The present disclosure relates generally to the field of tissue resection. In particular, the present disclosure relates to fluid-driven tissue resecting instruments, systems, and methods.
Tissue resection may be performed endoscopically within an organ, such as a uterus, by inserting an endoscope into the uterus and passing a tissue resection device through the endoscope and into the uterus. With respect to such endoscopic tissue resection procedures, it often is desirable to distend the uterus with a fluid, for example, saline, sorbitol, or glycine. The inflow and outflow of the fluid during the procedure maintains the uterus in a distended state and flushes tissue and other debris from within the uterus to maintain a visible working space.
If the outflow of fluid from the uterus is greater than the inflow of fluid, the uterus may collapse, making visualization and tissue resection difficult. On the other hand, if the inflow of fluid is greater than the outflow of fluid, excess fluid can enter the patient's vascular system and result in serious complications or death. Thus, the inflow and outflow of fluid to/from the uterus is controlled to maintain proper distension of the uterus during the tissue resection procedure. This may be accomplished utilizing using a fluid pump (to pump the inflow flow) and/or fluid suction source (to suction the outflow fluid) in connection with one or more valves, switches, and/or other regulating devices.
In addition to the fluid pumps, fluid suction sources, valves, and/or other regulating devices utilized to maintain appropriate fluid inflow and fluid outflow, tissue resecting instruments and systems typically employ a separate motor to drive the cutter of the tissue resecting instrument to resect tissue.
As used herein, the term “distal” refers to the portion that is described which is further from a user, while the term “proximal” refers to the portion that is described which is closer to a user. Further, to the extent consistent, any or all of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.
Provided in accordance with aspects of the present disclosure is a tissue resecting instrument including a housing defining an interior, a shaft, a cutting member, a turbine, and a fluid outflow tube. The shaft is rotatable relative to the housing and extends distally from the housing. The shaft defines a proximal end portion disposed within the interior of the housing, a distal end portion distally-spaced from the housing, and a lumen extending therethrough that is disposed in fluid communication with the interior of the housing. The cutting member is operably associated with the distal end portion of the shaft to enable tissue resection upon rotation of the shaft. The turbine is disposed within the interior of the housing and operably associated with the proximal end portion of the shaft such that rotation of the turbine rotates the shaft relative to the housing. The turbine includes a plurality of fins. The fluid outflow tube is operably associated with the housing and adapted to connect to a suction source to enable the suctioning of fluid and resected tissue proximally through the lumen of the shaft, the interior of the housing, and into the fluid outflow tube. The turbine is configured such that proximal fluid flow across the plurality of fins of the turbine urges the turbine to rotate, thereby rotating the shaft relative to the housing to enable tissue resection with the cutting member.
In an aspect of the present disclosure, the cutting member is fixedly engaged to the shaft such that rotation of the shaft rotates the cutting member to resect tissue therewith.
In another aspect of the present disclosure, a fixed outer tube is disposed about the shaft. The fixed outer tube is fixed relative to and extends distally from the housing. The shaft is rotatable relative to the fixed outer tube to enable tissue resection with the cutting member.
In yet another aspect of the present disclosure, the turbine includes a tubular body disposed about the proximal end portion of the shaft. The fins of the turbine are arranged annularly about the tubular body and extend radially outwardly therefrom.
In still another aspect of the present disclosure, the turbine includes a conical body disposed about the proximal end portion of the shaft and oriented such that a nose end of the conical body is disposed more-distally and a base end of the conical body is disposed more-proximally. The fins of the turbine are arranged about the conical body and extend radially outwardly therefrom.
In still yet another aspect of the present disclosure, the proximal end portion of the shaft defines a plurality of openings therethrough that enable fluid communication between the lumen of the shaft and the interior of the housing.
In another aspect of the present disclosure, the cutting member defines an opening therethrough in communication with the lumen of the shaft. The cutting member further includes a tissue cutting edge surrounding the opening.
In yet another aspect of the present disclosure, the turbine includes a thrust coupling that couples the turbine to the proximal end portion of the shaft.
