Fluid exchange apparatus and methods

Information

  • Patent Grant
  • 9883968
  • Patent Number
    9,883,968
  • Date Filed
    Thursday, September 13, 2012
    12 years ago
  • Date Issued
    Tuesday, February 6, 2018
    6 years ago
Abstract
An injector apparatus comprises an elongate structure having one or more openings positionable near a penetrable barrier of an implantable device so as to receive fluid of the implantable device. The apparatus comprises a needle and a sheath extending over at least a portion of the needle. The elongate structure may comprise a distal tip to penetrate tissue and the penetrable barrier, and a distal opening near the tip to release therapeutic fluid into the implantable chamber. In many embodiments the distal tip, the distal opening, and the plurality of openings are separated from a stop that engages a tissue of the patient and limit penetration depth such that the distal opening and the plurality of openings are located along an axis of the implantable device to increase an efficiency of the exchange.
Description
BACKGROUND

The present disclosure is generally directed to methods and apparatus to exchange a fluid of an implantable device.


Implantable devices can be used to provide a therapeutic agent to one or more portions of a body of a patient. The implantable device may have a chamber for storing the therapeutic agent, and the agent can be released into the patient to provide a therapeutic benefit. After an amount of time, the amount of fluid release can be less than ideal, and the fluid of the implantable device may be replaced, refilled, or exchanged to provide additional amounts of therapeutic agent to extend the therapy.


Work in relation to embodiments of the present disclosure indicates that the prior methods and apparatus to place a fluid in a device implanted in the body can be less than ideal in at least some instances. For example, the amount of therapeutic fluid placed in an implanted therapeutic device with injection can be less than ideal in at least some instances. The therapeutic fluid placed in the implantable device may mix with a fluid already present in the implantable device, such that the amount of therapeutic fluid placed in the implantable devices can be less than ideal in at least some instances. Also, mixing of the implantable device fluid with the therapeutic fluid during exchange can provide a less than ideal sample of the fluid from the implantable device in at least some instances. At least some of the prior injections may at least partially damage the implantable device, for example with repeated injection of a needle through a septum. Further, as the implantable device may be small, the amount of pressure within a chamber of the implantable device may substantially exceed atmospheric pressure in order to provide a clinically acceptable amount of time to place the therapeutic fluid in the implanted device. In at least some instances the seal between the injector apparatus and implantable therapeutic device may be absent or inadequate and the exchanged fluids may leak from one or more of the injector apparatus or the implantable device in at least some instances.


Refilling devices implanted in the eye may present additional challenges in at least some instances. At least some of the prior devices implanted in the eye can be small to decrease interference with vision, and the refill port of such devices can be small and the eye can move rapidly in at least some instances. Alignment of the injection apparatus with the refill port of the implanted device can be more difficult than would be ideal in at least some instances.


Work in relation to embodiments suggests that at least some prior injector apparatus may be reused among patients, for example needles, and it may be helpful to limit reuse of the injector apparatus.


At least some of the prior methods and apparatus to diagnose a patient have been less than ideal in at least some respects. In at least some instances, the eye disease may have progressed more than would be ideal. Although tissue can be removed from the patient with a biopsy or vitreous humor removed with a vitreal tap, such procedures can be more invasive than would be ideal. It would be helpful to provide methods and apparatus to obtain a sample from a patient that is less invasive than prior methods and apparatus.


SUMMARY

In light of the above, it would be desirable to provide improved treatments for the eye and improved methods and apparatus to place therapeutic fluids in a device implanted in the eye. These treatments and methods and apparatus would decrease at least some of the deficiencies of the prior art, and would provide improved replacement and sampling of a fluid of a device implanted within the body, improved ease of alignment, improved exchange efficiency, little or no leakage resulting from pressure of the injection, and a clinically acceptable exchange time.


Embodiments disclosed herein provide improved methods and apparatus to treat a patient having a device implanted in the body. The apparatus may comprise an exchange apparatus having an elongate structure capable of extending into the implantable device when implanted, and the elongate structure may comprise an opening to place a therapeutic fluid in the implanted device and one or more openings to receive an implantable device fluid from the implantable device. The implantable device may comprise a lock, and the exchange apparatus may comprise a key, so as to limit access to appropriate apparatus and formulations appropriate for the implantable device. The implantable device fluid may comprise air, or a liquid such as saline or a fluid comprising a component of the patient. The elongate structure of the exchange apparatus may comprise a needle and a sheath, in which the sheath extends over a proximal portion of the needle so that the needle and the sheath can be advanced through a penetrable barrier and into a reservoir of the implantable device. The sheath extending over at least a portion of the needle can maintain integrity of the penetrable barrier, and can provide an outflow path having a low resistance to flow so that the fluid within the implantable device can be displaced with decreased pressure. The outflow path can extend from the one or more openings to a receiver container configured to receive the fluid of the implantable device. The implantable device may comprise a porous structure to release therapeutic agent for an extended time. The porous structure may comprise a resistance to fluid flow greater than the resistance to flow of the outflow path from the one or more openings to the receiver container, so that the fluid of the implantable device can be displaced to the receiver container and flow through the porous structure inhibited. The exchange apparatus may comprise a receiver container to receive a sample of the implantable device fluid when the therapeutic fluid is placed in the implantable device. In many embodiments, the exchange apparatus is configured to separate at least a portion of the implantable device fluid from the therapeutic fluid. The separation of at least a portion of the implantable device fluid from the therapeutic fluid can provide a sample of the implantable device fluid useful for analysis and may increase the amount of therapeutic fluid placed in the implantable device.


The one or more openings may comprise a plurality of openings to receive the implantable device fluid. In many embodiments, an injector apparatus comprises an elongate structure having a plurality of openings positionable near a penetrable barrier of the implantable device so as to receive fluid of the implantable device and increase exchange efficiency and decrease refill pressure. The elongate structure may comprise a distal tip to penetrate tissue and the penetrable barrier, and a distal opening near the tip to release therapeutic fluid into the implantable chamber. In many embodiments the distal tip, the distal opening, and the plurality of openings are separated from a stop that engages a tissue of the patient and limits penetration depth such that the distal opening and the plurality of openings are located along an axis of the implantable device so as to increase efficiency of the exchange. A tapered portion of the elongate structure can extend between the distal opening and the plurality of openings so as to stretch a penetrable barrier when the elongate structure is advanced. The plurality of openings can be located away from the tapered portion along a proximal portion so as to maintain integrity of the penetrable barrier and so that leakage can be inhibited. The penetrable barrier can be used repeatedly with pressure for subsequent fluid exchange which can extend the lifetime of the device implanted in the eye. The proximal portion of the elongate structure may comprise an extension without openings extending from the stop to the plurality of openings so as to inhibit leakage through the penetrable barrier and place the plurality of openings away from a proximal side of the penetrable barrier. The extension without openings may extend from the stop to the plurality of openings a distance corresponding substantially to a thickness of the penetrable barrier, such that at least one of the plurality of openings is placed near an inner surface of the penetrable barrier so as to receive fluid near the surface of the penetrable barrier and increase an efficiency of the exchange. The plurality of openings can be distributed along an axis of the elongate structure and may be distributed circumferentially around the elongate structure so as to receive fluid from a plurality of axial and circumferential locations of the reservoir chamber of the implantable device.


The fluid initially within the implantable device may comprise a density less than a therapeutic fluid, and the distal tip and plurality of openings can be configured to at least partially separate the fluid injected through the distal tip from the fluid received through the plurality of openings. The distal opening may be placed below the plurality of openings so as to increase separation and the efficiency of the exchange. The distal opening can be placed below the plurality of openings with a distance from the stop shorter than a length of the implantable device. The distance from the distal opening to the stop may correspond to a length of the reservoir chamber of the implantable device so as to position the distal tip having the opening near a distally located porous structure of the implantable device. In many embodiments the distance from the distal opening to the stop can be no more than about half the distance of the reservoir chamber of the implant so as to facilitate alignment and provide high exchange efficiency with the distal opening placed below the proximal plurality of openings.


In many embodiments, the exchange apparatus comprises one or more structures to separate at least a portion of the implantable device fluid from the therapeutic fluid. The one or more structures may comprise a valve, fluid separator, a separator fluid or combinations thereof. The separator fluid may comprise a fluid miscible with the therapeutic fluid and the implantable device fluid, or a fluid immiscible with the therapeutic fluid and the implantable device fluid such as an immiscible fluid comprising one or more of an oil, a hydrophobic liquid, a gas, or air. The separator fluid can be contained in the fluid separator to inhibit mixing of the implantable device fluid with the therapeutic fluid. The valve may be coupled to a first receiver container and a second receiver container such that a first portion of the implantable device fluid can be placed in the first container without substantial amounts of therapeutic fluid. A second portion of the implantable device fluid mixed with the placed therapeutic fluid can be placed in the second receiver container to inhibit mixing of the therapeutic fluid with the sample contained in the first container. The fluid separator may comprise a structure configured to contain the separator fluid between the implantable device fluid and the therapeutic fluid to inhibit mixing.


