Fluid Ejection Device Having Firing Chamber With Mesa

Abstract
A fluid ejection device includes a firing chamber having an ejection orifice opposite a chamber floor, a heating element and a mesa projecting from the chamber floor, the mesa is spaced from the heating element to define a passive zone between the mesa and heating element.
Description
BACKGROUND

One type of fluid ejection device is an inkjet-printing device. An inkjet printing device forms images on media by ejecting fluid such as ink though an orifice in fluid communication with a firing chamber. In some examples, droplets of fluid are thermally ejected from the inkjet-printing device using a heating resistor. When electrical power is applied to the heating resistor, resistance of the heating resistor causes the heating resistor to increase in temperature. This increase in temperature causes a bubble to be formed in the firing chamber, which results in ejection of a droplet of fluid through the orifice.





BRIEF DESCRIPTION OF THE DRAWINGS

The detailed description will make reference to the following drawings, in which like reference numerals may correspond to similar, though perhaps not identical, components. For the sake of brevity, reference numerals having a previously described function may or may not be described in connection with other drawings in which they appear.



FIG. 1 is a partial cross-sectional view of an example printhead of a thermal ejection device, the printhead including a firing chamber with a mesa defined in the chamber floor according to an embodiment of the invention.



FIG. 2 is a partial top-down view of the example printhead of FIG. 1, the firing chamber having a cylindrical mesa in accordance with an embodiment of the invention



FIGS. 3A through 3C are partial cross-sectional views of example printheads employing ring-type resistors and contoured chamber floors within a perimeter of the resistors according to embodiments of the invention.



FIGS. 4A and 4B are partial top-down views of example printheads having firing chambers with elongate mesas formed on the firing chamber floors according to embodiments of the invention.





DETAILED DESCRIPTION

When a fluid droplet is ejected from an orifice, most of the mass of the droplet is contained in the leading head of the droplet. The greatest velocity of the droplet is found in this mass. The remaining tail of the droplet contains a minority of the mass of fluid and has a distribution of velocity ranging from nearly the same as the droplet head at a location near the droplet head to a velocity less than the velocity of the fluid found in the droplet head and located closest to the orifice.


At some time during the transit of the droplet, the fluid in the tail is stretched to a point where the tail is broken off from the droplet. A portion of the fluid remaining in the tail is pulled back toward an orifice layer where it may form a puddle surrounding the orifice. Such puddles, if not controlled, may degrade the quality of printed material.


Some parts of the droplet tail are absorbed into the droplet head prior to the droplet being deposited upon the medium. However, other parts of the droplet tail may produce a fine spray of sub-droplets spreading in random directions. Some of this spray may reach the medium upon which printing occurs, thereby producing rough edges to the dots formed and potentially placing undesired spots on the medium (which may reduce clarity of the desired printed content). Such uncontrolled breaking of fluid tails also may cause misdirection of fluid droplets, and may disrupt firing chamber refill.


As noted above, an inkjet printing device may eject droplets of fluid onto media by applying electrical power to an ejection element, which ultimately results in the droplets of ink being ejected. A thermal inkjet printing device is a fluid ejection device that employs heating elements, typically resistors, to thermally eject fluid. Such resistors typically have been formed on the floor of the firing chamber, and have been in the shape of a rectangle. Uncontrolled breaking of fluid tails may cause returning fluid to impact the firing chamber floor with greater force, and thus may reduce resister life.


However, by altering the shape of the heating element, it is possible to contour the floor of the firing chamber so as to effect control over direction and breaking of fluid droplet tails. Although prior heating element designs generally have been constrained to covering the firing chamber floor, it is now possible to deviate from the basic solid plane rectangular design without experiencing the difficulties previously associated with more unconventional designs (e.g., concentration of electrical current, uneven heating, and long-term reliability issues).



FIG. 1 shows a partial cross-sectional view of a printhead 200 forming a part of an example fluid ejection device 100. As shown, printhead 200 includes a substrate 202 made, for example, of Si with a dielectric layer such as SiO2. Substrate 202 has a surface 204 on which various elements and layers may be formed that make up printhead 200. As will become apparent, such elements and/or layers may be formed in various orientations with respect to surface 204, such as on top of surface 204, within surface 204, below the surface 204, and so on.


