This application relates to fluid duct, wherein a bead formed on the outer periphery of the duct is improved.
Fluid ducts are utilized to connect various fluid components. In one major use of such ducts, two elements which communicate air from one side to the other are connected by such ducts, and a clamp secures the ducts together.
The ducts will often include a bead at an outer periphery to properly position the clamp.
A fluid duct has a plastic body with a forward cylindrical portion having an outer periphery and a rear cylindrical portion having an outer periphery. The forward and rear cylindrical portions are at equal radial distances from a center line of the fluid duct. The bead is formed on an outer periphery of the duct body intermediate the forward and rear portions. The bead has a radially outermost distance measured perpendicularly away from the outer periphery of the forward portion. This is defined as a first distance. A second distance is defined between a forward end of the duct body to a rearmost end of the bead. The ratio of the first distance to the second distance is between 0.200 and 0.270.
These and other features may be best understood from the following drawings and specification.
As shown in
A forward face 30 of the bead 28 extends from a forward cylindrical portion 117. A rear cylindrical portion 118 is cylindrical and generally of the same diameter as portion 117. Bead 28 is intermediate portions 117 and 118. A first radius R1 merges the forward portion 117 into the forward face 30. A second radius R2 defines the radially inner end of a rear face 32 of the bead 28 which merges into the rear cylindrical portion 27 of the duct 22. As mentioned, the duct 24 is the minor image.
In one embodiment, R1 was 0.062 inch (0.157 centimeter), R2 was 0.020 inch (0.051 centimeter), R3 was 0.030 inch (0.076 centimeter), and R4 was 0.025 inch (0.063 centimeter).
A radius R3 is formed at a radially outer portion of the forward face 30. The rear face 32 is formed at a radius R4 at its radially outer portion.
The radii at R3 and R4 provide a smooth corner for the boot 26 to slide over. The combination of the radii R4 and R2 provide an adequate flat on the back side of the bead 28 to prevent the boot 26 from slipping over the bead 28 when the fluid connection is pressurized.
In embodiments, a ratio of R1 to R2 was between 2.1 and 4.8.
As further shown in
The duct as described above provides very reliable and long lived usage.
Although an embodiment of this invention has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of this invention. For that reason, the following claims should be studied to determine the true scope and content of this invention.