While the elongate structure can be configured in many ways, in many embodiments the elongate structure comprises a needle extending from the proximal stop to the distal tip and a sheath placed over the needle to provide the plurality of openings and the tapered intermediate portion. The sheath may comprise a distal portion to engage the needle and an increased cross sectional size to provide the taper. In many embodiments the sheath located over the needle provides one or more channels coupled to the plurality of opening to receive the fluid from the implantable device. The one or more channels may extend proximally from the plurality of openings to a container to receive the fluid from the implantable device.


The exchange apparatus can be coupled to an injector in many ways and may comprise an injector, such as a syringe. In many embodiments the exchange apparatus comprises a connector to couple to a syringe. The connector may comprise a known standard connector, such as a Luer connector, or may comprise a custom connector, such as a keyed connector, to inhibit inappropriate access to the implantable device. The connector may comprise a lock and key mechanism. The connector of the implantable device may comprise a lock and the connector of the syringe may comprise a key to access the exchange apparatus. Alternatively, the injector can be integrated with the exchange apparatus, and the injector may comprise an amount of therapeutic agent to inject into the implantable device.


In many embodiments, the receiver container comprises one or more channels that vent to atmospheric pressure such that a gas within the receiver container can be displaced with fluid comprising liquid from the implantable device. The receiver container may comprise a porous structure that readily allows passage of the gas from the receiver container with a low resistance to flow and substantially inhibits passage of the liquid from the implantable device chamber with a substantially greater resistance to flow. The receiver container may comprise a volume to inhibit re-use of the exchange apparatus, such that the injector apparatus can be a single-use device. The volume of the receiver container may be no more than about twice a volume of the reservoir chamber of the implantable device, for example.


The container of the exchange apparatus can be configured to receive a sample from the implantable device container, and to provide access to the fluid stored in the receiver container. The fluid from the receiver container can be removed from the receiver container for analysis to determine the health of the eye of the patient. The receiver container may comprise a penetrable barrier to access the fluid sample within the receiver container with a needle. The receiver container may be separated from the exchange apparatus to provide the sample from the container. Alternatively or in combination, the receiver container may be pressurized to displace the sample fluid from the reservoir container.


In many embodiments, a sample container can be coupled to the receiver container so as to receive the implantable device fluid from the receiver container. The exchange apparatus may comprise an elongate structure having one or more openings to receive the implantable device fluid, and the implantable device fluid can be displaced from the receiver container so as to pass through the one or more openings and into the sample container. The implantable device fluid can be displaced from the receiver container in many ways. A pressure source or a vacuum source such as a syringe can be coupled to the one or more openings to urge the implantable device fluid from the receiver container to the sample container. The implantable device fluid can be urged, for example drawn, into the sample container with aspiration from the vacuum source comprising the syringe. Alternatively or in combination, the implantable device fluid can be urged, for example pushed, with pressurization of the receiver container, for example from a pressure source comprising a syringe. A channel may extend from the receiver container to an opening that vents to atmospheric pressure during exchange, and the opening can be coupled to the syringe with pressurization subsequent to exchange, such that the channel and receiver container can be pressurized so as to urge fluid from the receiver container through the one or more openings. The receiver container and sample container may be placed in a centrifuge to urge implantable device fluid through the one or more openings onto an inner surface of the sample container. The sample container may comprise a penetrable barrier such as a septum, and the elongate structure may be advanced to place the one or more openings within a chamber of the sample container such that the implantable device fluid can be displaced from the receiver container.


Additional aspects of the present disclosure are recited in the claims below, and can provide additional summary in accordance with embodiments. It is contemplated that the embodiments as described herein and recited in the claims may be combined in many ways, and any one or more of the elements recited in the claims can be combined together in accordance with embodiments of the present disclosure and teachings as described herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an eye suitable for incorporation of the therapeutic device;



FIG. 2 shows a therapeutic device implanted under the conjunctiva and extending through the sclera to release a therapeutic agent into vitreous humor of the eye so as to treat the retina of the eye;



FIG. 3A shows an embodiment of a therapeutic device comprising a container having a penetrable barrier disposed on a first end, a porous structure disposed on a second end to release therapeutic agent for an extended time;



FIG. 3B shows an embodiment of a porous structure comprising a plurality of channels extending substantially straight through a disk;



FIG. 4 shows an embodiment of an apparatus to exchange fluid of a device implanted in a an eye;



FIG. 5 shows an embodiment of an apparatus to exchange fluid coupled to an implanted device;



FIG. 6 shows an embodiment of an elongate structure of the apparatus to exchange fluid as in FIG. 5;



FIG. 7 shows a cross-sectional view of an embodiment of an elongate structure of the apparatus exchange fluid comprising a sheath over a needle;



FIG. 7A shows an embodiment of an exchange apparatus comprising a locking connector to couple to a syringe;



FIG. 7B shows an embodiment of an elongate structure and receiver container of the exchange apparatus of FIG. 7A;



FIG. 7C shows embodiments of sheaths suitable for combination with the exchange apparatus of FIGS. 7A and 7B;



FIG. 7D shows an embodiment of a sheath opening having a beveled channel surface to inhibit degradation of the penetrable barrier;



FIG. 7E shows an embodiment of a sheath opening having a rounded channel surface and edge to inhibit degradation of the penetrable barrier;



FIG. 7F shows an embodiment of schematic illustration of the pressure drops across the porous structure and the one or more channels extending from the plurality of openings to the receiver container;



FIG. 8A shows a cross-sectional view of an embodiment of the apparatus to exchange fluid as in FIGS. 5 and 6 coupled to a syringe;



FIG. 8B shows an embodiment of an implantable therapeutic device comprising a lock and an exchange apparatus comprising a key to the lock;


FIG. 8B1 shows an embodiment of a deflectable elongate structure in an unloaded configuration prior to insertion in the lock of FIG. 8B;


FIG. 8B2 shows an embodiment of a deflected elongate structure in an unloaded configuration prior to insertion in the lock of FIG. 8B;


FIG. 8C1 shows an embodiment of an implantable therapeutic device comprising a lock and an exchange apparatus comprising a rotatable key to the lock;


FIG. 8C2 shows an embodiment of an implantable therapeutic device of FIG. 8C1 in a locked configuration in which the elongate structure extends through the open lock to access the reservoir chamber of the implantable device;


FIG. 8D1 shows an embodiment of an implantable therapeutic device comprising a lock and an exchange apparatus comprising a slidable key to the lock;


FIG. 8D2 shows an embodiment of an implantable therapeutic device of FIG. 8D1 in a locked configuration in which the elongate structure extends through the open lock to access the reservoir chamber of the implantable device;



FIG. 8E shows an embodiment of an implantable therapeutic device comprising a lock and an exchange apparatus comprising an elongate structure having engagement structures to open the lock;



FIG. 9 shows an embodiment of a container to receive and store the exchange apparatus;



FIG. 10 shows an embodiment of an exchange apparatus having a fluid sample within the receiver container;



FIG. 11 shows an embodiment of the exchange apparatus having the fluid sample placed partially within the storage container;



FIG. 12 shows an embodiment of a cap of the storage container placed over an outlet channel of the exchange apparatus to inhibit leakage;



FIG. 13 shows an embodiment of an elongate structure of the exchange apparatus placed within a soft penetrable material near the bottom of the storage container and the cap placed over the container so as to seal the exchange apparatus within the container;



FIG. 14 shows an embodiment of an apparatus to remove the sample fluid from the receiver container;



FIG. 15 shows an embodiment of a cap placed on a connector to couple a syringe to the exchange apparatus;



FIG. 16 shows an embodiment of the exchange apparatus placed within a receptacle to couple the receiver container with a syringe to displace the sample fluid from the receiver container into a sample container for analysis;



FIG. 17 shows an embodiment of an exchange apparatus coupled to a removable receiver container;



FIG. 18 shows an embodiment of the exchange apparatus coupled to an implanted device to exchange fluid and receive fluid from the implanted device;



FIG. 19 shows an embodiment of the exchange apparatus removed from the implanted device and the receiver container detached from the exchange apparatus;



FIG. 20A shows an embodiment of components of a container to remove a sample fluid from an exchange apparatus;



FIG. 20B shows an embodiment of an exchange apparatus placed in the container having components as in FIG. 20A;



FIGS. 20C and 20D show an embodiment of removal of a sample fluid from an exchange apparatus with the sample fluid drawn into the container as in FIG. 20B;



FIG. 21 shows an embodiment of a method of removal from an exchange apparatus with a removal container as in FIGS. 20A to 20D;