A tissue resecting system provided in accordance with aspects of the present disclosure includes a tissue resecting instrument, an outer sheath, a fluid pump, and a fluid suction source. The tissue resecting instrument includes a housing, a shaft extending distally from the housing, a cutting member operably associated with a distal end portion of the shaft, and a turbine disposed within the housing and operably associated with the cutting member such that rotation of the turbine rotates the cutting member relative to the housing to enable resection of tissue. The outer sheath is disposed about the shaft so as to define an annular channel between the shaft and the outer sheath. The fluid pump is configured to pump fluid distally through the annular channel and into an internal surgical site. The fluid suction source is configured to suction fluid proximally out of an internal surgical site, through the shaft, and proximally across the turbine within the housing. The proximal fluid flow across the turbine urges the turbine to rotate, thereby rotating the cutting member relative to the housing to enable tissue resection with the cutting member.
In an aspect of the present disclosure, the cutting member is fixedly engaged to the distal end portion of the shaft and the turbine is rotationally fixed to a proximal end portion of the shaft such that rotation of the turbine rotates the shaft to thereby rotate the cutting member. In such aspects, the turbine may include a thrust coupling that couples the turbine to the proximal end portion of the shaft.
In another aspect of the present disclosure, a fixed outer tube is disposed about the shaft. In such aspects, the outer sheath is disposed about the fixed outer tube and the annular channel defined between the shaft and the outer sheath. The fixed outer tube is fixed relative to the housing and the cutting member is rotatable relative to the fixed outer tube.
In still another aspect of the present disclosure, the system further includes a fluid inflow tube coupling the fluid pump with the annular channel and a fluid outflow tube coupling the housing with the fluid suction source.
In yet another aspect of the present disclosure, the turbine includes a tubular body and a plurality of fins arranged annularly about the tubular body and extending radially outwardly therefrom.
In still yet another aspect of the present disclosure, the turbine includes a conical body oriented such that a nose end of the conical body is disposed more-distally and a base end of the conical body is disposed more-proximally. The turbine further includes a plurality of fins arranged about the conical body and extending radially outwardly therefrom.
In another aspect of the present disclosure, the system further includes a fluid supply reservoir operably associated with the fluid pump and a fluid collection reservoir operably associated with the fluid suction source.
A method of resecting tissue provided in accordance with aspects of the present disclosure includes positioning a tissue resecting instrument such that a cutting member of the tissue resecting instrument is disposed within an internal surgical site adjacent tissue to be resected. The tissue resecting instrument includes a turbine operably associated with the cutting member. The turbine is disposed within an outflow path of the tissue resecting instrument. The method further includes pumping fluid distally into the internal surgical site and suctioning fluid proximally out of the internal surgical site through the outflow path of the tissue resecting instrument. Proximal fluid flow across the turbine urges the turbine to rotate, thereby rotating the cutting member to resect tissue adjacent thereto.
In an aspect of the present disclosure, suctioning fluid proximally suctions tissue into the cutting member such that the rotation of the cutting member resects tissue disposed therein, the resected tissue suctioned though the outflow path of the tissue resecting instrument along with fluid.
In another aspect of the present disclosure, pumping fluid distally includes pumping fluid distally through an annular channel defined between a shaft of the tissue resecting instrument and an outer sheath disposed about the shaft.
In another aspect of the present disclosure, pumping fluid distally includes pumping fluid from a fluid supply reservoir distally into the internal surgical site, and/or suctioning fluid proximally includes suctioning fluid proximally out of the internal surgical site through the outflow path of the tissue resecting instrument to a fluid collection reservoir.
Various aspects and features of the present disclosure are described hereinbelow with reference to the drawings wherein like numerals designate identical or corresponding elements in each of the several views and:
Referring to
Tissue resecting instrument 100 of tissue resecting system 10 generally includes a housing 110, an outer sheath connector 120, a shaft 130, a cutting member 140, a drive mechanism 150, and a fluid outflow tube 160. Housing 110 defines a body portion 112 and a distal nose portion 114. Outer sheath connector 120 is disposed on distal nose portion 114 of housing 110 and includes a collar 122 having a plurality of engagement features, e.g., radially-spaced male bayonet connectors 124 extending radially outwardly from collar 122. As detailed below, outer sheath connector 120 is configured to facilitate releasable engagement of outer assembly 200 with tissue resecting instrument 10. Fluid outflow tube 160 communicates with the interior of housing 110 and/or the interior of shaft 130 to enable the withdrawal, e.g., via suction, of fluid, tissue, and other debris from within housing 110 and/or shaft 130. Fluid outflow tube 160 is operably coupled to suction source 400 to enable suction therethrough and for depositing the suctioned fluid, tissue, and other debris into fluid collecting reservoir 410. Fluid outflow tube 160 may further include a valve 170 associated therewith for regulating the outflow of fluid from housing 110 and/or shaft 130.