A heating element 205 may be formed on (or in) substrate 202, and may be covered by one or more overcoat layers 206 to provide structural stability and electrical insulation from fluid in the firing chamber. In some examples, heating element 205 is a resistive layer of tungsten silicon nitride (WSiN), for example, deposited on the surface of substrate 202, including over conductive electrodes 208. The heating element 205 may be deposited by conventional integrated circuit fabrication techniques such as sputtering a resistive material. There are several types of materials that may be used to make the heating element 205, such as a tantalum aluminum alloy, for example.


The heating element may be resistive in it is considered a resistor having greater resistance than that of a conductor such as that forming conductive electrodes 208. The resistance of the heating element 205 may be many times greater than the resistance of the conductive electrodes. As one example, this resistance ratio may be 5000 or higher.


A barrier layer/chamber layer 210 may be formed onto the substrate 202 as a dry film laminated by heat and pressure, for example, or as a wet film applied by spin coating. The chamber layer 210 material may be a photoimageable polymer such as SU8. A firing chamber 212 thus may be formed in chamber layer 210 by photoimaging techniques. A nozzle layer 220 may be formed on the chamber layer with a nozzle orifice 222 (also referred to as an ejection orifice) formed over firing chamber 212 such that nozzle orifice 222 and heating element 205 are aligned. Printhead 200 may include many such firing chambers, each with associated heating element(s) and nozzle orifice(s).


In some examples, a depression 230 may be formed in substrate 202 such that heating element 205 may be formed on a sidewall 232 or sidewalls (depending on depression shape) that extend around a perimeter of the depression. In such examples, the depression is formed within and below the surface of the substrate, and the heating element is a ring-type heating element formed within the substrate along the walls of the depression. Because the heating element is not formed on the surface of substrate and does not make up a substantial part of the floor of the firing chamber, it is not as involved in the degradation process caused by the repeated collapse of vapor bubbles. This may reduce the need for an overcoat layer to protect the heating element, or at least may reduce the thickness of the overcoat layer employed to protect the firing chamber floor.


Furthermore, because the heating element is removed from a central region of the firing chamber floor 240, an uncovered region of the firing chamber floor may be contoured to effect control over direction and breaking of fluid droplet tails. As shown in FIG. 1, such contour may take the form of a mesa 250 that projects from firing chamber floor 240. In some examples, mesa 250 extends above a top surface of the resistor to a height (h) corresponding to the depth of depression 230. The mesa may project further into the firing chamber depending on the desired effect on droplet ejection, firing chamber refill and/or chamber life (among other factors). However, the mesa generally will remain below the nozzle layer so as not to obstruct nozzle orifice 222.


Mesa 250 may be concentrically aligned with nozzle orifice 222, as shown in FIG. 1, or may be positioned eccentric to the nozzle orifice. The shape of mesa 250 also may vary. Mesa 250 thus may mimic the shape of depression 230 and/or firing chamber 212. However, both position and shape of the mesa selected based on the desired effect on system fluidics. In some examples, mesa position and/or mesa shape may be selected to compensate for discontinuities in firing chamber design.


A passive zone 256 may be defined between heating element 205 and mesa 250. As indicated, there are no active elements of the printhead in passive zone 256. The passive zone thus may be configured to receive and dampen forces impingent on the chamber floor upon tail break-off and/or bubble collapse. This, in turn, may allow for reduction (or even elimination) of overcoat layer(s) 206.


Referring now to FIG. 2, a simplified top-down view of example printhead 200 is shown (with overcoat layer 206 removed for clarity). As shown, the example printhead defines a circular firing chamber 212. Moreover, a circular depression 230 is formed in the floor of the substrate, the depression defining a sidewall 232 on which a ring-type heating element 205 is formed. A central region of chamber floor 240 thus is available for contour, and may be contoured to effect control over droplet shape, droplet tail break-off and firing chamber refill (though fluid inlet 260).