FIG. 22 shows an embodiment of an exchange apparatus having a receiver container comprising a penetrable barrier on a side port to remove a sample from the receiver container with a needle and syringe;



FIG. 23A shows an embodiment of an exchange apparatus having a receiver container coupled to a sample container and a syringe to displace fluid from the receiver container;



FIG. 23B shows the sample container of FIG. 23A placed over the plurality of openings of the exchange apparatus;



FIG. 24A shows an embodiment of an exchange apparatus having a receiver container coupled to a syringe with a sample container placed over openings of the exchange apparatus so as to remove a sample from the receiver container;



FIG. 24B shows an embodiment of the sample container of FIG. 24A placed over the plurality of openings of the exchange apparatus and the opening to the injection needle;



FIG. 25A shows an embodiment of an exchange apparatus comprising a removable receiver container comprising a removable sheath placed over a needle;



FIG. 25B shows an embodiment of the removable container of FIG. 25A with a plug placed over the sheath and the needle removed;



FIG. 25C shows an embodiment of the removable container of FIGS. 25A and 25B with a plug placed over the sheath and a cap over the removable receiver container;



FIGS. 26A, 26B, 26C, 26D and 26E show an embodiment of a centrifuge used to remove the fluid sample from the receiver container of the exchange apparatus;



FIG. 26F shows an embodiment comprising an exchange apparatus placed in a sample container comprising a centrifuge tube;



FIG. 26G shows an embodiment comprising an exchange apparatus placed in a sample container comprising a centrifuge tube, in which the centrifuge tube comprises a support comprising a narrow shoulder portion of the tube to hold the exchange apparatus;



FIG. 26H shows an embodiment comprising an exchange apparatus placed in a sample container comprising a centrifuge tube, in which the centrifuge tube comprises a support comprising restricted portion to hold the exchange apparatus;



FIG. 27A shows an embodiment of a collapsible fluid separator for use with a therapeutic device;



FIG. 27B shows an embodiment of a plunger comprising an exchange needle and a shoulder suitable for use with the collapsible fluid separator as in FIG. 27A and a therapeutic device;



FIG. 27C shows an embodiment of the collapsible fluid separator as in FIG. 27B placed within a reservoir chamber of a therapeutic device;



FIG. 27D shows an embodiment of the plunger comprising the exchange needle and the shoulder as in FIG. 27B advanced into the access port of the therapeutic device having the collapsible fluid separator placed within the reservoir chamber of the therapeutic device as in FIG. 27C;



FIG. 27E shows an embodiment of the collapsible fluid separator advanced within the reservoir chamber of the therapeutic device as in FIG. 27D so as to displace the implantable device fluid from the reservoir chamber through the needle;



FIG. 27F shows an embodiment of the collapsible fluid separator advanced within the reservoir chamber to a location near the distal end of the reservoir chamber so as to displace most of the implantable device fluid from the reservoir chamber through the needle;



FIG. 27G shows an embodiment of the collapsible fluid separator moved from the distal end of the reservoir chamber so as to place therapeutic device fluid in the reservoir chamber;



FIG. 27H shows an embodiment of the collapsible fluid separator moved from the distal end of the reservoir chamber to the proximal end of the reservoir chamber so as to fill substantially the reservoir chamber;



FIG. 27I shows an embodiment of a substantially non-collapsible fluid separator placed within a rigid walled container of a therapeutic device having a substantially fixed cross sectional size;



FIG. 28A shows an embodiment of an exchange apparatus comprising a balloon supported on an elongate tubular member capable of introduction into an implantable therapeutic device to exchange the implantable device fluid with a therapeutic fluid;



FIG. 28B shows an embodiment of the balloon as in FIG. 28A inflated within the therapeutic device to displace the implantable device fluid;



FIG. 28C shows an embodiment of the balloon deflated within the therapeutic device to provide space for the therapeutic fluid;



FIG. 28D shows an embodiment of the balloon punctured within the therapeutic device to release the therapeutic fluid from the balloon to the reservoir chamber of the therapeutic device;



FIG. 29A shows an embodiment of a deflectable fluid separator placed within an implantable therapeutic device;



FIG. 29B shows an embodiment of the deflectable fluid separator as in FIG. 29A displaced to a second side of the reservoir chamber to remove fluid from the second side of the reservoir chamber;



FIG. 29C shows an embodiment of the deflectable fluid separator as in FIG. 29B displaced to a first side of the reservoir chamber with the therapeutic fluid placed in the second side;



FIG. 30A shows an embodiment of an exchange apparatus comprising a valve to direct flow toward a second receiver container when a sample of the implantable device fluid has been placed in a first receiver container;



FIG. 30B shows an embodiment of an exchange apparatus having a valve comprising a porous structure to direct flow toward a second receiver container when a sample of the implantable device fluid has been placed in a first receiver container;



FIG. 30C shows an embodiment of an exchange apparatus having a float valve comprising a ball to direct flow toward a second receiver container when a sample of the implantable device fluid has been placed in a first receiver container;



FIG. 30D shows an embodiment of an exchange apparatus having a float valve comprising a sliding annular structure to direct flow toward a second receiver container when a sample of the implantable device fluid has been placed in a first receiver container;



FIG. 30E shows an embodiment of an exchange apparatus having a float valve comprising a flap to direct flow toward a second receiver container when a sample of the implantable device fluid has been placed in a first receiver container;


FIG. 31A1 shows an embodiment of an exchange apparatus having a fluid separator comprising an internal channel sized to support the implantable device fluid with a pocket of air;


FIG. 31A2 shows an embodiment of the exchange apparatus of FIG. 31A1 having the implantable device fluid supported with a pocket of air to separate the implantable device fluid from the therapeutic fluid;


FIG. 31B1 shows an embodiment of an exchange apparatus having a fluid separator comprising an internal channel having a first portion sized to support the implantable device fluid with a pocket of air and a second portion sized to pass air through the implantable device fluid;


FIG. 31B2 shows an embodiment of the exchange apparatus of FIG. 31B1 having the first portion supporting the implantable device fluid contained in the second portion with the pocket of air within the first portion;


FIG. 31B3 shows an embodiment of the exchange apparatus of FIGS. 31B1 and 31B2 having the first portion supporting the implantable device fluid with the pocket of air and therapeutic fluid;



FIG. 31C shows an embodiment of an exchange apparatus coupled to a syringe to inject a displacement fluid comprising air into a therapeutic device to collect a sample of implantable device fluid;



FIG. 32 shows an embodiment of an exchange apparatus coupled to a syringe to draw therapeutic fluid into the implantable device with aspiration of the implantable device fluid into the syringe;



FIG. 33 shows an embodiment of a curved needle of an exchange apparatus to direct therapeutic fluid toward a wall of a container;



FIG. 34 shows an embodiment of a covering on a porous structure of a therapeutic device to inhibit bolus release when the therapeutic fluid is introduced and a needle of an exchange apparatus oriented toward the covering;



FIG. 35 shows an embodiment of a first exchange apparatus coupled to a double barrel syringe to exchange a first exchange fluid with the implantable device fluid, and a second exchange apparatus to exchange the first exchange fluid placed in the therapeutic device with a therapeutic fluid;



FIG. 36 shows an embodiment of an experimental test apparatus;



FIG. 37 shows experimental results obtained with the test apparatus of FIG. 36.





DETAILED DESCRIPTION

Embodiments of the present disclosure as described herein can be combined in many ways to treat one or more diseases of a patient such as a disease of the eye. The embodiments as described herein are well suited to treat patients with a therapeutic agent for an extended time, such as may be provided with a device that can be at least partially implanted into the eye. Although specific reference is made to ophthalmic treatment of the eye, the methods and apparatus to place a therapeutic fluid in implantable device can be used with many implantable devices and treatments of one or more of many diseases, such as systemic medication to treat systemic disease, orthopedic treatment to treat orthopedic disorders, or dental treatment, for example. The exchange apparatus and methods as described herein are well suited for use with many drug delivery devices, such as refillable diffusion based devices, and can be exceptionally well suited for diffusion devices having a porous drug release structure configured for extended release in which the porous structure inhibits flow of fluid during exchange.