Shaft 130 of tissue resecting instrument 100 defines a proximal end portion 132 and a distal end portion 134 and is rotatably coupled to housing 110 to enable rotation of shaft 130 relative to housing 110 about a longitudinal axis of shaft 130. Proximal end portion 132 of shaft 130 is disposed within housing 110. Shaft 130 extends distally from housing 110 through outer sheath connector 120 to distal end portion 134 of shaft 130. Cutting member 140, described in greater detail below, is fixed relative to and extends distally from distal end portion 134 of shaft 130. Drive mechanism 150 is operably supported within body portion 112 of housing 110 and operably coupled to proximal end portion 132 of shaft 130. As also detailed below, drive mechanism 150 is configured to drive rotation of shaft 130 relative to housing 110, thus rotating cutting member 140 relative to housing 110 to resect tissue.
Continuing with reference to
With additional reference to
Referring to
Cutting member 540 defines an opening 542 providing access to the interior of shaft 530 and a serrated edge 544 surrounding opening 542, although other suitable cutting edge configurations are also contemplated. In use, inflow fluid is pumped into the surgical site through annular channel 522 defined between outer sheath 520 and fixed outer tube 550, as indicated by arrows “A,” and outflow fluid is suctioned, along with tissue and other debris, through opening 552 of outer tube 550 and into opening 542 of cutting member 540, as indicated by arrows “B.” The suctioning of tissue into opening 542 of cutting member 540, in combination with the rotation of cutting member 540 relative to outer tube 550, enables the resection of tissue using serrated edge 544 and the suctioning of the resected tissue proximally through shaft 530, along with the outflow fluid and other debris.
Cutting member 640 defines an open distal end 642 and a serrated annular distal edge 644 surrounding open distal end 642. Serrated annular distal edge 644 of cutting member 640 is positioned in close proximity to serrated annular distal edge 654 of outer tube 650 and, in some embodiments, is positioned such that the serrations on serrated annular distal edge 644 and the serrations on serrated annular distal edge 654 at least partially overlap one another. In use, inflow fluid is pumped into the surgical site through annular channel 622 defined between outer sheath 620 and fixed outer tube 650, as indicated by arrows “A,” and outflow fluid is suctioned, along with tissue and other debris, through openings 652, 642 of outer tube 650 and cutting member 640, respectively, as indicated by arrows “B.” The suctioning of tissue into opening 642 of cutting member 640, in combination with the rotation of cutting member 640 relative to outer tube 650, enables the resection of tissue using serrated edges 644, 654 and the suctioning of the resected tissue proximally through shaft 630, along with the outflow fluid and other debris.
With reference to
Cutting member 740 defines an open distal end 742 and an annular distal edge 744 surrounding open distal end 742. Annular distal edge 744 may be sharpened so as to serve as a cutting edge, or may be blunt. Cutting member 740 extends partially from outer tube 740 such that annular distal edge 744 is exposed towards one side of beveled distal edge 754 of outer tube 750 but is recessed within beveled distal edge 754 of outer tube 750 towards the other side thereof. In use, inflow fluid is pumped into the surgical site through annular channel 722 defined between outer sheath 720 and outer tube 750, as indicated by arrows “A,” and outflow fluid is suctioned, along with tissue and other debris, through openings 752, 742 of outer tube 750 and cutting member 740, respectively, as indicated by arrows “B.” The suctioning of tissue into opening 742 of cutting member 740, in combination with the rotation of cutting member 740 relative to outer tube 750, enables the resection of tissue using annular distal edge 744 and/or beveled distal edge 754 and the suctioning of the resected tissue proximally through shaft 730, along with the outflow fluid and other debris.