In the example shown in FIGS. 1 and 2, a circular mesa 250 is formed on chamber floor 240. Mesa 250 has a perimeter that is smaller than the perimeter of ring-type heating element 205, and may be centered on nozzle orifice 222 as shown to align fluid droplet tails with the nozzle orifice on tail break-off. It is believed that when the tail breaks off in the center of the orifice, it has less of a tendency to displace the straight-ahead trajectory of the main droplet. The mesa extends above the chamber floor toward the nozzle orifice to influence the tail break-off from the fluid remaining in the firing chamber. The satellite droplets also thus may be directed to land in a substantially consistent location relative to the main droplet due to the fluidic effects of mesa 250. Furthermore, the mesa may be configured to direct fluid ejection such that upon bubble collapse, returning fluid is distributed across the passive zone, rather than impinging on active features of the printhead (e.g., heating element 205).


In the example shown in FIGS. 1 and 2, mesa 250 is substantially cylindrically shaped. The shape of the mesa, however, is not so limited. The mesa may be elliptical, cubic, or virtually any other shape suitable to effect the desired control system fluidics. Furthermore, it is to be understood that the size of the mesa 250 shown in relation to the printhead 200 is for purposes of illustration only, and is not intended to be a perfectly accurate or scaled representation.


Although heating element 205 is a resistor formed on the sidewall of a depression in the firing chamber floor, the heating element may take other forms, including a resistor (or resisters) formed on the firing chamber floor, or resistor suspended above the firing chamber floor. The form and position of the heating element may vary, provided the heating element does not entirely cover chamber floor 240.


In FIG. 3A, fluid ejection device 100 is shown as including a printhead 300 with a ring-type heating resistor 305 formed on the floor 340 of a firing chamber 312. As in the example of FIGS. 1 and 2, the firing chamber is defined by a substrate 302, a barrier layer 310 and a nozzle layer 320. A nozzle orifice 322, in turn, is formed in the nozzle layer such that fluid may be ejected through the nozzle orifice upon activation of the heating resistor.


As used herein, “ring-type” heating element or heating resistor refers to a heating element or heating resistor that forms a pseudo-ring. Such heating element or heating resistor need not form a true ring insofar as a true ring has curved surfaces. Example ring-type heating restistors are shown in International Patent Application No. PCT/US11/23224 entitled “THERMAL FLUID-EJECTION MECHANISM HAVING HEATING RESISTOR ON CAVITY SIDEWALLS” and International Patent Application No. PCT/US1126732, entitled “RING-TYPE HEATING RESISTOR FOR THERMAL FLUID-EJECTION MECHANISM”. The subject matter of those applications is incorporated herein by this reference thereto,


Firing chamber floor 340 is contoured to define a mesa 350 that projects toward nozzle orifice 322. The shape, size and position of mesa 350 may be selected based on the desired impact on droplet ejection, firing chamber refill and/or chamber life (among other factors). In FIG. 3A, mesa 350 is within an inner perimeter of ring-type heating resistor 305 and is centered on nozzle orifice 322.


A passive zone 356 may be defined between heating element 305 and mesa 350. The passive zone may be configured to receive and dampen forces impingent on the chamber floor upon tail break-off and/or bubble collapse.


The mesa may be cylindrical, as shown, and may have a height (h) on the order of 5 micrometers. Mesa sidewall (or sidewalls) 354 may extend vertically from chamber floor 340, as shown, or may extend, obliquely, acutely, or in some other fashion suitable for effecting the desired fluid control. Similarly, the mesa may have a top surface 352 that is planer, as shown, or that is contoured to effect further fluid control. In some examples, such further fluid control may direct forces to the passive zone upon tail break-off and/or bubble collapse.


Although not particularly shown, firing chamber floor 340, heating resistor 305, mesa sidewall(s) 354 and/or mesa top surface 352 may be covered by one or more overcoat layers to provide structural stability and electrical insulation from fluid in the firing chamber. However, where the firing chamber floor defines a passive zone, and mesa 350 is configured to direct forces toward the passive zone upon tail break-off and/or bubble collapse, the overcoat layer(s) may be reduced (or even eliminated).


Again, the printhead may include plural firing chambers 312, each with one or more associated heating resistor(s) and nozzle orifice(s).



FIG. 3B shows a fluid ejection device 100 including a printhead 400 with a ring-type heating resistor 405 formed on the floor 440 of a firing chamber 412. Firing chamber 412 is defined by a substrate 402, a barrier layer 410 and a nozzle layer 420. A nozzle orifice 422 is defined in the nozzle layer such that fluid may be ejected through the nozzle orifice upon activation of the heating resistor.


