The present invention relates to a hydraulic fluid pump and, more particularly, to a fluid end assembly of a hydraulic fluid pump. Drilling pumps are used to provide high pressure fluid for drilling operations. The pumps typically include reciprocating plungers or pistons that provide the necessary high pressure fluid.
In one embodiment, the invention provides a method of assembling a fluid end. A method includes inserting a valve through a bore of a housing of the fluid end and into an interior volume of the fluid end, inserting a valve cover into the bore such that the valve cover seals the bore, and coupling a lock cover to the housing, the lock cover positioned over the bore to prevent removal of the valve cover from the bore. When the lock cover is coupled to the housing, the lock cover does not apply a preload against the valve cover.
In another embodiment, the invention provides a method of assembling a fluid end of a pump assembly. The method includes securing a lock ring to the housing of the fluid end, the lock ring defining an axial bore centered about a central axis, axially inserting a lock cover into the axial bore, elastically deflecting a snap ring retainer against the lock ring, the snap ring retainer coupled to the lock cover, and aligning a post of the elastically deflected snap ring retainer with a post bore of the lock ring such that the post extends into the post bore.
In yet another embodiment, the invention provides a fluid end assembly of a hydraulic fluid pump. A fluid end assembly includes a housing having a bore, a valve cover positioned within the bore and configured to seal the bore, and a lock cover coupled to the housing and configured to retain the valve cover within the bore during operation of the fluid end. When the lock cover is coupled to the housing, the lock cover does not apply a preload against the valve cover.
Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.
A fluid end assembly 114 is illustrated in
A service bore 136 is formed in the housing 124 adjacent the outlet valve 138 and in fluid communication with the outlet bore 134 at all operative times (i.e., not separated from the outlet bore 134 by the outlet valve 138). The service bore 136 is axially aligned with the inlet bore 130 and extends into the housing 124, intersecting the outlet bore 134. The service bore 136 provides access for insertion and removal of the outlet valve 138 from the housing 124 and is therefore sized to permit insertion and removal of the outlet valve 138.
A piston bore 140 extends perpendicular to the inlet bore 130 and supports a packing arrangement having a plurality of seals and a piston retainer 144. A reciprocating piston (not shown) is movable to pressurize fluid within the interior volume 126 and to the outlet manifold 128. A second service bore 150 is formed in the housing 124 parallel with and axially aligned with the piston bore 140 and provides access to the interior volume 126 of the housing 124 without removal of the piston, or the valves 132, 138. The second service bore 150 may additionally provide access for insertion and removal of the piston and/or the inlet valve 132 from the housing 124 and is sized accordingly.
As shown, both of the service bores 136, 150 include valve covers 152A, 152B and retainer assemblies 156. The valve covers 152A, 152B seal against the housing 124 to prevent fluid from the interior volume 126 from passing through the respective bores 136, 150. Each retainer assembly 156 covers the respective valve cover 152A, 152B to retain the valve cover 152A, 152B in a sealing position within the respective bore 150, 136. When the reciprocating piston increases the pressure of the fluid within the interior volume 126 of the housing 124, a force is applied on the valve covers 152A, 152B. Each of the valve covers 152A, 152B is secured within the respective service bore 150, 136 via a respective valve retainer assembly 156. The description below refers to the valve retainer assembly 156 associated with the service bore 136 and the valve cover 152B. As shown in
In embodiments consistent with the prior art, a retainer applies a preload to the valve cover to counteract the force applied by the pressurized fluid and to prevent unseating of the valve cover seal (typically a face seal) from the housing. In contrast to the prior art, the valve retainer assembly 156 illustrated in
As shown in
As shown in
The valve cover 152B includes an upper surface 182 that engages the valve retainer assembly 156, as described in greater detail below. The valve cover 152B further includes a lower surface 184 that engages the outlet valve 138 (e.g., a spring 186 of the outlet valve 138) to retain and position the outlet valve 138 within the bore 136 of the housing 124. The spring 186 biases a valve member 188 of the outlet valve 138 in a closing direction. The lower surface 184 of the valve cover 152A associated with the service bore 150 does not engage any valve, but does provide access for removing and inserting the inlet bore 130.
