None.
None.
None.
1. Field of the Disclosure
The present disclosure relates generally to fluid ejection devices, and more particularly, to a fluid ejection device adapted to prevent bulging of a nozzle plate over fluid vias of the fluid ejection device on an exposure to a fluid, such as ink.
2. Description of the Related Art
Presently, fluid ejection devices, such as inkjet printheads, are configured to have fluid vias constructed within a substrate, such as a silicon wafer, by various conventional methods. Such conventional methods include spinning of a positive resist material on an entire silicon wafer used for making the fluid ejection devices, and exposing areas corresponding to fluid vias while masking remaining areas of the silicon wafer with a photo reticle. Subsequently, the exposed positive resist material is developed away from the areas that correspond to the fluid vias. Thereafter, silicon material in the fluid vias is etched through the entire silicon wafer. Specifically, techniques such as Deep Reactive Ion Etching (DRIE) may be used to etch the silicon material in the fluid vias. Once the silicon material in the fluid vias is etched, a nozzle plate is laminated on top of a plurality of flow features spanning through the fluid vias. The silicon wafer may then be diced into individual chips, i.e., printheads. The printheads may then be attached to a tab circuit, and then bonded to a fluid bottle, such as a Noryl bottle to form the fluid ejection devices.
However, it is observed that over time, a Photo Imageable Nozzle Plate (PINP) based printhead suffers from bulging of the nozzle plate over fluid vias configured at end portions of the printhead, such as the outermost fluid vias for fluids including cyan ink and black ink, after exposure to the respective type of the fluids. Such a phenomenon is known as “via bulge”. Specifically, the bulging of the nozzle plate or the “via bulge” occurs because a silicon sliver deposited on the two outermost fluid vias is very thin (less than 800 micrometers) and may easily get distorted over a time period, while fluid is ejected (for example, during printing). Over time and during repeated usage of the printhead, a force is applied to the edges of the printhead. Such a force may squeeze the printhead and cause the nozzle plate over the outermost fluid vias to bulge. If the bulging of the nozzle plate is severe, then adhesion of the nozzle plate to plurality of flow features may be compromised, thereby, de-lamination of the nozzle plate may occur. Consequently, the de-lamination of the nozzle plate may lead to severe misdirected nozzles, thereby, compromising print quality.
To avert “via bulging”, it has been fairly suggested to introduce bridge structures within/across fluid vias of a fluid ejection device.
However, it has been thought that bridge structures of this type are typically very thin, and accordingly, are fragile. For example, a printhead without any bridge structure may withstand a drop height ranging from about nine inches to about fifteen inches without breaking. In contrast, a printhead with the foregoing bridge structures may withstand a drop height of only about two inches, thereby resulting in shattering that may prove detrimental to electronic circuitry of the printhead and may also lead to clogging of fluid passages within the printhead.
Further, bridges like
Accordingly, there persists a need for an efficient fluid ejection device that is adapted to eliminate/prevent via bulge problem without resulting in additional problems, such as fluid starvation, fluid cross-talk and bubble formation.
In view of the foregoing disadvantages, the general purpose of the present disclosure is to provide a fluid ejection device and a method for fabricating the fluid ejection device, by including all suspected advantages of contemplated designs, and overcoming the drawbacks inherent therein.
In one aspect, the present disclosure provides a fluid ejection device that includes a nozzle plate. The nozzle plate includes a plurality of nozzles for fluid ejection. Further, the fluid ejection device includes a substrate disposed below the nozzle plate to support the nozzle plate. The substrate includes a top surface adapted to adhere to the nozzle plate. The substrate also includes at least one fluid via configured within the substrate for providing fluid to the plurality of nozzles of the nozzle plate. Furthermore, the fluid ejection device includes at least one supporting structure configured within each fluid via of the at least one fluid via. The at least one supporting structure is further configured at a predetermined depth from the top surface of the substrate to regulate the flow of the fluid from the at least one fluid via to the plurality of nozzles.
