1. Technical Field
The present invention relates to a fluid ejection method and a fluid ejection device for ejecting fluid in a pulsed manner.
2. Related Art
There are surgical instruments (fluid ejection devices) configured to incise or excise a living tissue by ejecting fluid at a high speed in a pulsed manner. The fluid ejection device includes a pulsed flow generating unit configured to transform fluid into a pulsed flow. The fluid ejection device is configured to eject the fluid at a high speed in the pulsed manner by driving the pulsed flow generating unit.
The fluid ejection device includes a one-input multi-control parameter changing unit configured to change a plurality of control parameters simultaneously. Fluid ejection conditions depend on the plurality of control parameters. The fluid ejection device is capable of ejecting fluid under adequate fluid ejection conditions by means of the one-input multi-control parameter changing unit (for example, United States Unexamined Patent Application No. 2009/0043480).
Fluid ejection conditions which are important in the case where the fluid ejection device incises or excises a living tissue by ejecting fluid in a pulsed manner are an excision power per pulse and an excision speed per unit time. In the case of the fluid ejection device disclosed in United States Unexamined Patent Application No. 2009/0043480, the fluid ejection conditions are determined by selecting a set of fluid ejection conditions from a plurality of control parameters provided in advance.
In order for a user of the fluid ejection device to set detailed fluid ejection conditions, a huge number of combinations of parameters are necessary. However, it is difficult for the user to select optimal fluid ejection conditions on a case-by-case basis from among the huge number of combinations of the parameters.
An advantage of some aspects of the invention is to solve at least part of the above-described problems. The invention can be implemented in the forms of the following embodiments or application examples.
A fluid ejection method according to Application Example 1 includes: supplying fluid at a predetermined fluid supply flow rate to a pressure chamber; generating a pulsed flow by varying the volume of the pressure chamber at a predetermined frequency; and ejecting the pulsed flow, wherein the fluid supply flow rate is proportional to the frequency.
The excision power (excision depth) per pulse depends on the volume variations of the pressure chamber. The volume variations of the pressure chamber correspond to the displacement volume of the fluid to be discharged from the pressure chamber. The excision speed (length of excision orbit) per unit time depends on the frequency which changes the volume of the pressure chamber.
An ejection flow rate is proportional to the product of the displacement volume of the fluid and the frequency. When the frequency is increased, the ejection flow rate is increased correspondingly.
In this application example, the fluid supply flow rate is proportional to the frequency. Even though the frequency varies, the fluid supply flow rate required for securing the ejection flow rate is supplied. In other words, independent adjustment of the excision power per pulse (depends on the displacement volume) and the excision speed (depends on the frequency) is enabled. Therefore, a user is allowed to select optimal fluid ejection conditions easily without the need of a huge number of combinations of parameters.
Preferably, in the fluid ejection method in the application example described above, generating the pulsed flow includes varying the capacity of the pressure chamber by applying voltage to a piezoelectric element, and a voltage application time corresponding to a time during which the volume of the pressure chamber is reduced is maintained constant irrespective of the frequency.
The variations in volume of the pressure chamber correspond to the variations in drive waveform of a volume varying unit. By maintaining the voltage application time constant corresponding to the time during which the volume of the pressure chamber is reduced, the through rate of the drive waveform in the time during which the volume is reduced does not vary even though the frequency of the volume variations is changed. The excision power per pulse is hard to change. Therefore, the excision speed can be varied while maintaining the excision power per pulse constant in contrast to the case of merely varying the frequency.
Preferably, in the fluid ejection method in the application example described above, the fluid supply flow rate is proportional to the displacement volume of the fluid discharged from the pressure chamber.
When the fluid supply flow rate and the frequency of the volume variations are in a proportional relationship, the variations in fluid supply flow rate with respect to the frequency are expressed by a straight line having a gradient. If the displacement volume is varied, the fluid ejection flow rate varies correspondingly, so that the fluid supply flow rate may result in excess or deficiency. The variations in fluid supply flow rate can be changed by changing the gradient of the straight line according to the variations in displacement volume. The displacement volume (the excision power per pulse) can be varied while compensating the excess and deficiency of the fluid supply flow rate. Therefore, independent adjustment of the excision power per pulse and the excision speed per unit time is enabled over a wider range than Application Example 1. The user can easily set the optimal fluid ejection conditions.