As shown in
The lock cover bore 196 is a threaded bore, and more specifically includes a plurality of broken, zero-pitch threads or lugs 202. As shown, the lock cover bore 196 includes twelve threads 202 spaced apart along the length of the bore between the first and second axial ends 192, 194 of the lock ring 158. In other embodiments, the lock cover bore 196 may include more or less threads 202 (e.g., at least one, at least two, etc.). The threads 202 have no pitch and are therefore not interconnected with one another as a spiral. Rather each thread 202 is flat or planar and is defined within a plane that is perpendicular to the central axis 200 of the lock cover bore 196 and parallel with the respective plane of each additional thread 202. In other embodiments, the threads 202 of the lock cover bore 196 may have a pitch along the axial length of the lock ring 158.
Each of the plurality of threads 202 is broken or interrupted such that each thread 202 is non-continuous, but instead defines a gap 204 at intervals along the thread 202. As shown, each thread 202 of the plurality of threads is broken into four broken thread segments 206 of 45 degrees, with a gap 204 in between each segment of 45 degrees. In other embodiments, each thread 202 may be broken into more or less segments 206 (e.g., two broken thread segments 206 of 90 degrees separated by 90 degree gaps 204, three broken thread segments 206 of 60 degrees separated by 60 degree gaps 204, etc.). Further, in some embodiments, the sizes of the gaps 204 may be dissimilar to the sizes of the broken thread segments 206. Each thread 202 of the respective broken thread segment 206 is axially aligned with every other thread of the respective broken thread segment 206 such that the gaps 204 are axially aligned. Therefore, each axial gap 204 extends through the entire lock cover bore 196 between the adjacent broken thread segments 206.
The lock ring 158 further includes a plurality of fastener bores 210 (
As shown in
The lock ring 158 further includes a plurality of post bores or snap ring retainer bores 220, which extend axially from the first axial end 192 of the lock ring 158 toward the second axial end 194. The snap ring retainer bores 220 are located radially between the lock cover bore 196 and the cylindrical outer surface 190 of the lock ring 158 and extend in an axial direction, parallel to the central axis 200 of the lock cover bore 196. As shown, the snap ring retainer bores 220 are located nearer the lock cover bore 196 than to the cylindrical outer surface 190 of the lock ring 158. The snap ring retainer bores 220 are blind holes or blind bores that are formed in the first axial end 192 and end prior to the second axial end 194. As shown, the snap ring retainer bores 220 are unthreaded. There are four snap ring retainer bores 220, each offset from one another by ninety degrees. In some embodiments, the number of snap ring retainer bores 220 may correspond to the number of broken thread segments 206 (as shown, four broken thread segments 206) of the lock cover bore 196. The snap ring retainer bores 220 will be described in greater detail below with respect to the snap ring retainer 162.
As shown in
The lower portion 228 is a threaded portion and includes external threads 238, similar to the internal threads 202 of the lock cover bore 196. The external threads 238 are broken zero pitch threads sized to engage the threads 202 of the lock cover bore 196. As shown, the lock cover 160 includes eleven threads 238 to engage within the twelve threads 202 of the lock cover bore 196. The threads 238 are broken such that the broken thread segments 242 (separated from one another by gaps 240) of the external threads 238 fit within the gaps 204 between the broken thread segments 206 in the lock cover bore 196 (i.e., are equal to or less than the size of the gaps 204 in the lock cover bore 196) and the arrangement of the broken thread segments 242 allow them to each be aligned with and placed within respective gaps 204 in the lock cover bore 196. As the threads 238 are broken, the threads 238 of the lock cover 160 are engaged with the lock cover bore 196 by first axially inserting the lock cover 160 into the lock cover bore 196 with the broken thread segments 242 of the lock cover 160 positioned in the gaps 204 defined between the broken thread segments 206 of the lock cover bore 196. Then, once the lock cover 160 is axially positioned, the lock cover 160 is rotated relative to the lock cover bore 196 so that the threads 202, 238 engage one another. As shown, this includes rotating the lock cover 160 by 45 degrees. In some embodiments, one pair of mating threads 202, 238 (e.g., the lowest thread) of the lock cover 160 and the lock cover bore 196 may be larger and/or spaced apart at a greater distance from one another than the remainder of threads 202, 238 so that the lock cover 160 is only capable of engaging the lock cover bore 196 at one axial position along the axial length of the lock cover bore 196.