The exchange apparatus and methods as described herein are well suited for diagnoses and treatment of the eye, for example with diagnosis and treatment of the eye based on the implantable device fluid received with the exchange apparatus with the fluid is injected. The implantable device can be combined with one or more known methods of analysis of biomarkers, for example commercially available beads and arrays to detect and measure biomarkers. The methods and apparatus as described herein are well suited for combination with analysis of samples as described in U.S. Pat. App. Ser. No. 61/538,736, entitled “Diagnostic Methods and Apparatus”, Filed: Sep. 23, 2011, the full disclosure of which is incorporated herein by reference. Examples of injector apparatus, therapeutic devices, valves and mechanisms to provide the bolus injection are described in U.S. patent application Ser. No. 12/696,678, filed on Jan. 29, 2010, entitled “Posterior Segment Drug Delivery”, Publication No. 2010/0255061; and U.S. PCT Pat. App. No. PCT/US2011/046812, filed Aug. 5, 2011, entitled “Injector Apparatus and Method for Drug Delivery”, the entire disclosures of which are incorporated herein by reference. PCT Patent Application No. PCT/US2012/049654, filed Aug. 3, 2012 entitled “Small Molecule Delivery with Implantable Therapeutic Device” is also incorporated herein by reference in its entirety.


As used herein like numerals and/or letters denote like elements in the drawings and text as will be apparent to a person of ordinary skill in the art.



FIG. 1 shows an eye 10 suitable for incorporation of the therapeutic device. The eye has a cornea 12 and a lens 22 configured to form an image on the retina 26. The cornea extends to a limbus 14 of the eye, and the limbus connects to a sclera 24 of the eye. A conjunctiva 16 of the eye is disposed over the sclera 24. A Tenon's capsule 17 extends between the conjunctiva 16 and the sclera 24. The lens can accommodate to focus on an object seen by the patient. The eye has an iris 18 that may expand and contract in response to light.


The eye also comprises a choroid 28 disposed between the sclera 24 and the retina 26. The retina comprises the macula 32. The eye comprises a pars plana, which comprises an example of a region of the eye suitable for placement and retention, for example anchoring, of the therapeutic device as described herein. The pars plana region may comprise sclera 24 and conjunctiva 16 disposed between the retina 26 and cornea 12. The therapeutic device can be positioned so as to extend from the pars plana region into the vitreous humor 30 to release the therapeutic agent. The therapeutic agent can be released into the vitreous humor 30, such that the therapeutic agent arrives at the retina 26 and choroid 28 for therapeutic effect on the macula 32. The vitreous humor of the eye 30 comprises a liquid disposed between the lens 22 and the retina 26. The vitreous humor 30 may comprise convection currents to deliver the therapeutic agent to the macula 32.



FIG. 2 shows a therapeutic device 100 implanted under the conjunctiva 16 and extending through the sclera 24. FIG. 3A shows an exemplary embodiment of the therapeutic device 100. The device 100 is configured to release a therapeutic agent 110 into vitreous humor 30 of the eye 10 so as to treat the retina of the eye. The therapeutic device 100 may comprise a retention structure 120 such as a smooth protrusion configured for placement along the sclera 24 and under the conjunctiva 16, such that the conjunctiva 16 can cover and protect the therapeutic device 100. When the therapeutic agent 110 is inserted into the device 100, the conjunctiva 16 may be lifted away, incised, or punctured with a needle to access the therapeutic device 100. The eye 10 may comprise an insertion of the tendon of the superior rectus muscle to couple the sclera of the eye to the superior rectus muscle. The device 100 may be positioned in many locations of the pars plana region, for example away from tendon and one or more of posterior to the tendon, anterior to the tendon, under the tendon, or with nasal or temporal placement of the therapeutic device.


While the implant can be positioned in the eye in many ways, work in relation to embodiments suggests that placement in the pars plana region 25 can release therapeutic agent into the vitreous 30 to treat the retina 26, for example therapeutic agent comprising an active ingredient composed of large molecules.


Therapeutic agents 110 suitable for use with device 100 include many therapeutic agents, for example as listed in Table 1A, herein below. The therapeutic agent 110 of device 100 may comprise one or more of an active ingredient of the therapeutic agent, such as a formulation of the therapeutic agent, a commercially available formulation of the therapeutic agent, a physician prepared formulation of therapeutic agent, a pharmacist prepared formulation of the therapeutic agent, or a commercially available formulation of therapeutic agent having an excipient. The therapeutic agent may be referred to with generic name or a trade name, for example as shown in Table 1A.


The therapeutic device 100 can be implanted in the eye to treat the eye for as long as is helpful and beneficial to the patient. For example the device can be implanted for at least about 5 years, such as permanently for the life of the patient. Alternatively or in combination, the device can be removed when no longer helpful or beneficial for treatment of the patient.


The therapeutic agent 110 can be placed in the therapeutic device 100 in many ways. In many embodiments, a therapeutic fluid 260 (FIG. 2) comprising therapeutic agent 110 is exchanged with an implantable device fluid 262 contained within therapeutic device 100, as shown in FIG. 2. An exchange apparatus 200 can be configured to place the therapeutic fluid 260 and to receive the implantable device fluid displaced from the implantable device when the therapeutic fluid is placed.


With reference to FIG. 2, an exemplary embodiment of the exchange apparatus 200 comprises an elongate structure 201 that can be placed substantially within the implantable device. The elongate structure 201 comprises an opening to place the therapeutic fluid in the reservoir chamber of the implantable device and one or more openings to receive the implantable device fluid from the reservoir chamber. The exchange apparatus 200 may comprise the therapeutic fluid 260 and the receiver container 250 to receive fluid 262 of the implantable device. The therapeutic device 100 may comprise a reservoir chamber to store an amount of the therapeutic agent 110. The reservoir chamber may comprise a fluid 262 of the implantable device 100. The fluid 262 of the implantable device can be displaced when the therapeutic fluid 260 is injected, for example, and a receiver container 250 can be provided to receive the implantable fluid 262 from the implantable device. The reservoir chamber of the implantable device may comprise a substantially rigid walls and a substantially fixed volume, for example.


The exchange apparatus 200 can be configured in many ways, and may be coupled to a syringe 300 with one or more of many connectors, such as a Luer connector, a Luer-Lok™ connector, for example. Alternatively or in combination, the exchange apparatus may comprise syringe 300, for example. The exchange apparatus 200 may comprise an elongate structure 201 to for insertion into the reservoir chamber of the implantable device, and a stop 240 to limit a depth of insertion of the elongate structure 201 into the reservoir chamber of the implantable device. The exchange apparatus 200 may comprise a receiver container 250 to receive the implantable device fluid from the reservoir chamber of the implantable device, and the elongate structure may comprise a plurality of openings coupled to the receiver container so as to receive the fluid of the implantable device through the plurality of openings when the fluid is injected. Alternatively, the therapeutic fluid may be drawn into the reservoir chamber of the implantable device with aspiration of the implantable device fluid into chamber 310 of the syringe, such that the therapeutic fluid placed in chamber 250 can be drawn into the reservoir chamber of the implantable device, for example.



FIG. 3A shows a therapeutic device 100 comprising a container 130 having a penetrable barrier 184 disposed on a first end, a porous structure 150 disposed on a second end to release therapeutic agent for an extended period, and a retention structure 120 comprising an extension protruding outward from the container to couple to the sclera and the conjunctiva. The container 130 may comprise an axis 100A. The inner surfaces of the container 130 may define a reservoir chamber having a volume sized to provide therapeutic amounts of the therapeutic agent for the extended time. The extending protrusion of the retention structure may comprise a diameter 120D. The retention structure may comprise an indentation 120I sized to receive the sclera.


The container may comprise a tubular barrier 160 that defines at least a portion of the reservoir, and the container may comprise a width, for example a diameter 134. The diameter 134 can be sized within a range, for example within a range from about 0.5 to about 4 mm, for example within a range from about 1 to 3 mm and can be about 2 mm, for example. The container may comprise a length 136 sized so as to extend from the conjunctive to the vitreous along axis 100A to release the therapeutic agent into the vitreous. The length 136 can be sized within a range, for example within a range from about 2 to about 14 mm, for example within a range from about 4 to 10 mm and can be about 7 mm, for example. The volume of the reservoir may be substantially determined by an inner cross sectional area of the tubular structure and distance from the porous structure to the penetrable barrier. The retention structure may comprise an annular extension having a retention structure diameter greater than a diameter of the container. The retention structure may comprise an indentation configured to receive the sclera when the extension extends between the sclera and the conjunctive. The penetrable barrier may comprise a septum disposed on a proximal end of the container, in which the septum comprises a barrier that can be penetrated with a sharp object such as a needle for injection of the therapeutic agent. The porous structure may comprise a cross sectional area 150A sized to release the therapeutic agent for the extended period.


The porous structure 150 may comprise a control release mechanism. The porous structure 150 can be configured in many ways to provide controlled sustained release, for example with a release rate index, or a size and number of openings, for example. The porous structure 150 may comprise a first side 150S1 coupled to the reservoir and a second side 150S2 to couple to the vitreous. The first side may comprise a first area 150A1 and the second side may comprise a second area 150A2. The porous structure may comprise a thickness 105T. The porous structure many comprise a diameter 150D.