In FIG. 3B, firing chamber floor 440 defines a mesa 450 that projects toward nozzle orifice layer 420. Again, the shape, size and position of mesa 450 may be selected based on the desired impact on droplet ejection, firing chamber refill and/or chamber life (among other factors). Mesa 450 is formed in an interior region of chamber floor 440 within a perimeter defined by ring-type heating resistor 405.


As indicated, mesa 450 is includes a sidewall (or sidewalls) 454 and a top surface 452, and further includes a cavity 460 extending into top surface 452 of mesa 450. Cavity 460, in turn, is defined by a cavity floor 462 and a cavity sidewall (or sidewalls) 464. In the present example, both mesa 450 and cavity 460 are centered on nozzle orifice 422, but the mesa and/or cavity may be offset from the nozzle orifice as desired in view of characteristics of the printhead and/or fluid to be ejected. Mesa 450 may be cylindrical, but may take other forms. Similarly, cavity 460 may be cylindrical, but may take other forms. Cavity 460 may or may not match the profile of mesa 450.


Mesa 450 nominally has a mesa width (W1) that is greater than the cavity width (W2). Furthermore, mesa width (W1) may be the interior perimeter of resistor 405, thereby providing a passive zone 456 in an area surrounding the mesa. As indicated, passive zone 456 is not covered by resistor 405. This area may be configured to receive and dampen forces impingent on the chamber floor upon tail break-off and/or bubble collapse. This, in turn, may allow for reduction (or even elimination) of the overcoat layer(s) described in connection with the example of FIGS. 1 and 2.



FIG. 3B depicts mesa 450 with a height (h) that is less than cavity depth (d). However, in some examples, mesa height (h) may be greater than or equal to cavity depth (d). In the particular example shown, mesa height is on the order of 5 micrometers.



FIG. 3C shows a fluid ejection device 100 including a printhead 500 with a ring-type heating resistor 505 formed on a floor 540 of a firing chamber 512. Firing chamber 512 is defined by a substrate 502, a barrier layer 510 and a nozzle layer 520. A nozzle orifice 522 is defined in the nozzle layer such that fluid may be ejected through the nozzle orifice upon activation of the heating resistor. Again, the printhead may include plural firing chambers, each with one or more associated heating resistor(s) and nozzle orifice(s).


Printhead 500 includes a mesa 550 extending from chamber floor 540 toward opposite nozzle layer 520 on an opposite side of the firing chamber. In FIG. 3C, the example mesa 550 is a compound structure, including a first projection 552 extending from the chamber floor, and a second projection 554 extending from the first projection. As indicated, both first projection 552 and second projection 554 may be centered on nozzle orifice 522. However, the particular shape, size and position of first projection 552 and/or a second projection 554 may vary. In some examples, second projection 554 may be employed to tune the effect of mesa 550 on droplet shape, droplet tail break-off and/or firing chamber refill.


Mesa 550 thus may include a generally cylindrical first projection 552, and a semi-spherical second projection 554 projecting from a top surface of the first projection. In FIG. 3C, the first projection has a first width (W1) and the second projection has a second width (W2), where the second width is smaller than the first width. Mesa 550 thus may define a first passive zone 456a on the top of the first projection, surrounding the second projection. A second passive zone 456b may be defined on chamber floor 540, surrounding mesa 550.


In FIG. 4A, a simplified top-down view of example printhead 600 forming a part of a fluid ejection device is shown, the printhead defining an elongate firing chamber 610 fed by a fluid inlet 620. A nozzle orifice 630 is shown in dashed line to indicate that the nozzle is above the plane of the firing chamber.


As indicated, the example firing chamber includes a heating element with a plurality of heating element segments 605a and 605b on the firing chamber floor 640. Although two segments are shown, the heating element may include more than two heating element segments. The heating element segments may be similarly spaced on opposite sides of the firing chamber relative the nozzle orifice to minimize discontinuities in fluid droplet ejection and/or tail break-off due to, among other things, the shape of the firing chamber. Although a rectangular firing chamber and rectangular resistors are depicted, the firing chamber and heating element segments may take various other forms.


