Fluid ejection devices such as printing fluid printheads may undergo considerable mechanical stresses at various stages of their lifetimes. If left unmitigated these mechanical stresses may shorten a lifetime of a fluid ejection device. For example, during manufacture a fluid ejection device may be exposed to relatively high temperatures. Different components of the fluid ejection device may be constructed with different materials that have varying coefficients of thermal expansion (“CTE”). Consequently, each component may exhibit a different physical reaction to the heat. These varying physical reactions may cause various abnormalities and/or defects, which in some cases may expose sensitive components such as bondpads to fluids such as epoxy and/or printing fluids. Also, the process of encapsulating wires connecting bondpads of fluid ejection die to other logic components may induce considerable stress to portions of the fluid ejection device. Additionally, during use, the ejection of fluid may impose competing forces on various components of the fluid ejection device, which can lead to further defects and/or shortening of the fluid ejection device's lifespan.
Features of the present disclosure are illustrated by way of example and not limited in the following figure(s), in which like numerals indicate like elements.
For simplicity and illustrative purposes, the present disclosure is described by referring mainly to an example thereof. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be readily apparent however, that the present disclosure may be practiced without limitation to these specific details. In other instances, some methods and structures have not been described in detail so as not to unnecessarily obscure the present disclosure.
Additionally, it should be understood that the elements depicted in the accompanying figures may include additional components and that some of the components described in those figures may be removed and/or modified without departing from scopes of the elements disclosed herein. It should also be understood that the elements depicted in the figures may not be drawn to scale and thus, the elements may have different sizes and/or configurations other than as shown in the figures.
Techniques, apparatus such as fluid ejection devices and printbars, and systems such as printing systems are described herein that include break(s) between regions of a cover layer that overlays a fluid ejection die. These breaks between the various regions or portions of the cover layer may mitigate the mechanical stress(es) outlined previously, and thereby may result in an increased fluid ejection device lifespan. In some examples, the cover layer may be formed with photoresist materials such as SU-8. The fluid ejection die may take various forms as well, such as a silicon-based die sliver that is used as a printhead die.
A “bondpad protection” region or portion of the cover layer may be designed to overlay, and thereby protect from fluids such as ink, bondpad(s) of the underlying fluid ejection die. This area of the fluid ejection device is referred to herein as the “encapsulation area” because it is the area in which a wire connecting the bond pad(s) to an outside logic component is encapsulated with various materials in order to protect an electrical connection between the fluid ejection die and the outside logic component. In some examples, a fluid ejection device may include two encapsulation areas at opposite ends of its length.
An “orifice” region or portion of the cover layer may be designed to overlay a plurality of fluid ejectors of the fluid ejection die. For example, the orifice region of the cover lay may be formed with a plurality of nozzles that fluidly couple the plurality of fluid ejectors with an exterior of the fluid ejection device, e.g., so that ejected fluid droplets may reach their intended target. This overall area of the fluid ejection device is referred to herein as the “fluid ejection area.” In some examples, the fluid ejection area may lie in between two flanking encapsulation areas of the fluid ejection device.
If the cover layer takes the form of a continuous layer without any breaks, many of the mechanical stresses imparted on some components of the fluid ejection device during its lifetime may impact other components, thereby causing various defects and/or abnormalities. For example, fissures or gaps may form between various components, which may impact the overall mechanical stability of the fluid ejection device. Moreover, fluid such as ink may enter these fissures or gaps, e.g., via capillary wicking. This fluid may come into contact with components such as bondpads, causing electrical failure, and may also cause and/or accelerate corrosion of various components.
Accordingly, break(s) may be formed in the cover layer, e.g., between the bondpad protection and orifice regions. These breaks may then be filled with material such as polymers and/or epoxy mold compound (“EMC”). By having such EMC-filled breaks, the stresses imparted on some components of the fluid ejection device may be mitigated or eliminated from impacting other components. As a non-limiting example, the fluid ejection area of the fluid ejection device may be isolated from stresses induced in the encapsulation area of the fluid ejection device during manufacture. In addition, material seams along the surface of the device, e.g., beneath the EMC encapsulant, are removed, thereby eliminating the potential for ink wicking along a seam underneath the encapsulant.