The porous structure 150 may comprise one or more of a release control element, a release control mechanism, permeable membrane, a semipermeable membrane, a material having at least one hole disposed therein, channels formed in a rigid material, straight channels, nano-channels, nano-channels etched in a rigid material, laser drilled holes, laser etched nano-channels, a capillary channel, a plurality of capillary channels, one or more tortuous channels, sintered material, sintered rigid material, sintered glass, sintered ceramic, sintered metal, tortuous micro-channels, sintered nano-particles, an open cell foam or a hydrogel such as an open cell hydrogel. Additional examples of porous structures are described in U.S. patent application Ser. No. 12/696,678, filed on Jan. 29, 2010, entitled “Posterior Segment Drug Delivery”, Publication No. 2010/0255061; and U.S. PCT Pat. App. No. PCT/US2011/046812, filed Aug. 5, 2011, entitled “Injector Apparatus and Method for Drug Delivery”, the entire disclosures of which have been previously incorporated herein by reference.


The volume of the reservoir chamber may comprise from about 5 μL to about 2000 μL of therapeutic agent, or for example from about 10 μL to about 200 μL of therapeutic agent. The reservoir may comprise an axial length 136C extending between the penetrable barrier 184 and the porous structure 150.


The therapeutic agent stored in the reservoir of the container comprises at least one of a solid comprising the therapeutic agent, a solution comprising the therapeutic agent, a suspension comprising the therapeutic agent, particles comprising the therapeutic agent adsorbed thereon, or particles reversibly bound to the therapeutic agent. For example, reservoir may comprise a suspension of a cortico-steroid such as triamcinolone acetonide to treat inflammation of the retina. The reservoir may comprise a buffer and a suspension of a therapeutic agent comprising solubility within a range from about 1 μg/mL to about 100 μg/mL, such as from about 1 μg/mL to about 40 μg/mL. For example, the therapeutic agent may comprise a suspension of triamcinolone acetonide having a solubility of approximately 19 μg/mL in the buffer at 37° C. when implanted.


The release rate index may comprise many values, and the release rate index with the suspension may be somewhat higher than for a solution in many embodiments, for example. The release rate index may be no more than about 5, and can be no more than about 2.0, for example no more than about 1.5, and in many embodiments may be no more than about 1.2, so as to release the therapeutic agent with therapeutic amounts for the extended time. The release rate index can be at about 0.01, for example.


The therapeutic device, including for example, the retention structure and the porous structure, may be sized to pass through a lumen of a catheter.


The porous structure may comprise a needle stop that limits penetration of the needle. The porous structure may comprise a plurality of channels configured for the extended release of the therapeutic agent. The porous structure may comprise a rigid sintered material having characteristics suitable for the sustained release of the material.



FIG. 3B shows a porous structure comprising a plurality of substantially straight channels 150SC extending substantially straight through a disk. The channels 150SC can extend from a first side 150S1 to a second side 150S2 a distance comprising thickness 150T of the porous structure. Each of the channels comprises a cross-sectional dimension across, for example a diameter, and a corresponding area across the cross section. The combined cross-sectional area of the plurality of channels, the thickness 150T, the diffusion coefficient of the therapeutic agent, the concentration of therapeutic agent within the reservoir chamber and the volume of the reservoir chamber determine substantially the release rate profile of the therapeutic agent. The size and number of the plurality of channels 150SC and thickness of the porous structure can be configured so as to provide the release rate profile.


The porous structure 150 may comprise the control release mechanism having one or more straight channels 150SC through which material (e.g., fluid that contains therapeutic agent) can pass. There can be at least 3, for example at least 6 and even more typically at least 10 channels. There may be fewer than 1000 channels, for example no more than 200 and in many embodiments no greater than 50 of the channels 150SC.


Material, particularly ophthalmic pharmaceutical composition and aqueous humor fluid, is typically allowed to freely flow and/or diffuse into and out of the reservoir chamber 140 (FIG. 3A) with the size of the openings of channels 150SC assisting in controlling the rate of flow and/or diffusion into and out of the reservoir chamber 140. The openings of the plurality of channels 150SC, particularly for a passive system, have a cross-sectional area that controls the rate at which material, particularly therapeutic agent, flows out of the reservoir and into the eye. That cross-sectional area can be at least 8 μm2, more typically at least 15 μm2 and even more typically at least 50 μm2. That same cross-sectional area can also be no greater than 4000 μm2, for example no greater than 2000 μm2 and in many embodiments no greater than 500 m2. The cross-sectional area of the opening may comprise any sectional area of the opening wherein the outer perimeter of the opening is fully defined by the material of the control release mechanism and wherein, for fluid to pass through the opening into or out of the reservoir chamber 140, it also passes through the cross-sectional area.


In the illustrated embodiments, as shown in FIG. 3B, the porous structure 150 comprising the control release mechanism can be a plate 150PL. The plurality of channels 150SC extends through the plate 150PL. The plate 150PL may have opposing substantially parallel surfaces through with the channels extend to the opening on each surface. In the embodiments shown, the channels 150SC are cylindrical shape although they may be shaped otherwise as well. The channels 150SC may have a diameter of at least about 0.2 microns, for example at least about 2 microns and in many embodiments at least about 8 microns. The diameter of the openings may be no greater than about 100 microns, for example no greater than 40 microns and in many embodiments no greater than about 25 microns. While it is understood that a generally uniform distribution of the openings over the surface of the plate 150PL is desirable, other non-uniform distribution of opening the openings are also possible. A suitable thickness for the plate will typically be at least about 0.05 mm, more typically at least about 0.08 mm and will typically no greater than 0.5 mm and more typically no greater than 0.3 mm.


The porous structure 150 comprising the control release mechanism may comprise a plate 150PL. The plate 150PL may be formed of a variety of materials such as metals or polymeric materials. In many embodiments, the plate 150PL is formed of an etchable material such as silicon, which allows the channels 150SC to be etched into the material.


The number and size of each of the openings provides a combined cross-sectional surface area for the plate 150PL. The combined cross-sectional surface area of the channels 150SC may be no more than about 100,000 μm2, so as to provide sustained release of the therapeutic agent for an extended time. While the combined cross-sectional surface area can be within a range from about 1000 μm2 to about 100,000 μm2, in many embodiments the combined cross-sectional area is within a range from about 2,000 μm2 to about 30,000 μm2, for example about 2,000 to about 10,000 μm2. The combined cross-sectional area can be determined based on one or more of the thickness of the plate 150PL, the diffusion coefficient of the therapeutic agent, the volume of the reservoir chamber, the concentration of the therapeutic agent placed in the reservoir chamber, or the targeted release rate profile of the therapeutic agent above a minimum inhibitory concentration for a predetermined amount of time, or combinations thereof, for example.



FIG. 4 shows an exemplary apparatus 200 to exchange fluid of a device implanted in an eye. The apparatus 200 may comprise or be coupled to a syringe 300 to inject a therapeutic fluid comprising a therapeutic agent in to the device implanted in the eye. The apparatus 200 comprise an elongate structure 201 comprising a distal portion 210, and intermediate portion 220 and a proximal portion 230. The elongate structure 201 extends along an axis 202 from a stop 240 to position the distal portion 210, the intermediate portion 220, and the proximal portion 230 corresponding locations of the reservoir chamber. The distal portion 210 comprises a distal tip 212 to penetrate tissue and the penetrable barrier of the implantable device and an opening 214 to inject therapeutic fluid into the implantable device. The intermediate portion 220 comprises a tapered section 224 to gradually increase a size of the channel formed in the penetrable barrier when the needle is advanced through the penetrable barrier, so as to maintain integrity of the penetrable barrier and inhibit damage to the penetrable barrier. In many embodiments, the tapered portion 224 may extend along axis 202 without holes so as to decrease pressure to the penetrable barrier that may otherwise occur near the edge of a hole. The proximal portion 230 may comprise a plurality of openings 236 to receive the fluid from the reservoir chamber of the implantable device. The proximal portion 230 may comprise an extension 238 extending from the stop 240. The extension 238 may extend from the stop 240 without holes to inhibit leakage when the fluid is exchanged and the stop 240 engages the conjunctiva.



FIG. 5 shows the apparatus 200 coupled to an implantable device 100. The stop 240 is positioned to engage the conjunctiva 16, and the elongate structure 201 extends through the conjunctiva 16 and penetrable barrier 184 into the reservoir chamber 140 of the implantable device 100 when the apparatus 200 is coupled thereto. The elongate structure 201 can be sized so as to place distal tip 212 at a location within the reservoir chamber of the implantable device when the surface of the stop contacts the conjunctiva, for example. The distal tip 212 can be located on elongate structure 201 so as to place the distal tip 212 at a location from the penetrable barrier within implantable device 100 that is no more than a desired length, such as about % of the length 136 of the implantable device, and in some embodiments no more than about half of the distance 136C of the reservoir chamber. The plurality of openings 236 is located near the penetrable barrier 184 so as to receive fluid contacting the reservoir chamber. The extension 238 extends substantially through the penetrable barrier 184, for example at least about half way through the penetrable barrier so as to position the plurality of openings away from an external surface of the penetrable barrier and to inhibit leakage.



