The invention belongs to the field of fluid ejection devices. Such devices are more specifically used as fire extinguishers, where the ejected fluid is an extinguishing agent in liquid or powdery form.
Such devices are described, for example, in international patent application WO2009056574, in the applicant's name.
According to the prior state of the art, such devices comprise:
To trigger the device and cause the liquid contained in the first chamber to be ejected, the pressure is increased in the pressurization chamber, either by making this last communicate with a pressurized fluid or by activating a pyrotechnic gas generator within it. The increased pressure causes the translation of the piston from the second chamber towards the first, thus increasing the pressure in this first chamber. The ejection port closing cap breaks at a given pressure, opening the passage and causing the fluid to be ejected from the first chamber.
This device of the prior state of the art has the advantage that it is subjected to no pressure, except during the fluid ejection phase. Since it is not stressed, it can remain in this passive mode for years; in this way it is often used as a fire safety device. Since the piston that makes the separation between the two chambers is free to move in translation, the fluid contained in the first, hermetic, chamber is free to dilate or contract in step with the temperature during this passive phase; this causes the piston to move in translation during these changes in volume. Thus, the first chamber is always filled with a quasi-pure fluid, which improves the effectiveness of fire-fighting during the ejection phase when the liquid is, for example, an extinguishing agent.
However, these movements of the piston, due to the changes in the volume of the fluid contained in the first chamber, cause wear in elements such as the seals and membranes that provide the hermeticity between the two chambers. This effect is more specifically pronounced when the fluid contained in the first chamber has a high coefficient of thermal expansion, as is the case for fluoroketones used in fire-fighting and when the fluid ejection device is subjected to large temperature amplitude variations, as is the case in fire-fighting devices for aircraft engine fires.
This wear of the sealing elements can have a negative effect on the reliability of the device.
To solve this shortcoming in the previous state of the art, the invention proposes a fluid ejection device that comprises:
Thus, the piston is immobile in relation to the tank except for the fluid ejection phase. Because of this, the sealing elements are not subjected to mechanical wear or to continuous friction against the body of the tank. The tank can thus be manufactured with a lesser internal surface finish quality and therefore at lower cost, without degrading the reliability of the device.
Advantageously, the means that link the piston to the tank are designed to break when subjected to increased pressure in the pressurization chamber and cannot be separated in case of increased pressure in the chamber that contains the fluid to be ejected. Thus, the piston can only be released during a fluid ejection phase and cannot be separated from the body by overpressure in the chamber that contains the fluid to be ejected.
According to an advantageous embodiment, the piston comprises means able to immobilize it for translation, relative to the tank, in a direction going from the first towards the second chamber with an end position corresponding to the position called “drainage position”. Thus, after the fluid has been ejected and the first chamber of the tank emptied, the piston thus immobilized in translation prevents any fluid from returning into the tank. In particular, with this arrangement, several devices of this type, which can be triggered sequentially, can be coupled in parallel in a single fluid distribution circuit.
Advantageously, the piston comprises:
Thus, the gas leaves the pressurization chamber through the piston ports and the drainage port when the piston gets to the end of the stroke; this has the effect of depressurizing the pressurization chamber and of purging the fluid distribution circuit.
Advantageously, the means of closing the communication ports between the annular chamber of the piston and the pressurization chamber consist of an expanding elastic ring, so as to open the communication ports when subjected to the pressure in the pressurization chamber. Thus, when the pressure decreases in the pressurization chamber, the ring tightens over the piston's ports by springback effect, closing the pressurization chamber hermetically and preventing any fluid from returning into the tank. This arrangement is particularly advantageous when several devices of this type, which can be triggered sequentially, are mounted on a single fluid distribution circuit.
Advantageously, the device comprises a cap that closes the chamber comprising the fluid to be ejected and that is detachable at a defined pressure. Since the piston is fixed in the passive phase, variations in volume in the first chamber cannot be compensated for by displacement of the piston. To achieve this, the first chamber is only partially filled with the fluid and the residual volume is advantageously filled with a compressible inert gas such as argon, nitrogen or helium. The detachable cap has a safety role in case of overpressure in the first chamber by opening it to the outside above a defined pressure, avoiding any risk of the tank exploding.
The invention will now be described more precisely in the context of preferred non-limiting embodiments shown in
and
The piston comprises means of creating a seal (106, 107) with the interior of the tank, which define an annular chamber (105) between a groove made in the skirt of the piston and the inner wall of the tank. Exit ports (108) go through the bottom of said groove, making the pressurization chamber (12) communicate with the annular chamber (105). When there is no pressure in the pressurization chamber, these ports are closed by an elastic ring (50). When the pressure increases in the pressurization chamber (12), the radial expansion of the elastic ring subjected to the pressure makes the gas contained in the pressurization chamber (12) come in communication with the annular chamber (105).
The above description clearly illustrates that through its various features and their advantages the present invention realizes the objectives it set itself. In particular, it means that a fluid to be ejected can be kept in a tank during the passive phase without deterioration of the sealing means between the body of the tank and the means of ejecting the fluid.
Number | Date | Country | Kind |
---|---|---|---|
0958676 | Dec 2009 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR10/52608 | 12/3/2010 | WO | 00 | 7/23/2012 |