissue U.S. Appl. No. 11/249,180, filed Oct. 11, 2005.
Zhang, Guangrong, et al., “Deparaffinization compositions and methods for their use”, Reissue U.S. Appl. No. 11/250,142, filed Oct. 13, 2005.
Related Publications (1)
Number Date Country
20130284761 A1 Oct 2013 US
Divisions (1)
Number Date Country
Parent 11441668 May 2006 US
Child 13914134 US