Preferably, in the fluid ejection method in the application example described above, the fluid supply flow rate is equal to and more than the product of the displacement volume and the frequency.
When the fluid supply flow rate is smaller than the fluid ejection flow rate, the excision power per pulse is weakened due to the insufficient supply. If the fluid supply flow rate is larger than the fluid ejection flow rate, the quantity of supply becomes excessive, and hence the fluid flows out from a fluid ejection opening when the fluid is not being ejected, and the visibility of the operative site is lowered. If the fluid ejection flow rate ejected from the fluid ejection opening is proportional to the product of the displacement volume of the fluid discharged from the pressure chamber and the frequency of the volume variations and the coefficient of proportion is substantially close to “1”, it may be considered that the product of the displacement volume of the fluid discharged from the pressure chamber and the frequency of the volume variations corresponds to the fluid ejection flow rate to be ejected from the fluid ejection opening. The required excision power per pulse is obtained and the favorable visibility of the operative site is easily realized by equalizing the product of the displacement volume and the frequency to the fluid supply flow rate.
Depending on the structure of the fluid ejection device or the degree of ejection of the fluid, the fluid may be drawn toward the fluid ejection opening by the inertance effect of the fluid immediately after the fluid ejection, and hence is flowed out by an amount larger than the displacement volume. The excision power per pulse is weakened. By setting the fluid supply flow rate to be slightly larger than the product of the displacement volume and the frequency, the fluid supply flow rate is increased at least by the amount corresponding to the amount flowed out by the inertance effect. The required excision power per pulse is obtained and, simultaneously, the favorable visibility of the operative site is easily realized.
A fluid ejection device according to this application example includes: a fluid supplying unit configured to supply fluid at a predetermined fluid supply flow rate to a pressure chamber; a pulsed flow generating unit configured to generate a pulsed flow by varying the volume of the pressure chamber at a predetermined frequency and eject the pulsed flow; and a controller configured to control at least one of the fluid supplying unit and the pulsed flow generating unit so that the fluid supply flow rate becomes proportional to the frequency.
The fluid ejection flow rate ejected from the fluid ejection opening is proportional to the product of the displacement volume of the fluid discharged from the pressure chamber and the frequency of the volume variations. The fluid ejection flow rate and the frequency of the volume variations have a proportional relation. If the frequency of the volume variations of the pressure chamber is increased, the fluid ejection flow rate is increased correspondingly. In this application example, it is possible to cause the fluid supply flow rate from the fluid supplying unit to vary in proportion to the frequency of the volume variations. The fluid supply flow rate from the fluid supplying unit required for the fluid ejection flow rate is secured, and the excision power per pulse and the excision speed can be adjusted adequately and independently. Therefore, the user is allowed to operate the fluid ejection device easily under optimal fluid ejection conditions without preparing a huge number of combinations of parameters.
The invention will be described with reference to the accompanying drawings, wherein like numbers reference like elements.
Referring now to the drawings, embodiments of the invention will be described. A fluid ejection device according to the invention is employable for various application examples such as drawing using ink or the like, washing of fine substances or structures, and surgical knives. In the embodiments, the fluid ejection device suitable for incising or excising a living tissue will be described. Fluid using in the embodiments is liquid such as water or physiologic saline.
A connecting flow channel tube 90 having a form of a thin pipe is connected to the pulsed flow generator 20. A nozzle 95 having a fluid ejection opening 96 with a reduced flow channel diameter is fixedly inserted to a distal end of the connecting flow channel tube 90.
The pulsed flow generator 20 includes a fluid ejection condition switching unit 25. The fluid ejection condition switching unit includes an excision power dial 26, an excision speed dial 27, and an ON/OFF switch 28.
The flow of fluid in the fluid ejection device 1 will be described. The fluid stored in the fluid supply container 2 is sucked by the pump 10 and is supplied to the pulsed flow generator 20 via the fluid supply tube 4 at a constant pressure. The pulsed flow generator 20 is provided with a pressure chamber 80 (see
The pulsed flow means fluid flow flowing in the constant direction and being associated with regular or irregular variations in flow rate or flow velocity of the fluid. The pulsed flow includes an intermittent flow in which flow and stop of the fluid are repeated, but does not necessarily have to be the intermittent flow.