FIG. 6 shows an enlarged view of the elongate structure 201 of the apparatus 200. The elongate structure 201 extends along axis 202 between the distal tip 212 and stop 240. The distal portion 210 may comprise an extension 211 having a substantially constant cross-sectional size extending between the tip 212 to penetrate tissue and the intermediate portion 220. In many embodiments, the extension 211 comprises a portion of a needle 270 extending between the stop 240 and the tip 212 to penetrate tissue, which tip may comprise the tip of the needle to penetrate conjunctival tissue.


The tip to penetrate tissue 212 and the opening 214 can be located a distance 204 from the stop and the plurality of opens to provide efficient exchange of the fluid within the reservoir chamber of the implanted device. In many embodiments, the opening 214 is placed within the reservoir chamber at a distance from the stop 240 greater than the plurality of openings 236 to inhibit mixing of the injected therapeutic fluid with the fluid within the reservoir chamber of the implanted device. The opening 214 can be separated from the plurality of openings with a distance 208, such that the opening 214 can be located below the plurality of openings when the therapeutic fluid is injected.


The therapeutic fluid may comprise a density greater than the fluid of the implanted device and opening 214 can be placed below the plurality of openings 236 when the therapeutic fluid is injected to inhibit mixing. The axis 100A (see FIG. 3A) of the implantable device and the corresponding axis of the reservoir chamber can be oriented away from horizontal, such that porous structure 150 may be located below the penetrable barrier 184 when the therapeutic fluid is injected. The axis 202 can oriented away from horizontal such that opening 214 can be placed below the plurality of openings 236. The therapeutic fluid comprising the greater density can flow toward the distal end of the therapeutic device and the displaced fluid of the implantable device having the lesser density can be received by the plurality of openings 236 located above the opening 214.


Examples of therapeutic agents and corresponding formulations and fluids that may have a density greater than the density of the fluid within the chamber of the implanted device are listed in Table 1A. For example, one or more of the therapeutic agent or a stabilizer can increase the density of the therapeutic fluid. In many embodiments the therapeutic fluid having the greater density comprises a stabilizer, such as trehalose, and the therapeutic agent such as a protein comprising an antibody fragment. Alternatively or in combination, the therapeutic formulation may comprise an amount of therapeutic agent sufficient to provide a density greater than the fluid of the implanted device. The difference in density can be within a range from about 1% to about 10% and can depend on the density of the fluid within the reservoir chamber of the therapeutic device and density of the therapeutic fluid placed in the reservoir chamber with the exchange apparatus. The density of the therapeutic fluid may correspond to a density of the therapeutic agent and a density of the stabilizer (when present). In many embodiments, the density of the fluid of the reservoir chamber may correspond to a density of phosphate buffered saline, or plasma, or an amount of therapeutic fluid remaining in the reservoir from a prior exchange, or combinations thereof, for example.


When injected into a device implanted within the patient, the distance 204 may correspond to no more than approximately the distance of the reservoir chamber of device 140. The distance 204 may correspond substantially to the length of the reservoir chamber so as to place the distal tip near the porous structure, and the elongate structure of the exchange apparatus can be aligned with an elongate axis of the implantable device. In many embodiments, the distance 204 may correspond to no more than about half the distance of the reservoir chamber, such that the elongate structure 201 can be readily aligned with the implantable device. Work in relation to embodiments suggests than a distance providing a tolerance for angular alignment error of the axis 100A with the axis 202 can facilitate exchange and improve efficiency of the exchange. The distance 204 from stop 240 to tip 212 comprising no more than about half of the axial distance of the implantable device can facilitate alignment during injection.


The intermediate portion 220 may comprise an extension 222 extending between tapered portion 224 and the distal portion 210. The extension 222 may comprise a cross-sectional size that is smaller than the tapered portion 224. The extension 222 may comprise a smooth outer surface to penetrate tissue. The tapered portion 224 may comprise a smother outer surface to penetrate tissue and the penetrable barrier. The outer surface of the tapered portion can extend at an angle of inclination relative to the axis, and the tapered portion 224 may comprise a conic section having an angle with the axis such that the outer surface extends at the angle of inclination relative the axis. The angle of inclination of the tapered portion 224 can be no more than about 25 degrees, for example. The angle of inclination can be about 1 degree, about 2 degrees, about 5 degrees, about 10 degrees, about 15 degrees, about 20 degrees, or about 25 degrees, for example. The extension portion 216 may comprise a first cross-sectional dimension, and the portion having the plurality of openings may comprise a second cross sectional dimension greater than the first dimension, such that tapered portion having the angle of inclination extends there between to connect the extension portion 216 with the portion having the plurality of openings 236.


The proximal portion 230 may comprise the plurality of openings 236 spaced apart along the axis 202 and distributed circumferentially around the proximal portion to receive fluid from a plurality of circumferential and axial locations when the stop 240 engages the conjunctiva to place the plurality of openings within the reservoir chamber. At least one 237 of the plurality of openings can be separated from the stop 240 with a distance 206 corresponding substantially to the thickness of the penetrable barrier 184, such that the at least one 237 of the plurality of openings 236 can be placed near the inner surface of the penetrable barrier to receive fluid contacting the inner surface of the penetrable barrier. In many embodiments, the thickness of the penetrable barrier is within a range from about 0.25 to about 2 mm, for example within a range from about 0.5 to about 1.5 mm, such that the thickness of the penetrable barrier is substantially greater than a thickness of the conjunctiva which can be approximately 100 μm. The distance 206 corresponding substantially to the thickness of the penetrable barrier may correspond substantially to the thickness of the penetrable barrier and the epithelium of the patient.


A sheath 280 can be configured to extend over at least a portion of needle 270. The sheath 280 may extend along the intermediate portion 220 and the proximal portion 230, and the needle 270 can extend through the sheath. The sheath 280 may comprise the plurality of openings 236 and provide one or more channels extending along needle 270 to pass the fluid of the implantable device through the septum.


The sheath 280 may comprise portions corresponding to the intermediate and proximal portions of the elongate structure 201. The extension 222 may comprise a distal portion sheath 280 having an inner surface sized to engage an outer surface of the needle, and the diameter of the portion to engage the needle may comprise an inner cross sectional diameter less than the needle to engage the needle with at least one or of pressure or friction. The tapered portion 224 may comprise an intermediate portion of sheath 280, in which the sheath 280 comprises tapered surface to penetrate the tissue and penetrable barrier 184. The proximal portion 230 may comprise a proximal portion of the sheath 280 comprising the plurality of openings 236 and the extension 238. A channel 239 can extend along an outer surface of the needle to the plurality of openings 236. The channel 239 can extend proximally along extension portion 238 toward a container 250 (see FIG. 8A) to receive the fluid of the implantable device. The channel 239 may couple the plurality of openings to the container to receive the fluid of the implantable device.



FIG. 7 shows a cross-sectional view of an elongate structure of the apparatus exchange fluid comprising the sheath 280 over the needle 270. The needle may comprise channel 219, for example a lumen, extending distally to the opening 214 (see FIG. 6) and proximally to a connector to couple the channel 219 to a syringe, for example. A wall 252 of container 250 comprises sufficient strength to resist deformation when the stop 240 engages the tissue, and the stop 240 may comprise a deformable stop to couple to the tissue (see FIG. 8A). An outlet channel 254 extends from container 250 to at least one vent opening 258 to atmospheric pressure (see FIG. 8A).



FIG. 7A shows an exchange apparatus comprising a locking connector to couple to a syringe. The connector 290 may comprise a locking connector having an extension 292 sized to fit in a channel of connector 320 of syringe 300, for example (see FIG. 8B). The exchange apparatus 200 may comprise components of a standard locking needle assembly, for example a standard locking needle such as a Luer-Lok™ fitting. The wall 252 that defines container 250 and sheath 280 can fit over the needle 270 which may comprise a standard needle assembly. The wall 252 can extend a substantial distance from stop 240 to opening 258, for example, so as to define container 250 and channel 254 extending between the locking needle assembly and the wall.