According to another aspect, the present disclosure provides a method for fabricating a fluid ejection device. The method includes fabricating a substrate to configure at least one fluid via within the substrate, and to configure at least one supporting structure within each fluid via of the at least one fluid via using a photolithographic gray-scale mask. Each supporting structure of the at least one supporting structure is configured at a predetermined depth from a top surface of the substrate. The method further includes disposing a nozzle plate over the top surface of the substrate.
The above-mentioned and other features and advantages of the present disclosure, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of embodiments of the disclosure taken in conjunction with the accompanying drawings, wherein:
It is to be understood that various omissions and substitutions of equivalents are contemplated as circumstances may suggest or render expedient, but these are intended to cover the application or implementation without departing from the spirit or scope of the claims of the present disclosure. It is to be understood that the present disclosure is not limited in its application to the details of components set forth in the following description. The present disclosure is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Further, the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
The present disclosure provides a fluid ejection device, such as a printhead, and more specifically, a Photo Imageable Nozzle Plate (PINP) based printhead. Further, the fluid ejection device of the present disclosure may be utilized in a printer, such as an inkjet printer. The fluid ejection device includes a nozzle plate. The nozzle plate includes a plurality of nozzles for fluid ejection. Further, the fluid ejection device includes a substrate disposed below the nozzle plate to support the nozzle plate. The substrate includes a top surface adapted to adhere to the nozzle plate. The substrate also includes at least one fluid via configured within the substrate for providing fluid to the plurality of nozzles of the nozzle plate. Furthermore, the fluid ejection device includes at least one supporting structure configured within each fluid via of the at least one fluid via. The at least one supporting structure is further configured at a predetermined depth from the top surface of the substrate to regulate the flow of the fluid from the at least one fluid via to the plurality of nozzles. The fluid ejection device of the present disclosure is explained in conjunction with
The nozzle plate 110 includes a plurality of nozzles 112 for fluid ejection. The nozzle plate 110 may further include integrated flow features, such as a plurality of flow features 114 fluidly coupled to the nozzles 112. Alternatively, the nozzle plate 110 may simply include the nozzles 112 that may be fluidly coupled to discrete flow features. The nozzles 112 may be configured at edges (not numbered) of the nozzle plate 110 in a longitudinal manner. During printing, the nozzles 112 allow a fluid, such as an ink, to be ejected therefrom on to a medium to be printed. Further, the nozzles 112 may be configured to have a frustum shape, thereby, allowing optimum flow of the fluid therefrom. It is to be understood that the shape and structure of the nozzles 112 should not be considered as a limitation to the present disclosure.
The fluid ejection device 200 further includes a substrate 120 disposed below the nozzle plate 110 to support the nozzle plate 110. The substrate 120 may be composed of a semiconductor material, such as silicon and the like, thereby providing sufficient strength to bear wear and tear during the use of the fluid ejection device 200. According to the present embodiment of the present disclosure, the substrate 120 is a rectangular shaped block. However, the substrate 120 may be configured to have any other shape, without departing from the scope of the present disclosure.
The substrate 120 includes a top surface 122 (as shown in
The substrate 120 further includes at least one fluid via 130 configured therewithin, for providing fluid to the nozzles 112 of the nozzle plate 110. For simplicity, the fluid ejection device 200 is depicted to have only one fluid via 130 configured within the substrate 120 (as shown in
Furthermore, the fluid ejection device 200 includes at least one supporting structure 140 configured within the fluid via 130 (as shown in
Accordingly, during printing, the supporting structure 140 provides an optimum flow, i.e. neither a maximum volume nor a minimum volume, of the fluid, such as ink, from the fluid via 130 to the nozzles 112 of the nozzle plate 110, thereby minimizing the effect of compressive forces encountered by the nozzle plate 110 and the fluid via 130. Further, minimization of the compressive forces encountered by the nozzle plate 110 and the fluid via 130 results in eliminating problems associated with fragility of the fluid ejection device 200 and fluid starvation (or cross-talk) within the fluid ejection device 200. Specifically, the utilization of the supporting structure 140 within the fluid via 130 does not affect/block the flow of the fluid to the ejection elements/heaters, thereby, preventing any fluid starvation. It will be evident that the fluid ejection elements of the fluid ejection device 200 may be similar to the conventional fluid ejection elements, and accordingly, the same are not explained herein for the sake of brevity.