Ejecting the fluid in a pulsed manner means ejection of fluid being associated with regular or irregular variations in flow rate or moving velocity of the ejected fluid. As an example of the ejection in the pulsed manner, there is an intermittent ejection in which ejection and non-ejection of the fluid are repeated. However, it does not necessarily have to be the intermittent ejection.
The structure of the pulsed flow generator 20 will be described.
The diaphragm 40 is formed of a disk-shaped metallic thin plate. The diaphragm 40 is in tight contact between a case 50 and a case 70. The piezoelectric element 30 is a stacked piezoelectric element. One of the both ends of the stacked piezoelectric element is secured to the diaphragm 40, and the other end is secured to a bottom plate 60.
The pressure chamber 80 is a space defined by a depression formed on a surface of the case 70 opposing the diaphragm 40 and the diaphragm 40. The pressure chamber 80 includes the outlet flow channel 82 opened at a substantially center portion thereof.
The case 70 and the case 50 are integrally joined at respective surfaces opposing to each other. The connecting flow channel tube 90 having a connecting flow channel 91 which communicates with the outlet flow channel 82 is fixedly fitted to the case 70, and the nozzle 95 is fixedly inserted to the distal end of the connecting flow channel tube 90. The nozzle 95 includes the fluid ejection opening 96 with a reduced flow channel diameter opened therethrough.
A configuration of a drive control unit will be described.
The control circuit 151 includes an arithmetic circuit (not shown) configured to calculate the drive frequency of the pump 10 which determines the fluid supply flow rate from the pump 10, the volume variations of the pressure chamber 80 which determines an incision power per pulse (the displacement volume discharged from the pressure chamber 80), and the frequency of the volume variations of the pressure chamber 80 which determines the excision velocity (which corresponds to the drive frequency of the piezoelectric element 30) on the basis of instructions from the excision power dial 26 and the excision speed dial 27. The piezoelectric element drive circuit 153 includes a waveform generation circuit configured to generate a predetermined drive waveform of the piezoelectric element 30 (not shown).
Referring now to
The inertance will be described. An inertance L is expressed by L=ρ×h/S, where ρ is the density of the fluid, S is the cross-sectional area of the flow channel, and h is the length of the flow channel. A relation; ΔP=L×dQ/dt is derived by transforming a dynamic equation in the flow channel using the inertance L, where ΔP is the pressure difference in the flow channel, and Q is the flow rate of the fluid flowing in the flow channel.
The inertance L indicates the degree of influence affected on variations of flow rate with time. The larger the value of the inertance L, the smaller the variations of flow rate with time becomes. The smaller the value of the inertance L, the larger the variations of flow rate with time becomes.
The composite inertance L1 on the side of the inlet flow channel 81 is calculated within a range of the inlet flow channel 81. Since the fluid supply tube 4 which connects the pump 10 and the inlet flow channel 81 has flexibility, it may be excluded from the calculation of the composite inertance L1.
The composite inertance L2 on the side of the outlet flow channel 82 is an inertance within a range of the outlet flow channel 82 and the connecting flow channel 91. The thickness of a tube wall of the connecting flow channel tube 90 provides sufficient rigidity with respect to pressure propagation of the fluid.
The length and the cross-sectional area of the inlet flow channel 81 and the length and the cross-sectional area of the outlet flow channel 82 are designed so that the composite inertance L1 on the side of the inlet flow channel 81 becomes larger than the inertance L2 on the side of the outlet flow channel 82.
The fluid discharging action will be described. The fluid is supplied to the inlet flow channel 81 at a predetermined pressure by the pump 10. When the piezoelectric element 30 does not take any action, the fluid is allowed to flow into the pressure chamber 80 because of the difference between a discharge force of the pump 10 and a flow channel resistance of the entire part of the inlet flow channel 81.