The second axial end 232 of the lock cover 160 defines an abutment surface 246 (
The upper portion 226 of the lock cover 160 is cylindrical and extends upward from the lower portion 228 to the first axial end 230 of the lock cover 160. The upper portion 226 includes various assembly features, such as radial apertures 250 (extending transverse to the central bore 234 of the lock cover 160) that assist in the installation of the lock cover 160 within the lock ring 158.
The lock cover 160 is stepped between the upper and lower portions 226, 228 of the lock cover 160 (i.e., above the threaded portion), defining a stepped ring-shaped surface 254 perpendicular to the central bore 234 of the lock cover 160. The ring-shaped surface 254 includes a plurality of fastener bores 256 (e.g., threaded bores) for coupling the snap ring retainer 162 to the lock cover 160. As shown, there are two pairs of fastener bores 162 located on opposite sides of the central bore 234 of the lock ring 160.
As shown in
The ring 260 includes fastener bores 270 that extend through the thickness 266 of the ring 260 and are sized and spaced apart similar to the fastener bores 256 on the ring-shaped surface 254 of the lock cover 160. The fastener bores 270 are located nearer the inner bore diameter 262 of the ring 260 than the outer diameter 264 of the ring 260. As shown in
With continued reference to
The posts 276 are offset from one another by similar (e.g., 180 degree) angles such that the posts 276 can be aligned with the snap ring retainer bores 220 in the first axial end 192 of the lock ring 158. The posts 276 are configured to extend into the snap ring retainer bores 220 when the threads 238 of the lock cover 160 are engaged with the threads 202 of the lock ring 158. The posts 276 thereby engage the snap ring retainer bores 220 to rotatably lock the lock cover 160 relative to the lock ring 158 in a rotated position that prevents axial removal of the lock cover 160 from the lock ring 158.
The snap ring retainer 162 further includes a plurality of handles 280 that extend upward (opposite the direction of the posts 276 extending from the ring 260) from the ring 260 that provide handholds for a user to hold the snap retainer 162 (alone or fastened to the lock cover 160), to rotate the snap retainer 162 and lock cover 160, and to elastically deflect portions of the snap ring retainer 162, as described in greater detail below. As shown, the handles 280 are located nearer the outer diameter 264 of the ring 260 than to the inner bore diameter 262 of the ring 260 and are located nearer to the posts 276 than to the fastener bores 270. As shown, the handles 280 extend above the posts 276. In other embodiments, the handles 280 may be radially centered along the ring 260 or may be otherwise positioned radially nearer the inner bore diameter 262.