As shown in
Furthermore, the supporting structure 140 of the present disclosure is advantageous over typical designs that are currently used for preventing fluid via bulging.
Further, the supporting structure 140 being configured at the predetermined depth from the top surface 122 of the substrate 120, assists in minimizing cross-talk (or fluid starvation) without being acting as a barrier to fluid flow. Accordingly, cross-talk between adjacent ejection elements (not numbered) of the fluid ejection device 200 does not increase. For example, when an ejection element fires, most of the fluid is ejected through the nozzles 112, however the presence of the supporting structure 140 being configured at the predetermined depth does not allow the remaining volume/amount of the fluid to enter an adjacent ejection element, thereby, reducing the occurrence of any cross-talk. Further, a larger predetermined depth of the supporting structure 140 reduces cross-talk velocity as measured by a velocity magnitude (for firing ejection elements cut off at respective throats). In the typical bridge structure, a bridge depth of about zero micrometer is associated with a cross-talk velocity of 4.4 meters/second at a time interval of about 1.6 microseconds. In contrast, the supporting structure 140 of the present disclosure assists in achieving a cross-talk velocity of about 3 meters/second. Further, the use of the supporting structure 140 allows for a significant reduction in fluid flow across the fluid via 130.
Furthermore,
According to the graph 500 of
In order to overcome problems associated with fragility of the fluid ejection device 200, the supporting structure 140 is configured to have a width ranging from about 300 micrometers to 350 micrometers. Further, as shown in
Based on the results of
The supporting structure 140 of the fluid ejection device 200 may be configured/formed within the fluid via 130 using a micro-mechanical technique, and specifically, a gray-scale photolithography technique utilizing a gray-scale mask. Specifically, the top surface 122 of the substrate 120 may be spin-coated with a positive resist material. Subsequently, the gray-scale mask is used while exposing, developing and etching the positive resist material. More specifically, the gray-scale mask assists in blocking the entire light incident on the positive resist material, at a first set of areas (not shown) of the substrate 120, thereby creating unetched areas over the substrate 120. Further, the gray-scale mask partially blocks the light incident on the positive resist material, at a second set of areas (not shown) of the substrate 120, thereby creating the supporting structure 140 with flat, sloped, or curved top surface 142. Particularly, various thickness of the positive resist material may be left over the substrate 120 that may result in blocking the light for a specific time period. Accordingly, once the photo-resist material is consumed, the etching proceeds to configure the supporting structure 140 with flat or modified top surface 142. Furthermore, the gray-scale mask does not block the light incident on the positive resist material deposited over the substrate 120 at a third set of areas (not shown) of the substrate 120, thereby creating uniformly etched areas over the substrate 120. The uniformly, etched areas may correspond to fluid vias, such as the fluid via 130 of the fluid ejection device 200.
In another aspect, the present disclosure provides a method of fabrication of a fluid ejection device, such as the fluid ejection device 200, as explained in conjunction with
At 706, a nozzle plate, such as the nozzle plate 110, is disposed over the top surface 122 of the substrate 120. The method 700 ends at 708.
It will be evident that the substrate 120 may be a silicon wafer itself, which may be fabricated in the above-mentioned manner, and may then be diced to form various fluid ejection devices, such as the fluid ejection device 200, based on the dimension of the silicon wafer.
The present disclosure provides a fluid ejection device (such as the fluid ejection device 200), with at least one supporting structure such as the (supporting structure 140) for eliminating compression of a nozzle plate of the fluid ejection device. Further, the at least one supporting structure is provided as sunken bridges to facilitate a free flow of fluid from fluid vias to flow features of the fluid ejection device, while eliminating/preventing the problems associated with fragility of the fluid ejection device and fluid starvation within the fluid ejection device.
The foregoing description of several embodiments of the present disclosure has been presented for purposes of illustration. It is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. It is intended that the scope of the disclosure be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
7125097 | Sekiguchi | Oct 2006 | B2 |
7604333 | Horsnell et al. | Oct 2009 | B2 |
Number | Date | Country | |
---|---|---|---|
20120229569 A1 | Sep 2012 | US |