When a drive signal is input to the piezoelectric element 30 and hence the piezoelectric element 30 is abruptly expanded in the direction vertical to a surface of the diaphragm 40 on the side of the pressure chamber 80 (direction of an arrow A), the diaphragm 40 is pressed by the expanded piezoelectric element 30. The diaphragm 40 is deformed in the direction to reduce the volume of the pressure chamber 80. If the composite inertances L1 and L2 on the side of the inlet flow channel 81 and on the side of the outlet flow channel 82 have enough magnitude, the pressure in the pressure chamber 80 rapidly rises to several tens of atmospheric pressure.
The pressure in the pressure chamber 80 is far higher than the pressure applied to the inlet flow channel 81 by the pump 10. An inflow of the fluid from the inlet flow channel 81 into the pressure chamber 80 is reduced by the pressure in the pressure chamber 80. An outflow of the fluid from the pressure chamber 80 to the outlet flow channel 82 is increased.
Since the composite inertance L1 on the side of the inlet flow channel 81 is larger than the composite inertance L2 on the side of the outlet flow channel 82, the amount of increase in fluid to be ejected from the outlet flow channel 82 is larger than the amount of decrease in flow rate flowing from the inlet flow channel 81 into the pressure chamber 80. Consequently, the pulsed fluid ejection (pulsed flow) occurs in the connecting flow channel 91. Pressure variations at the time of this ejection propagate in the interior of the connecting flow channel tube 90 (the connecting flow channel 91), and the fluid is ejected from the fluid ejection opening 96 of the nozzle 95 at the distal end.
As the flow channel diameter of the fluid ejection opening 96 is reduced from the flow channel diameter of the outlet flow channel 82, the fluid is subjected to a higher pressure, and hence is ejected at a high speed in the formed of pulsed liquid droplets.
The interior of the pressure chamber 80 is brought into a vacuum state immediately after the pressure rise because of a mutual action between reduction in amount of the inflow of the fluid from the inlet flow channel 81 and increase in amount of the outflow of the fluid from the outlet flow channel 82. When the piezoelectric element 30 is restored to its original shape, the fluid in the inlet flow channel 81 proceeds to the interior of the pressure chamber 80 at the same speed as that before action (before expansion) of the piezoelectric element 30 after elapse of a certain time because of both the pressure of the pump 10 and the vacuum state in the pressure chamber 80.
If the piezoelectric element 30 is expanded again after the flow of the fluid in the inlet flow channel 81 is restored, the pulsed liquid droplets are ejected continuously from the fluid ejection opening 96.
A method of driving the pulsed flow generator 20 will be described. The drive waveform of the piezoelectric element 30 will be described.
A change of the frequency of the drive waveform is achieved by changing the length of the pause but not changing the voltage rise time t1. In other words, the through rate of voltage rise does not change. Therefore, the excision power per pulse is kept unchanged. The frequency of the volume variations of the pressure chamber 80 corresponds to the drive frequency of the piezoelectric element 30.
The volume variations in a pressure chamber in one cycle of the drive waveform will be described.
The volume variations are expressed by the product of the displaceable surface area of the diaphragm 40 and the length of the elongation of the piezoelectric element 30. When a predetermined voltage is applied to the piezoelectric element 30, the volume of the pressure chamber 80 is reduced (the position of the diaphragm 40 is shown by a line B′ in
If the gain of the drive voltage of the piezoelectric element 30 is fixed, the displacement volume caused by the piezoelectric element 30 is substantially constant. If the drive frequency of the piezoelectric element 30 is increased in the state in which the displacement volume is maintained constant, the fluid ejection flow rate is increased in proportion to the drive frequency. Therefore, the fluid supply flow rate from the pump 10 is needed to be increased in accordance with the fluid ejection flow rate.
The fluid ejection method will be described.
The required drive frequency is selected by operating the excision speed dial 27 to set the fluid ejection flow rate. The fluid ejection flow rate is calculated by the product of the displacement volume and the drive frequency of the piezoelectric element 30. If the displacement volume is constant, the fluid ejection flow rate is increased in proportion to the drive frequency by increasing the drive frequency of the piezoelectric element 30. The excision speed is increased with the fluid ejection flow rate.