Turning to
Thrust coupling 154 couples tubular body 156 with proximal end portion 132 of shaft 130 such that rotation of tubular body 156 effects rotation of shaft 130 and, thus, cutting member 140 (
Referring to
Referring to
With additional reference to
The suction force provided by suction source 400 to suction the outflow fluid into cutting member 140 and proximally through housing 110 establishes sufficient fluid flow through housing 110 and proximally across fins 158 of turbine 152 to urge turbine 152 to rotate, thereby rotating shaft 130 and cutting member 140. With cutting member 140 rotating and suction source 400 suctioning tissue into cutting member 140, tissue is resected and removed from the uterus “U” through tissue resecting instrument 100. Thus, rather than the need for a separate drive source, e.g., a motor, for driving rotation of cutting member 140, cutting member 140 is driven by the proximal flow of outflow fluid under suction.
Although resected tissue and other debris are also suctioned into cutting member 140 and through shaft 130, housing 110, fluid outflow tube 160, and into fluid collecting reservoir 410 (
Referring again to
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as examples of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Although the foregoing disclosure has been described in some detail by way of illustration and example, for purposes of clarity or understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.
The present application claims the benefit of and priority to U.S. Provisional Application Ser. No. 62/465,907, filed on Mar. 2, 2017 the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1585934 | Muir | May 1926 | A |
1666332 | Hirsch | Apr 1928 | A |
1831786 | Duncan | Nov 1931 | A |
2708437 | Hutchins | May 1955 | A |
3297022 | Wallace | Jan 1967 | A |
3686706 | Finley | Aug 1972 | A |
3734099 | Bender et al. | May 1973 | A |
3791379 | Storz | Feb 1974 | A |
3812855 | Banko | May 1974 | A |
3835842 | Iglesias | Sep 1974 | A |
3850162 | Iglesias | Nov 1974 | A |
3906954 | Baehr | Sep 1975 | A |
3945375 | Banko | Mar 1976 | A |
3980252 | Tae | Sep 1976 | A |
3995619 | Glatzer | Dec 1976 | A |
3996921 | Neuwirth | Dec 1976 | A |
4011869 | Seiler, Jr. | Mar 1977 | A |
4108182 | Hartman et al. | Aug 1978 | A |
4146405 | Timmer et al. | Mar 1979 | A |
4198958 | Utsugi | Apr 1980 | A |
4203444 | Bonnell et al. | May 1980 | A |
4210146 | Banko | Jul 1980 | A |
4246902 | Martinez | Jan 1981 | A |
4247180 | Norris | Jan 1981 | A |
4258721 | Parent et al. | Mar 1981 | A |
4261346 | Wettermann | Apr 1981 | A |
4281457 | Walton, II | Aug 1981 | A |
4294234 | Matsuo | Oct 1981 | A |
4316465 | Dotson, Jr. | Feb 1982 | A |
4369768 | Vukovic | Jan 1983 | A |
4392485 | Hiltebrandt | Jul 1983 | A |
4414962 | Carson | Nov 1983 | A |
4449538 | Corbitt et al. | May 1984 | A |
4493698 | Wang et al. | Jan 1985 | A |
4517977 | Frost | May 1985 | A |
4543965 | Pack et al. | Oct 1985 | A |
4567880 | Goodman | Feb 1986 | A |
4589414 | Yoshida et al. | May 1986 | A |
4601284 | Arakawa et al. | Jul 1986 | A |