A central region 642 of chamber floor 640 may be defined between the heating element segments 605a and 605b. Central region 642 may act as a passive zone onto which forces may be directed upon tail break-off and/or bubble collapse. As shown, an elongate mesa 650 may be provided in the central region of the chamber floor. Mesa 650 may be a rectangular mesa, as shown, and may define a major axis a1 that extends across the chamber floor. In the depicted example, major axis a1 corresponds to the direction of fluid feed through fluid inlet 620. Furthermore, in the depicted example, major axis a1 of mesa 650 bisects nozzle orifice axis a2. However, the shape, size, position and orientation of mesa 650 may be selected based on the desired impact on droplet ejection, firing chamber refill and/or chamber life (among other factors). In some examples, mesa 650 may be configured to direct fluid toward central region 642, which acts as a passive zone of the chamber floor.


Although the length of mesa 650 is shown as corresponding to the length of heating element segments 605a and 605b, the mesa length (and mesa width) are not limited in this way. FIG. 4b, for example, shows a printhead 600 with a pair of spaced mesas 650a and 650b extending along axis a1. Three or more spaced mesas also are contemplated.


In operation, fluid ejection devices such as those described herein effect droplet ejection by activation of a heating element (or heating elements) under direction of a controller. The controller may be implemented in hardware, or a combination of machine-readable instructions and hardware, and controls ejection of drops of fluid from the fluid ejection device in a desired manner by the heating elements.


It is noted that the concepts described herein may be implemented in an inkjet printing device, such as a printer, that ejects ink onto media to form images on the media. However, the concepts more generally apply to fluid ejection devices, which may include precision-dispensing device that precisely dispense fluids such as ink, melted wax, or polymers.

Claims
  • 1. A fluid ejection device comprising: a firing chamber having an ejection orifice opposite a chamber floor;a heating element within the firing chamber, the heating element heating fluid within the firing chamber to eject fluid through the ejection orifice; anda mesa projecting from the chamber floor to direct ejection of fluid from the firing chamber, wherein the mesa is spaced from the heating element to define a passive zone between the mesa and heating element to receive and dampen forces impingent on the chamber floor upon fluid ejection.
  • 2. The fluid ejection device of claim 1, wherein the heating element is a ring-type heating element.
  • 3. The fluid ejection device of claim 2, wherein the mesa is centered within the ring-type heating element.
  • 4. The fluid ejection device of claim 3, wherein the mesa is centered on the orifice.
  • 5. The fluid ejection device of claim 1, wherein the mesa is cylindrical.
  • 6. The fluid ejection device of claim 1, wherein the mesa defines a cavity extending into the mesa opposite the ejection orifice.
  • 7. The fluid ejection device of claim 6, wherein the mesa and cavity are centered on the orifice.
  • 8. The fluid ejection device of claim 1, wherein the mesa includes a first projection extending from the chamber floor and a second projection extending from the first projection.
  • 9. The fluid ejection device of claim 1, wherein the mesa is an elongate mesa defining a major axis extending across the chamber floor.
  • 10. The fluid ejection device of claim 9, wherein the firing chamber includes a fluid inlet, the major axis extending parallel to the fluid inlet.
  • 11. A fluid ejection device comprising: a firing chamber having an ejection orifice and a chamber floor opposite the ejection orifice;a ring-type heating element on the chamber floor, the heating element defining a passive zone surrounded by the ring-type heating element; anda mesa projecting from the chamber floor within the passive zone.
  • 12. The fluid ejection device of claim 11, wherein the ring-type heating element and mesa are centered the ejection orifice.
  • 13. The fluid ejection device of claim 12, wherein the firing chamber and mesa are concentric.
  • 14. The fluid ejection device of claim 13, wherein the firing chamber and mesa are both cylindrical.
  • 15. A fluid ejection device comprising: a firing chamber having an ejection orifice and a chamber floor opposite the ejection orifice;a ring-type heating element to heat fluid within the firing chamber, thereby causing ejection of a fluid droplet through the ejection orifice, the heating element defining a passive zone surrounded by the ring-type heating element; anda mesa projecting from the chamber floor within the passive zone, the mesa including a top surface contoured to direct fluid toward the passive zone upon ejection of a fluid droplet.
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US2012/023272 1/31/2012 WO 00 6/29/2013
Continuation in Parts (2)
Number Date Country
Parent PCT/US2011/023224 Jan 2011 US
Child 13977675 US
Parent PCT/US2011/026732 Mar 2011 US
Child PCT/US2011/023224 US