In order to increase the fluid ejection flow rate by increasing the drive frequency, it is necessary to increase the fluid supply flow rate from the pump 10. As shown in
According to the first embodiment, if the frequency of the volume variations of the pressure chamber 80 (the drive frequency of the piezoelectric element 30) is increased, the fluid ejection flow rate is increased correspondingly. The fluid supply flow rate from the pump 10 is varied in proportion to the variations of the fluid ejection flow rate in association with the variations in drive frequency while maintaining the displacement volume of the pressure chamber 80 optimal (constant). The fluid supply flow rate can be secured as required, and the excision power per pulse and the excision speed can be adjusted adequately and independently. Accordingly, a user is allowed to operate the fluid ejection device easily under optimal fluid ejection conditions without preparing a huge number of combinations of parameters.
The probability of flowing out of excessive fluid from the nozzle 95 when the fluid is not being ejected is reduced by suppressing the fluid supply flow rate from becoming excessive. Therefore, the probability of occurrence of the problem of visibility deterioration of the operative site is low.
Subsequently, a description of the case of varying the displacement volume when the fluid supply flow rate and the drive frequency are in a proportional relationship (see
The drive frequency of the piezoelectric element 30 is set by operating the excision speed dial 27.
If the gain of the drive waveform is varied, the through rate of the voltage rise time t1 of the drive waveform also varies as shown in
If the fluid supply flow rate and the drive frequency of the piezoelectric element 30 are in the proportional relationship, the fluid ejection flow rate is varied by varying the displacement volume. Therefore, the fluid supply flow rate may result in excess or deficiency. The variations in fluid supply flow rate can be changed by changing the gradient of the straight line according to the variations in the displacement volume. The displacement volume, that is, the excision power per pulse can be changed while compensating the excess and deficiency of the fluid supply flow rate adequately. The excision power per pulse and the excision speed per unit time can be adjusted independently over a wider range. The user can easily set the optimal fluid ejection conditions.
The fluid ejection method according to a second embodiment will be described. In the second embodiment, the fluid supply flow rate is varied in proportion to the displacement volume. In a description of the second embodiment, the same components as the first embodiment are designated by the same reference numerals and description thereof is omitted.
The required displacement volume is selected by operating the excision power dial 26 while maintaining the drive frequency of the piezoelectric element 30 optimal (constant). On the basis of the selected displacement volume, a drive command is input from the control circuit 151 to the pump drive circuit 152 and the piezoelectric element drive circuit 153. Then, the pump 10 and the piezoelectric element 30 are driven, and then the fluid is supplied from the pump 10 at the fluid supply flow rate according to the variations in fluid ejection flow rate.
As the fluid ejection flow rate is proportional to the product of the displacement volume and the drive frequency, the fluid ejection flow rate varies in proportion to the variations in displacement volume. A supply of the fluid without excess and deficiency with respect to the fluid ejection flow rate is achieved only by varying the fluid supply flow rate in proportion to the variations in displacement volume as shown in
In the second embodiment, the required fluid supply flow rate is secured by varying the fluid supply flow rate in proportion to the variations in displacement volume. The excision power per pulse and the excision speed per unit time can be adjusted independently. The optimal fluid ejection conditions can be set easily.
Suppression of excessive supply flow rate contributes to a reduction of the probability of flowing out of excessive fluid from the nozzle 95 when the fluid is not being ejected. Therefore, the probability of occurrence of the problem of visibility deterioration of the operative site is low.
Subsequently, a description of the case of varying the drive frequency when the fluid supply flow rate and the displacement volume are in the proportional relationship (see
The fluid ejection flow rate is calculated by the proportion of the product of the displacement volume and the drive frequency of the piezoelectric element 30. Therefore, an increase of the drive frequency is achieved by steepening the gradient of the straight line according to the amount of the increase of the drive frequency as shown in
Depending on the drive waveform, there is a case where the through rate of the voltage rise of the drive waveform is varied with the variations in drive frequency. At this time, the fluid ejection flow rate is not proportional to the drive frequency to be exact. Therefore, the change of the gradient of the straight line is achieved by storing the data on the gradient of the straight line in the control circuit 151 (see
The fluid ejection flow rate is varied by varying the drive frequency of the piezoelectric element 30. Therefore, the fluid supply flow rate may result in excess or deficiency. The variations in fluid supply flow rate can be changed by changing the gradient of the straight line according to the drive frequency of the piezoelectric element 30. The drive frequency of the piezoelectric element 30 (the excision speed per unit time) can be varied while compensating the excess or deficiency of the fluid supply flow rate adequately. The excision power per pulse and the excision speed per unit time can be adjusted independently over a wider range. The user can easily set the optimal fluid ejection conditions.