4601290 | Effron et al. | Jul 1986 | A |
4606330 | Bonnet | Aug 1986 | A |
4630598 | Bonnet | Dec 1986 | A |
4644952 | Patipa et al. | Feb 1987 | A |
4649919 | Thimsen et al. | Mar 1987 | A |
4700694 | Shishido | Oct 1987 | A |
4706656 | Kuboto | Nov 1987 | A |
4718291 | Wood et al. | Jan 1988 | A |
4737142 | Heckele | Apr 1988 | A |
4749376 | Kensey et al. | Jun 1988 | A |
4756309 | Sachse et al. | Jul 1988 | A |
4819635 | Shapiro | Apr 1989 | A |
4844064 | Thimsen et al. | Jul 1989 | A |
4850354 | McGurk-Burleson et al. | Jul 1989 | A |
4856919 | Takeuchi et al. | Aug 1989 | A |
4867157 | McGurk-Burleson et al. | Sep 1989 | A |
4895560 | Papantonakos | Jan 1990 | A |
4924851 | Ognier et al. | May 1990 | A |
4940061 | Terwilliger et al. | Jul 1990 | A |
4950278 | Sachse et al. | Aug 1990 | A |
4955882 | Hakky | Sep 1990 | A |
4986827 | Akkas et al. | Jan 1991 | A |
4998527 | Meyer | Mar 1991 | A |
4998914 | Wiest et al. | Mar 1991 | A |
5007917 | Evans | Apr 1991 | A |
5027792 | Meyer | Jul 1991 | A |
5037386 | Marcus et al. | Aug 1991 | A |
5105800 | Takahashi et al. | Apr 1992 | A |
5106364 | Hayafuji et al. | Apr 1992 | A |
5112299 | Pascaloff | May 1992 | A |
5116868 | Chen et al. | May 1992 | A |
5125910 | Freitas | Jun 1992 | A |
5133713 | Huang et al. | Jul 1992 | A |
5152744 | Krause et al. | Oct 1992 | A |
5158553 | Berry et al. | Oct 1992 | A |
5163433 | Kagawa et al. | Nov 1992 | A |
5169397 | Sakashita et al. | Dec 1992 | A |
5176677 | Wuchinich | Jan 1993 | A |
5195541 | Obenchain | Mar 1993 | A |
5226910 | Kajiyama et al. | Jul 1993 | A |
5244459 | Hill | Sep 1993 | A |
5254117 | Rigby et al. | Oct 1993 | A |
5269785 | Bonutti | Dec 1993 | A |
5270622 | Krause | Dec 1993 | A |
5275609 | Pingleton et al. | Jan 1994 | A |
5288290 | Brody | Feb 1994 | A |
5304118 | Trese et al. | Apr 1994 | A |
5312399 | Hakky et al. | May 1994 | A |
5312425 | Evans et al. | May 1994 | A |
5312430 | Rosenbluth et al. | May 1994 | A |
5320091 | Grossi et al. | Jun 1994 | A |
5347992 | Pearlman et al. | Sep 1994 | A |
5350390 | Sher | Sep 1994 | A |
5364395 | West, Jr. | Nov 1994 | A |
5374253 | Burns, Sr. et al. | Dec 1994 | A |
5390585 | Ryuh | Feb 1995 | A |
5392765 | Muller | Feb 1995 | A |
5395313 | Naves et al. | Mar 1995 | A |
5403276 | Schechter et al. | Apr 1995 | A |
5409013 | Clement | Apr 1995 | A |
5409453 | Lundquist et al. | Apr 1995 | A |
5411513 | Ireland et al. | May 1995 | A |
5421819 | Edwards et al. | Jun 1995 | A |
5425376 | Banys et al. | Jun 1995 | A |
5429601 | Conley et al. | Jul 1995 | A |
5435805 | Edwards et al. | Jul 1995 | A |
5443476 | Shapiro | Aug 1995 | A |
5449356 | Walbrink et al. | Sep 1995 | A |
5456673 | Ziegler et al. | Oct 1995 | A |
5456689 | Kresch et al. | Oct 1995 | A |
5483951 | Frassica et al. | Jan 1996 | A |
5490819 | Nicholas et al. | Feb 1996 | A |
5490860 | Middle et al. | Feb 1996 | A |
5492537 | Vancaillie | Feb 1996 | A |
5498258 | Hakky et al. | Mar 1996 | A |
5527331 | Kresch et al. | Jun 1996 | A |
5549541 | Muller | Aug 1996 | A |
5556378 | Storz et al. | Sep 1996 | A |