These cover layer breaks may take various forms. In some examples, the cover layer may include a plurality of sublayers, such as a prime layer, a chamber layer, and a “top hat” layer. In some such examples, the breaks may be formed in all or a subset of these layers. For example, the prime layer that is nearest the fluid ejection die may be left intact, while the breaks may be formed in the chamber and top hat layers. Also, in some examples the bondpad protection region of the cover layer may include a wall or “hedgerow” that surrounds the bondpad(s), further preventing fluid from contacting the bondpads, especially after the wire connecting the bondpad(s) to the outside logic component is encapsulated.
The printing systems 104 and 106 are not limited to two, or the mentioned color combinations, as any number of systems may be used, depending, for example, on the colors desired and the speed of the printing press 100. More generally, techniques described herein are not limited to printing presses such as that depicted in
After the second system 106, the printed print medium may be taken up on a take-up roll 108 for later processing. In some examples, other units may replace the take-up roll 108, such as a sheet cutter and binder, among others.
From the printheads 204 the ink 210 is ejected from nozzles as ink droplets 212 towards a print medium 214, such as paper, Mylar, cardstock, and the like. The nozzles of the printheads 204 are arranged in columns or arrays such that properly sequenced ejection of ink 210 can form characters, symbols, graphics, or other images to be printed on the print medium 214 as the printbar 202 and print medium 214 are moved relative to each other. The ink 210 is not limited to colored liquids used to form visible images on a print medium, for example, the ink 210 may be an electro-active substance used to print circuit patterns, such as solar cells.
A mounting structure or assembly 216 may be used to position the printbar 202 relative to the print medium 214. In an example, the mounting assembly 216 may be in a fixed position, holding a number of printheads 204 above the print medium 214. In another example, the mounting assembly 216 may include a motor that moves the printbar 202 back and forth across the print medium 214, for example, if the printbar 202 included one to four printheads 204. A media transport assembly 218 moves the print medium 214 relative to the printbar, for example, moving the print medium 214 perpendicular to the printbar 202. In the example of
A controller 220 receives data from a host system 222, such as a computer. The data may be transmitted over a network connection 224, which may be an electrical connection, an optical fiber connection, or a wireless connection, among others. The data transmitted over network connection 224 may include a document or file to be printed, or may include more elemental items, such as a color plane of a document or a rasterized document. The controller 220 may temporarily store the data in a local memory for analysis. The analysis may include determining timing control for the ejection of ink drops from the printheads 204, as well as the motion of the print medium 214 and any motion of the printbar 202. The controller 220 may operate the individual parts of the printing system over control lines 226. Accordingly, the controller 220 defines a pattern of ejected ink drops 212 which form characters, symbols, graphics, or other images on the print medium 214.
The ink jet printing system 200 is not limited to the items shown in
Cover layer 450 is disposed adjacent fluid ejection die 440, e.g., on a top surface of fluid ejection die 440. Cover layer 450 may be constructed with different material(s) than fluid ejection die 440. This may result in cover layer 450 having a different coefficient of thermal expansion (“CTE”) than fluid ejection die 440, as described previously. In some examples, cover layer 450 may be constructed with a photoresist material, such as SU-8.
Fluid ejection die 440 and cover layer 450 may be embedded or otherwise disposed in/on a molding 430. Molding 430 may be constructed with different material(s) than fluid ejection die 440 and/or cover layer 450. In some examples, molding 430 is constructed with EMC. In some examples, the EMC used to construct molding 430 may include spherical filler material made of, for instance, silica.