The fluid ejection method according to a third embodiment will be described. In the third embodiment, the voltage rise time of the drive waveform of the piezoelectric element 30 with respect to the time during which the volume of the pressure chamber 80 is reduced is maintained substantially constant when varying the drive frequency. In a description of the third embodiment, the same components as the first embodiment are designated by the same reference numerals and description thereof is omitted.
A case where the repetition frequency is lowered when a drive waveform as that shown in
A case where the repetition frequency is increased will be described.
A case where the repetition frequency is further increased will be described.
By maintaining the voltage rise time t1 constant, the through rate of the voltage rise time t1 is not varied even though the drive frequency is varied. Since the through rate is not varied, the excision power per pulse is kept unchanged. The excision speed can be varied while maintaining the excision power per pulse constant in comparison with the case of merely varying the drive frequency. The voltage rise time t1 must simply correspond to the time during which the volume of the pressure chamber 80 is reduced irrespective of the shape or polarity of the drive waveform of the piezoelectric element 30.
The fluid ejection method according to a fourth embodiment will be described. In the fourth embodiment, the fluid supply flow rate from the pump 10 is set to be equal to the product of the displacement volume and the drive frequency, or to be larger than the product of the displacement volume and the drive frequency. In a description of the fourth embodiment, the same components as the first embodiment are designated by the same reference numerals and description thereof is omitted.
In the fluid ejection device configured to eject the fluid in the pulsed manner, the fluid may be drawn toward the fluid ejection opening 96 by the inertance effect of the fluid immediately after the fluid ejection, and hence may be flowed out by an amount larger than the displacement volume. As the fluid ejection flow rate becomes larger than the fluid supply flow rate, the excision power per pulse is weakened. Therefore, it is preferable to set the fluid supply flow rate to be larger than the product of the displacement volume and the drive frequency (fluid ejection flow rate) by at least an amount corresponding to an amount flowed out by the inertance effect.
If the fluid supply flow rate is set to be larger than the fluid ejection flow rate, excessive fluid may flow out from the nozzle 95 when the fluid is not being ejected, so that the visibility of the operative site may be deteriorated. It is preferable to set the fluid supply flow rate within a range not larger than double the product of the displacement volume and the drive frequency.
The amount of the fluid drawn toward the nozzle 95 by the inertance effect is smaller than the original displacement volume. If the fluid supply flow rate is set to be larger than the fluid ejection flow rate, it means that the stress is put on securing the excision power per pulse than preventing the excessive fluid from flowing out from the nozzle 95.
The required excision power per pulse is obtained and the favorable visibility is realized by equalizing the product of the displacement volume and the drive frequency to the fluid supply flow rate.
If the fluid supply flow rate is set to be larger than the fluid ejection flow rate, the required excision power per pulse is obtained and the influence on the visibility at the operative site may be reduced by setting the fluid supply flow rate to a value not larger than twice the product of the displacement volume and the drive frequency.
In the embodiments described above, a configuration to generate the pulsed flow by displacing the diaphragm 40 by driving the piezoelectric element 30 is employed as the volume varying unit for the pressure chamber. It is also possible to employ a configuration to generate the pulsed flow by displacing a plunger (piston) by driving the piezoelectric element 30.
Number | Date | Country | Kind |
---|---|---|---|
2009-188296 | Aug 2009 | JP | national |
This application is a Continuation of U.S. application Ser. No. 12/856,736, filed Aug. 16, 2010 which claims priority to Japanese Patent Application No. 2009-188296, filed on Aug. 17, 2009. The foregoing patent applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 12856736 | Aug 2010 | US |
Child | 14692589 | US |