5563481 | Krause | Oct 1996 | A |
5569164 | Lurz | Oct 1996 | A |
5569254 | Carlson et al. | Oct 1996 | A |
5569284 | Young et al. | Oct 1996 | A |
5575756 | Karasawa et al. | Nov 1996 | A |
5591187 | Dekel | Jan 1997 | A |
5601583 | Donahue et al. | Feb 1997 | A |
5601603 | Illi | Feb 1997 | A |
5602449 | Krause et al. | Feb 1997 | A |
5603332 | O'Connor | Feb 1997 | A |
5630798 | Beiser et al. | May 1997 | A |
5649547 | Ritchart et al. | Jul 1997 | A |
5669927 | Boebel et al. | Sep 1997 | A |
5672945 | Krause | Sep 1997 | A |
5674179 | Bonnet et al. | Oct 1997 | A |
5676497 | Kim | Oct 1997 | A |
5695448 | Kimura et al. | Dec 1997 | A |
5702420 | Sterling et al. | Dec 1997 | A |
5709698 | Adams et al. | Jan 1998 | A |
5730752 | Alden et al. | Mar 1998 | A |
5733298 | Berman et al. | Mar 1998 | A |
5741286 | Recuset | Apr 1998 | A |
5741287 | Alden et al. | Apr 1998 | A |
5749885 | Sjostrom et al. | May 1998 | A |
5749889 | Bacich et al. | May 1998 | A |
5759185 | Grinberg | Jun 1998 | A |
5772634 | Atkinson | Jun 1998 | A |
5775333 | Burbank et al. | Jul 1998 | A |
5782849 | Miller | Jul 1998 | A |
5807240 | Muller et al. | Sep 1998 | A |
5807282 | Fowler | Sep 1998 | A |
5810770 | Chin et al. | Sep 1998 | A |
5810861 | Gaber | Sep 1998 | A |
5814009 | Wheatman | Sep 1998 | A |
5833643 | Ross et al. | Nov 1998 | A |
5840060 | Beiser et al. | Nov 1998 | A |
5857995 | Thomas et al. | Jan 1999 | A |
5873886 | Larsen et al. | Feb 1999 | A |
5899915 | Saadat | May 1999 | A |
5911699 | Anis et al. | Jun 1999 | A |
5911722 | Adler et al. | Jun 1999 | A |
5913867 | Dion | Jun 1999 | A |
5916229 | Evans | Jun 1999 | A |
5925055 | Adrian et al. | Jul 1999 | A |
5928163 | Roberts et al. | Jul 1999 | A |
5944668 | Vancaillie et al. | Aug 1999 | A |
5947990 | Smith | Sep 1999 | A |
5951490 | Fowler | Sep 1999 | A |
5956130 | Vancaillie et al. | Sep 1999 | A |
5957832 | Taylor et al. | Sep 1999 | A |
6001116 | Heisler et al. | Dec 1999 | A |
6004320 | Casscells et al. | Dec 1999 | A |
6007513 | Anis et al. | Dec 1999 | A |
6024751 | Lovato et al. | Feb 2000 | A |
6032673 | Savage et al. | Mar 2000 | A |
6039748 | Savage et al. | Mar 2000 | A |
6042552 | Cornier | Mar 2000 | A |
6068641 | Varsseveld | May 2000 | A |
6086542 | Glowa et al. | Jul 2000 | A |
6090094 | Clifford, Jr. et al. | Jul 2000 | A |
6090123 | Culp et al. | Jul 2000 | A |
6113594 | Savage | Sep 2000 | A |
6119973 | Galloway | Sep 2000 | A |
6120147 | Vijfvinkel et al. | Sep 2000 | A |
6120462 | Hibner et al. | Sep 2000 | A |
6132448 | Perez et al. | Oct 2000 | A |
6149633 | Maaskamp | Nov 2000 | A |
6156049 | Lovato et al. | Dec 2000 | A |
6159160 | Hsei et al. | Dec 2000 | A |
6159209 | Hakky | Dec 2000 | A |
6203518 | Anis et al. | Mar 2001 | B1 |
6217543 | Anis et al. | Apr 2001 | B1 |
6224603 | Marino | May 2001 | B1 |
6244228 | Kuhn et al. | Jun 2001 | B1 |
6258111 | Ross et al. | Jul 2001 | B1 |
6277096 | Cortella et al. | Aug 2001 | B1 |
6315714 | Akiba | Nov 2001 | B1 |
6358200 | Grossi | Mar 2002 | B1 |
6358263 | Mark et al. | Mar 2002 | B2 |
6359200 | Day | Mar 2002 | B1 |