As shown in
In operation, as shown in
The snap ring retainer 162 is fastened to the lock cover 160 via the fasteners 272. The lock cover 160 is positioned above the lock cover bore 196 of the lock ring 158 and is rotatably aligned such that the gaps 204 between the broken thread segments 206 of the lock ring 158 are axially aligned with the broken thread segments 242 of the lock cover 160 and the broken thread segments 206 of the lock ring 158 are axially aligned with the gaps 240 between the broken thread segments 242 of the lock cover 160. The lock cover 160 is lowered axially (e.g., a purely axial movement) into the lock cover bore 196 of the lock ring 158 until the posts 276 of the snap ring retainer 162 abut the first axial end 192 of the lock ring 158. An operator then applies an axial downward force onto the assembly including the lock cover 160 and snap ring retainer 162, thereby elastically flexing the second distal end 288 of the snap ring retainer 162 relative to the first distal end 286 that is fastened to the lock cover 160. The axial force is applied until the threads 238 of the lock cover are axially displaced into alignment with the appropriate threads 202 of the lock ring 158, thereby deflecting the second distal end 288 of the snap ring 162 by the predetermined distance. When the threads 238 are axially positioned to be aligned as desired, the operator rotates the lock cover 160 (and the attached snap ring retainer 162) relative to the lock ring 158, thereby engaging the threads 202, 238 with one another. As the lock cover 160 rotates, the elastically deflected ring 260 likewise rotates until the posts 276 extending downward from the ring 260 fall into the snap ring retainer bores 220 of the lock ring 158. When the posts 276 fall (by the removal of the stress of the axial deflection) into the snap ring retainer bores 220, the snap ring retainer 162 and the lock cover 160 cannot be rotated relative to the lock ring 158. Therefore, the post 276 of the snap ring retainer 162 is a rotational lock that prohibits rotation of the lock cover 160 relative to the lock ring 158 when the post 276 extends into the bore 220 of the lock ring 158. When secure, the abutment surface 246 of the lock cover 160 is positioned in proximity to and/or in contact with the upper surface 182 of the valve cover 152B, thereby preventing axial translation of the valve cover 152B away from the fluid end housing 124, even in response to increased pressure within the fluid end 114.
In operation, to remove the valve cover 152B or the valve 138, the operator lifts upward on the handles 280, thereby elastically deflecting the second distal end 288 of the ring 260 relative to the first distal end 286 that is fastened to the lock cover 160. The interaction between the threads 238, 202 of the lock cover 160 and lock ring 158 counteract the axial pulling force on the handles 280, but the elastic flexibility of the ring 260 permits a pulling force to remove the posts 276 from the snap ring retainer bores 220. With the posts 276 removed from the bores 220, the operator can rotate the snap ring retainer 162 and the lock ring 160 until the threads 202, 238 are disengaged from one another and the threads 202, 238 of the lock ring 158 and lock cover 160 are aligned with the gaps 240, 204 in the lock cover 160 and lock ring 158, respectively. The lock cover 160 is then axially removed from the lock ring 158 and the valve cover 152B and valve 138 are accessible for removal and replacement.
Various features and advantages of the invention are set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3435870 | Neuschotz | Apr 1969 | A |
7290560 | Orr et al. | Nov 2007 | B2 |
7341435 | Vicars | Mar 2008 | B2 |
7770509 | Kennedy | Aug 2010 | B2 |
8365754 | Riley | Feb 2013 | B2 |
8915722 | Blume | Dec 2014 | B1 |
9377019 | Blume | Jun 2016 | B1 |
20080152523 | Jensen | Jun 2008 | A1 |
20110283537 | Case et al. | Nov 2011 | A1 |
20170107983 | Patterson et al. | Apr 2017 | A1 |
20200182240 | Nowell | Jun 2020 | A1 |
Entry |
---|
Forum Drilling Technologies, “High-Performance Valve Cover Retention System,” <https://www.f-e-t.com/images/uploads/data-sheets/Valve_Cover_Retention_System.pdf> publicly available at least as early as Jun. 5, 2018 (2 pages). |
Forum Drilling Technologies, “Pumps & Valves: P-Mac Valve Cover System,” <https://www.f-e-t.com/images/uploads/data-sheets/PMAC.pdf> publicly available at least as early as Jun. 5, 2018 (2 pages). |
Premium Oilfield Technologies, “Sur-Lock Valve Cover System,” <https://www.premiumoilfield.com/index.php?option=com_content&view=article&id=53:sur-lock-valve-cover-system&catid=21:sur-lock-tabs1> publicly available at least as early as Jun. 5, 2018 (2 pages). |
Number | Date | Country | |
---|---|---|---|
20200370548 A1 | Nov 2020 | US |