At bottom of
Fluid such as ink may tend to seep into any of these gaps, e.g., by way of capillary wicking. This may result in significant shortening of fluid ejection device lifespan, corrosion, and/or in some instances may cause failure of fluid ejection device 404, e.g., where ink or other moisture comes into contact with bondpad(s) of fluid ejection die 440. Accordingly, and as described previously, break(s) may be incorporated into various components, such as cover layer 450, to mitigate the mechanical and/or thermal stresses described previously and prolong the lifespan of fluid ejection device 404.
A “bondpad protection” region or portion 551 of cover layer 550 may be designed to overlay, and thereby protect from fluids such as ink, bondpad(s) 542 of underlying fluid ejection die 440. This overall area 570 of fluid ejection device 504 is referred to herein as the “encapsulation area” because it is the area in which a wire connecting bond pad(s) 542 to an outside logic component, e.g., electronic controller 220 and/or host 222, is encapsulated with various materials in order to protect an electrical connection between the fluid ejection die and the outside logic component.
In
An “orifice” region or portion 553 of cover layer 550 may be designed to overlay a plurality of fluid ejectors (not visible in
In
Once each break 555A, 555B is filled with EMC, the EMC may, in effect, decouple the stressful interaction between encapsulation area(s) 570 and fluid ejection area 572. EMC in general may have a lesser CTE than cover layer 550, and may be better matched to silicon. Consequently, the lifespan of fluid ejection device 504 may be increased because the growth and formation of gaps and cracks, such as 434-438 in
Fluid ejection die 640 also includes bondpads 642 that can be used to electrically connect fluid ejection die 640 to a remote logic device, such as electronic controller 220. In
As indicated in
In
Break 655 may be formed in various ways. In some examples, break 655 is formed using techniques such as etching. In other examples in which cover layer 650 is formed with a photoresist material, break 655 may be formed using a positive or negative photoresist process. In some examples, break 655 may be formed after a continuous layer of SU-8 is applied to a surface of fluid ejection die 640, e.g., by applying a mask (not depicted) to the continuous layer of SU-8. The mask may be shaped to allow light to pass to a first part of the continuous layer of SU-8 and to block light from reaching a second part of the continuous layer of SU-8. Then, light may be directed towards the mask/die 640 to cause portions of cover layer 650 to cross-link, for example negative-acting SU8 material. A solvent may be used to wash these degraded portions away, leaving the un-degraded portions intact.
In
In
At block 702, a cover layer may be applied to a surface of a fluid ejection die so that a bondpad protection region of the cover layer overlays a bondpad of the fluid ejection die and an orifice region of the cover layer overlays a plurality of fluid ejectors of the fluid ejection die. An example result of these operations is depicted in
At block 704, a break may be formed in the cover layer between the bondpad protection and orifice regions of the cover layer. An example result of these operations is depicted in
In some examples, the cover layer may be constructed with photoresist material such as SU-8. In some such examples, the operations of block 702 and/or 704 may include, for instance, applying a continuous layer of
SU-8 to the surface of the fluid ejection die, and applying a mask to the continuous layer of SU-8. In various examples, the mask may be shaped to allow light to pass to a first part of the continuous layer of SU-8. In examples in which the cover layer is constructed with a negative photoresist, this may cause the first part of the continuous layer of SU-8 to become strengthened (or degraded in the case of positive photoresist examples). The mask may block light from reaching a second part of the continuous layer of SU-8, e.g., so that the second part becomes degraded (or strengthened in the case of positive photoresist examples).
Although described specifically throughout the entirety of the instant disclosure, representative examples of the present disclosure have utility over a wide range of applications, and the above discussion is not intended and should not be construed to be limiting, but is offered as an illustrative discussion of aspects of the disclosure.
What has been described and illustrated herein is an example of the disclosure along with some of its variations. The terms, descriptions and figures used herein are set forth by way of illustration and are not meant as limitations. Many variations are possible within the scope of the disclosure, which is intended to be defined by the following claims—and their equivalents—in which all terms are meant in their broadest reasonable sense unless otherwise indicated.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/029620 | 4/29/2019 | WO | 00 |