6402701 | Kaplan et al. | Jun 2002 | B1 |
6428486 | Ritchart et al. | Aug 2002 | B2 |
6471639 | Rudischhauser et al. | Oct 2002 | B2 |
6491660 | Guo et al. | Dec 2002 | B2 |
6494892 | Ireland et al. | Dec 2002 | B1 |
6511493 | Moutafis et al. | Jan 2003 | B1 |
6585708 | Maaskamp | Jul 2003 | B1 |
6610066 | Dinger et al. | Aug 2003 | B2 |
6626827 | Felix et al. | Sep 2003 | B1 |
6632182 | Treat | Oct 2003 | B1 |
6656132 | Ouchi | Dec 2003 | B1 |
6712773 | Viola | Mar 2004 | B1 |
6824544 | Boebel et al. | Nov 2004 | B2 |
6837847 | Ewers et al. | Jan 2005 | B2 |
6875221 | Cull | Apr 2005 | B2 |
7025720 | Boebel et al. | Apr 2006 | B2 |
7025732 | Thompson et al. | Apr 2006 | B2 |
7150713 | Shener et al. | Dec 2006 | B2 |
7226459 | Cesarini et al. | Jun 2007 | B2 |
7249602 | Emanuel | Jul 2007 | B1 |
7510563 | Cesarini et al. | Mar 2009 | B2 |
7763033 | Gruber et al. | Jul 2010 | B2 |
7922737 | Cesarini et al. | Apr 2011 | B1 |
8061359 | Emanuel | Nov 2011 | B2 |
8062214 | Shener et al. | Nov 2011 | B2 |
8419626 | Shener-Irmakoglu et al. | Apr 2013 | B2 |
8663264 | Cesarini et al. | Mar 2014 | B2 |
8678999 | Isaacson | Mar 2014 | B2 |
8852085 | Shener-Irmakoglu et al. | Oct 2014 | B2 |
8893722 | Emanuel | Nov 2014 | B2 |
8932208 | Kendale et al. | Jan 2015 | B2 |
8951274 | Adams et al. | Feb 2015 | B2 |
9033864 | Furlong et al. | May 2015 | B2 |
9060800 | Cesarini et al. | Jun 2015 | B1 |
9060801 | Cesarini et al. | Jun 2015 | B1 |
9066745 | Cesarini et al. | Jun 2015 | B2 |
9072431 | Adams et al. | Jul 2015 | B2 |
9089358 | Emanuel | Jul 2015 | B2 |
9125550 | Shener-Irmakoglu et al. | Sep 2015 | B2 |
9155454 | Sahney et al. | Oct 2015 | B2 |
9636130 | Cesarini et al. | May 2017 | B2 |
20010039963 | Spear et al. | Nov 2001 | A1 |
20010047183 | Privitera et al. | Nov 2001 | A1 |
20020058859 | Brommersma | May 2002 | A1 |
20020165427 | Yachia et al. | Nov 2002 | A1 |
20030050603 | Todd | Mar 2003 | A1 |
20030050638 | Yachia et al. | Mar 2003 | A1 |
20030078609 | Finlay et al. | Apr 2003 | A1 |
20030114875 | Sjostrom | Jun 2003 | A1 |
20040204671 | Stubbs et al. | Oct 2004 | A1 |
20050043690 | Todd | Feb 2005 | A1 |
20050085692 | Kiehn et al. | Apr 2005 | A1 |
20060036132 | Renner et al. | Feb 2006 | A1 |
20060047185 | Shener et al. | Mar 2006 | A1 |
20060241586 | Wilk | Oct 2006 | A1 |
20080001562 | Hobbet et al. | Jan 2008 | A1 |
20080015621 | Emanuel | Jan 2008 | A1 |
20080058588 | Emanuel | Mar 2008 | A1 |
20080058842 | Emanuel | Mar 2008 | A1 |
20080097468 | Adams et al. | Apr 2008 | A1 |
20080097469 | Gruber et al. | Apr 2008 | A1 |
20080097470 | Gruber et al. | Apr 2008 | A1 |
20080097471 | Adams et al. | Apr 2008 | A1 |
20080135053 | Gruber et al. | Jun 2008 | A1 |
20080146872 | Gruber et al. | Jun 2008 | A1 |
20080146873 | Adams et al. | Jun 2008 | A1 |
20080245371 | Gruber | Oct 2008 | A1 |
20080249366 | Gruber et al. | Oct 2008 | A1 |
20080249534 | Gruber et al. | Oct 2008 | A1 |
20080249553 | Gruber et al. | Oct 2008 | A1 |
20080262308 | Prestezog et al. | Oct 2008 | A1 |
20090082628 | Kucklick et al. | Mar 2009 | A1 |
20090270812 | Litscher et al. | Oct 2009 | A1 |
20090270895 | Churchill et al. | Oct 2009 | A1 |
20090270896 | Sullivan et al. | Oct 2009 | A1 |
20090270897 | Adams et al. | Oct 2009 | A1 |
20090270898 | Chin et al. | Oct 2009 | A1 |
20100087798 | Adams et al. | Apr 2010 | A1 |
20100121141 | Rontal | May 2010 | A1 |
20100152647 | Shener et al. | Jun 2010 | A1 |
20110166419 | Reif et al. | Jul 2011 | A1 |
20120078038 | Sahney et al. | Mar 2012 | A1 |
20130131452 | Kuroda et al. | May 2013 | A1 |
20130218186 | Dubois et al. | Aug 2013 | A1 |
20140031834 | Germain et al. | Jan 2014 | A1 |
20160312787 | Sato | Oct 2016 | A1 |
20170027637 | Germain et al. | Feb 2017 | A1 |
20170108238 | McMahon | Apr 2017 | A1 |
20180368872 | Fukui | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
3339322 | May 1984 | DE |
3206381 | Jul 1986 | DE |
3601453 | Sep 1986 | DE |
3615694 | Nov 1987 | DE |
4038398 | Jun 1992 | DE |
4440035 | May 1996 | DE |
19633124 | May 1997 | DE |
19751632 | Sep 1999 | DE |
102006022827 | Dec 2006 | DE |
0147192 | Jul 1985 | EP |
0310285 | Apr 1989 | EP |
0327410 | Aug 1989 | EP |
0338965 | Oct 1989 | EP |
0557044 | Aug 1993 | EP |
0582295 | Feb 1994 | EP |
0606531 | Jul 1994 | EP |
0621008 | Oct 1994 | EP |
0806183 | Nov 1997 | EP |
1681022 | Jul 2006 | EP |
2093353 | Sep 1982 | GB |
2311468 | Oct 1997 | GB |
2002529185 | Sep 2002 | JP |
2002538889 | Nov 2002 | JP |
2003245247 | Sep 2003 | JP |
1006944 | Mar 1999 | NL |
8101648 | Jun 1981 | WO |
9211816 | Jul 1992 | WO |
9307821 | Apr 1993 | WO |
9315664 | Aug 1993 | WO |
9426181 | Nov 1994 | WO |
9505777 | Mar 1995 | WO |
9510981 | Apr 1995 | WO |
9510982 | Apr 1995 | WO |
9522935 | Aug 1995 | WO |
9530377 | Nov 1995 | WO |
9611638 | Apr 1996 | WO |
9626676 | Sep 1996 | WO |
9709922 | Mar 1997 | WO |
9717027 | May 1997 | WO |
9719642 | Jun 1997 | WO |
9724071 | Jul 1997 | WO |
9734534 | Sep 1997 | WO |
9735522 | Oct 1997 | WO |
9809569 | Mar 1998 | WO |
9810707 | Mar 1998 | WO |
9846147 | Oct 1998 | WO |
9903407 | Jan 1999 | WO |
9903409 | Jan 1999 | WO |
9907295 | Feb 1999 | WO |
9911184 | Mar 1999 | WO |
9939648 | Aug 1999 | WO |
9944506 | Sep 1999 | WO |
9960935 | Dec 1999 | WO |
0012010 | Mar 2000 | WO |
0028890 | May 2000 | WO |
0033743 | Jun 2000 | WO |
0044295 | Aug 2000 | WO |
0047116 | Aug 2000 | WO |
0057797 | Oct 2000 | WO |
0135831 | May 2001 | WO |
0158368 | Aug 2001 | WO |
0195810 | Dec 2001 | WO |
02069808 | Sep 2002 | WO |
03022164 | Mar 2003 | WO |
03077767 | Sep 2003 | WO |
2005060842 | Jul 2005 | WO |
2005096963 | Oct 2005 | WO |
2006105283 | Oct 2006 | WO |
2006121968 | Nov 2006 | WO |
2006121970 | Nov 2006 | WO |
2007044833 | Apr 2007 | WO |
2012044705 | Apr 2012 | WO |
2017007851 | Jan 2017 | WO |
Entry |
---|
Exended European Search Report issued in corresponding European application No. 18159257.7 dated Jun. 1, 2018, 7 pages. |
European Examination Report dated Mar. 24, 2020 issued in corresponding EP Appln. No. 18 159 257.7. |
Number | Date | Country | |
---|---|---|---|
20180250029 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62465907 | Mar 2017 | US |