FIG. 7B shows the elongate structure 201 and receiver container 250 of the exchange apparatus 200 of FIG. 7A. The wall 252 can extend around a distal portion of receiver container 250. The needle 270 and sheath 280 may extend through the wall 250. The stop 240 can be located on a distal portion of wall 252 and may comprise a soft material, for example a soft elastomeric material such as silicone elastomer. The stop 240 may fit within a recess formed on the surface of wall 252, and the needle 270 and the sheath 280 may extend through the soft elastomer stop 240, for example. The sheath 280 may comprise the tapered portion 224 proximal to the plurality of openings 236. The needle 270 can extend from tip 212 through chamber 250 to the connector 290 (see FIG. 7A), for example. The sheath 280 can extend from a first end 281 distal of the tapered portion 224 to a second end 283. The second end 283 may comprise an opening 285 into chamber 250. The outflow path of the displaced fluid from the implantable device may extend through the plurality of openings 236 to channel 239, along channel 239 to opening 285, and through opening 285 and into receiver container 250.



FIG. 7C shows sheaths suitable for combination with the exchange apparatus of FIGS. 7A and 7B. The sheath 280 can be configured in many ways (see 280A through 280K), and may comprise a wall thickness from about 0.0001 inches to about 0.01 inches, for example about 0.001 inches ( 1/1000 inch, 25 μm). The sheath 280 may comprise an inside diameter sized larger than the outside diameter of needle 270 so as to provide an annular channel extending axially between the needle and the sheath from the plurality of openings 236 to the opening 285. The diameter of each of the holes can be within a range from about 0.0001 inches to about 0.1 inches, for example within a range from about 0.001 inches to about 0.01 inches.


The plurality of openings 236 may comprise one or more of many shapes and can be arranged in many ways. Each row may comprise from about 2 to about 20 holes, for example, and may comprise circular, oval, elliptical or other shapes, for example. The sheath 280 may comprise a sheath 280A having four rows of circular holes. Each of the holes may have a diameter of no more than about one half of the thickness of the outside diameter of the sheath 280, for example, and may be located circumferentially at 90 degrees to each other, for example. Each of the four rows may extend axially along the sheath 280. The rows can be spaced angularly at 90 degrees to each other, for example.


The sheath 280 may comprise sheath 280B having about two rows, each row comprising about four holes, each hole having a diameter of no more than about one eighth of the diameter of the outside diameter of the sheath 280. The two rows may be spaced apart circumferentially at 180 degrees, and the holes may comprise holes cross-cdrilled through both sides of the sheath, such that each hole has a corresponding hole on the other row on an opposite side of the sheath.


The sheath 280 may comprise sheath 280C comprising about four cross drilled holes, each hole having a diameter of no more than about three quarters of the diameter of the outside diameter of the sheath 280, for example. The holes may comprise pairs of holes, in which the holes of each pair have corresponding axial locations. The holes can be arranged in two rows spaced circumferentially at 180 degrees.


The sheath 280 may comprise sheath 280D comprising at least about three rows of at least about 3 holes, each hole having a diameter of no more than about one quarter of the diameter of the outside diameter of the sheath 280. The rows can be spaced apart circumferentially at about 120 degrees, for example.


The sheath 280 may comprise sheath 280E comprising at least about 40 holes, each hole having a diameter of no more than about one tenth of the diameter of the outside diameter of the sheath 280.


The sheath 280 may comprise sheath 280F comprising slots. Each of the slots may comprise a narrow dimension across and a long dimension across. The long dimension can extend axially along the sheath 280 and may extend a distance greater than the narrow dimension across. The long dimension can extend a distance greater than the outside diameter of the sheath 280 where the slots are located, for example. The narrow dimension across each slot may comprise no more than about half of the outside diameter of the sheath, for example.


The sheath 280 may comprise sheath 280G comprising staggered rows of holes. The plurality of openings 236 may comprise a first row and a second row of cross drilled holes 236A, in which the holes of the first row are paired with the holes of the second row at a common axial location for each pair. A third row of holes and a fourth row of holes may comprise cross drilled holes 236B located at 180 degrees to each other and 90 degrees to the first row and the second row. The axial locations of the third and fourth rows of holes can be staggered from the first and second rows of holes, such that the axial locations of the holes 236A of the first row and second row correspond to axial locations away from the holes 236B of the first row and the second row, for example.


The sheath 280 may comprise sheath 280H comprising oval holes having a long dimension and a short dimension, with the long dimension extending transverse to the axis of the sheath 280 and the short dimension extending along the axis of the sheath 280. The oval holes can be spaced apart and located in rows extending along the axis of the sheath as described herein, for example.


The sheath 280 may comprise sheath 280I comprising elongate oval holes having the long axis of the oval extending along the axis of the sheath and the narrow dimension of the oval extending transverse to the long axis of the sheath, for example.


The sheath 280 may comprise sheath 280J comprising at least about three rows of at least about 3 oval holes, each oval hole having a maximum dimension across of no more than about one quarter of the diameter of the outside diameter of the sheath 280. The rows can be spaced apart circumferentially at about 120 degrees as described herein, for example.


The sheath 280 may comprise sheath 280K comprising at least about 40 holes, each hole having a diameter of no more than about one tenth of the diameter of the outside diameter of the sheath 280. The holes can be located on opposite sides of the sheath 280, and may comprise cross drilled holes, for example.



FIG. 7D shows one of the sheath openings 236 having a beveled channel surface 284 to inhibit degradation of the penetrable barrier. The thickness 286 of the sheath wall may be within a range from about 0.0001 to about 0.01 inches, for example. The corner of 282 of the beveled channel surface of the opening may comprise an angle to inhibit degradation of the penetrable barrier, such as tearing with repeated injections.



FIG. 7E shows one of the sheath openings 236 having a rounded channel surface of the opening and edge to inhibit degradation such as tearing of the penetrable barrier with repeated injections, in accordance with embodiments of the present disclosure;



FIG. 7F shows a schematic illustration of the parallel outflow paths from the reservoir chamber 140. The first outflow path 140P1 extends from the reservoir chamber 140 to the receiver container 250, and the second outflow path 140P2 extends from the reservoir chamber 140 across the porous structure 150 to the vitreous humor 30 of the eye. As the intraocular pressure of the eye may be substantially less than the pressure of the implantable device during exchange, the intraocular pressure of the eye approximates atmospheric pressure. The second outflow path 140P2 extends comprises a pressure drop DP across the porous structure 150. The first outflow path 140P1 comprises the pressure drop DP across the plurality of openings 236, along the one or more channels 239 extending from the plurality of openings to the opening 285, and through the one or more openings 285 into the receiver container 250. In many embodiments, the channel 254 and the opening 258 each comprise air, such that the resistance to flow 254R of the channel 254 and the resistance to flow 258R of the opening such that the pressure drop across channel 254 and the opening 258 can be substantially less than the pressure drop DP, for example negligible.


In many embodiments, a valve 256V can be provided, so as to vary the resistance to flow of the outflow path to provide a bolus. The valve 256V may comprise a porous structure 256, for example, or a stop, plunger or other mechanism so as to increase pressure and provide the bolus when the exchange apparatus 200 has received a predetermined amount of displaced liquid from the reservoir container 140. The porous structure 256 may comprise a gas such as air initially, and be configured to contact the liquid from the reservoir chamber when the predetermined amount of fluid has been received and provide a substantial increase in the resistance to flow 156R, such that the bolus is passed through porous structure 150. Examples of valves and mechanisms to provide the bolus injection are described in U.S. PCT Pat. App. No. PCT/US2011/046812, filed Aug. 5, 2011, entitled “Injector Apparatus and Method for Drug Delivery”, the entire disclosure of which has been previously incorporated herein by reference.


The pressure drops can be configured in many ways so as to inhibit a bolus release into the eye when the therapeutic fluid is exchanged with the implantable device fluid, or so as to release a bolus of therapeutic fluid through the porous structure of the implantable device, for example. The therapeutic fluid 260 comprising therapeutic agent 110 is injected through needle 270 into the reservoir chamber 140 of the implantable device, so as to pressurize the implantable device chamber with a force sufficient to pass a substantial portion of the implantable device fluid 262 into the receiver container 250. A pressure drop DP extends from the reservoir chamber of the implantable device through the plurality of openings 236, along channel 239 extending to opening 285, and through opening 285, such that the implantable device fluid 262 is received in receiver container 250. The outflow path from the reservoir chamber of the implantable device to the receiver container 250 comprises a resistance to flow corresponding to a resistance to flow 236R of the plurality of openings 236, the resistance to flow 239R of the channel 239, and the resistance to flow 285R of opening 285, for example. The resistance 150R to flow of the porous structure corresponds to an amount of therapeutic fluid 260 passed from the reservoir chamber of the implantable device to the chamber of the eye containing vitreous humor, for example. The amount of fluid into the receiver container such as the chamber 250 relative to the amount of fluid through the porous structure is related to the resistances based on parallel flow. The amounts of flow to the receiver container 250 and through the porous structure 150 correspond substantially to the following equations:

(Amount through porous structure)/(Amount through receiver)=(Resistance 236R+Resistance 239R)/(Resistance 150R)
(Amount through porous structure)=(Amount through receiver)*(Resistance 236R+Resistance 239R)/(Resistance 150R)
(Amount to receiver container)=(Amount through porous structure)*(Resistance 150R)/(Resistance 236R+Resistance 239R)


The resistance 150R corresponding to extended release of the therapeutic agent can be substantially greater than the resistance of the outflow path to the receiver container 250 comprising resistance 236R and resistance 239R, such that the amount of bolus of therapeutic fluid 260 and implantable device fluid 262 through the porous structure 150 can be less than about 1 μL combined, for example. Alternatively, the resistance to flow of the outflow path can be sufficient such that a substantial amount of therapeutic agent 110 is released through porous structure 150 with a bolus during exchange. The resistance to flow along the outflow path may comprise one or more of the resistance to flow 236R of the plurality of openings 236, the resistance to flow 239R of the channel 239 extending from the plurality of openings to the opening 285, or the resistance to flow 285R of the opening 285, for example, or combinations thereof. The size and number of the plurality of openings 236 and the thickness 286 of the sheath can determine substantially the resistance 236R of the plurality of openings. The length of the channel 239 extending from the plurality of openings 236 to the opening 285, and the transverse dimensions of the channel can determine substantially the resistance to flow 239R. For example the channel 239 may comprise a plurality of channels extending from the plurality of openings opening 236 to the reservoir container 250.


The resistance to flow 150R can vary with the RRI of the porous structure 150. In many embodiments, the resistance to flow 150R of porous structure 150 is inversely related to the RRI of the porous structure. For example, experimental testing with syringes and test therapeutic devices has shown that a bolus can be achieved through a porous structure 150 having an RRI of about 0.06 when the resistance to flow of outflow path is sufficiently large and device 100 is constructed such that chamber 140 can be pressurized to at least about one atmosphere, for example. However, porous structures having lower RRIs can provide a substantial resistance to flow so as to inhibit release of a substantial bolus. For example a porous structure 150 having an RRI of about 0.02 has a resistance to flow 150R such that an attempt to pass a substantial bolus amount through the porous structure 150 with a clinically acceptable injection time of 30 seconds or less may result in substantial pressure, for example greater than about four atmospheres.


The resistance to flow 150R of the porous structure 150 comprising the plurality of straight channels 150SC varies with one or more of the combined cross-sectional surface area of the channels 150SC, the number of openings, the size of each of the openings, or the thickness 150T, and combinations thereof. The combined cross-sectional surface area of the channels 150SC may be no more than about 100,000 μm2, so as to provide a resistance to flow 150R of the porous structure 150 sufficient decrease flow through the porous structure and provide exchange as described herein. The combined cross-sectional surface area can be within a range from about 1000 μm2 to about 100,000 μm2, for example, so as to provide a resistance to flow 150R greater than the resistance to flow of the outflow path 140P1. For example, the combined cross-sectional area within a range from about 1,000 μm2 to about 30,000 μm2 may provide a substantial resistance to flow 150R, which may be substantially greater than the resistance to flow of the outflow path. In many embodiments, the combined surface area is within a range from about 1,000 μm2 to about 10,000 μm2, and the resistance to flow 150R is substantially greater than the resistance to flow of the outflow path so as to inhibit bolus release through the porous structure (see also FIGS. 3A and 3B).


The resistance to flow of the outflow path comprising resistance 236R and 239R may comprise about 5 percent of the resistance 150R to flow of the porous structure 150, such that about 5 μL of fluid flows through the porous structure and about 95 μL flows through the plurality of openings 236 and channel 239. The size and number of the plurality of openings and dimensions of channel 239 can be determined by a person of ordinary skill in the art based on the teachings described herein so as to provide a target amount of bolus for a target amount of injected therapeutic fluid.


As the therapeutic fluid 260 can be denser than the implantable device fluid 262, a substantial portion of the fluid through the porous structure 150 may comprise the therapeutic fluid 260, for example.



FIG. 8A shows a cross-sectional view of the apparatus to exchange fluid as in FIGS. 5 and 6 coupled to a syringe. The channel 239 extends from the plurality of openings 236 to a container 250 to receive the fluid of the implantable device. The distal portion 210 comprising tip 212 and opening 214 comprise a distal portion of needle 270. The channel 219 extends along an axis 202 from the opening 214 to a connector 290. The connector 290 is configured to couple to a connector 320 of an injector. The injector may comprise a syringe 300 (not to scale). The injector may comprise a container 310 comprising a therapeutic fluid for injection, and the container 310 can be fluidically coupled to the opening 214 on distal tip 212 when the connector 320 engages the connector 290.


The sheath may comprise an annular configuration shaped for placement over the substantially annular needle, such that the sheath and needle comprise a substantially concentric configuration extending along axis 202.


The connector 290 of the exchange apparatus and the connector 320 of the injector can be configured in many ways. For example, the connector 290 and the connector 320 may comprise a standard connector such as a Luer connector or a pressure fit connector. Alternatively, the connector 290 may comprise a non-standard connector to limit access to the exchange apparatus 200. For example the connector 290 may comprise a star connector or other connector, and connector 290 may comprise a lock and key mechanism. The lock and key mechanism may comprise a lock on the exchange apparatus configured to receive a key of the injector, such that the lock of connector 290 can receive the key of connector 320 to couple the injector to the exchange apparatus and permit injection from chamber 310 through opening 214. Alternatively, the syringe 300 may be affixed to exchange apparatus 200, and syringe 300 provided with a single dose of therapeutic agent.


The container 250 of the exchange apparatus may have a volume to limit and amount of fluid received from the implantable device and to limit use of the apparatus to a single use. For example, the volume of the container may comprise no more than about 100 μL, for example no more than about 50 μL, so as to limit and amount of fluid exchanged with the implantable device and inhibit reuse of the exchange apparatus from patient to patient. The implantable device can be provided to a health care provider with an amount of gas, such as air within the receiver container 250, and the receiver container may comprise a structure along a vent path to limit the amount of fluid that can be received by the container 250.


The exchange apparatus 200 may comprise a porous structure 256 to inhibit passage of the fluid of the implantable device and limit the amount of fluid exchanged. The porous structure 256 may comprise a material to pass a gas, such as air and inhibit flow of a liquid, such as the fluid of the implantable device. The material may comprise one or more of a fabric, a porous fabric, a semipermeable membrane, an air permeable material, a moisture vapor transfer waterproof fabric, a hydrophilic porous material, or a porous sintered material, for example. The channels extending through the porous structure 256 may comprise a gas, such as air and a lower resistance to flow of the gas and a substantially greater resistance to flow of a liquid, such as the therapeutic fluid, such that the exchange is substantially inhibited when receiver container 250 is substantially filled with fluid of implanted device and the fluid exchanged with the implanted device contacts the porous structure 256. The porous structure 256 may comprise one or more of a fabric, a porous fabric, a semipermeable membrane, an air permeable material, a moisture vapor transfer waterproof fabric, a hydrophilic porous material, or a porous material or a porous sintered material, for example.


The exchange apparatus may comprise a structure 259 composed of a material penetrable with a needle to draw a sample from the receiver container. The structure 259 may comprise one or more materials suitable for penetration with a needle such as one or more of rubber or silicone elastomer, for example. The structure 259 may comprise the porous structure 256, for example, and the material penetrable with the needle may comprise one or more of a fabric, a porous fabric, a semipermeable membrane, an air permeable material, a moisture vapor transfer waterproof fabric, a hydrophilic porous material, or a porous material or a porous sintered material, for example.



FIG. 8B shows an embodiment of an implantable therapeutic device 100 comprising a lock and key mechanism 850 to place a therapeutic agent in the implantable device. The lock and key mechanism 350 comprises a lock 360 and a key 370. The lock 360 can be located on the implantable device to inhibit access to the reservoir chamber of the implantable device. The exchange apparatus 200 comprises the key 370 to access the reservoir chamber to place the therapeutic agent 110 as described herein. The lock can be configured in many ways and may comprise one or more of a deflected channel, a curved channel, a helical channel, a serpentine channel, engagement structures, a magnet, a door, a movable door, a tumbler, a cylinder, pins or a shear line, for example. The key can be configured in many ways so as to correspond to the lock and may comprise one or more of a deflectable elongate structure, a curved elongate structure, a helical elongate structure, a serpentine elongate structure, engagement structures sized to engage engagement structures of the lock, for example.


In many embodiments, the lock 360 inhibits access with a straight rigid needle, so as to inhibit placement of the therapeutic agent which may be ineffective or inappropriate when placed in the therapeutic device. For example, the exchange apparatus 200 can be delivered to the physician with a predetermined therapeutic agent formulation and key, and the implantable device has the lock configured to receive the key to place the therapeutic agent, such that access to the implantable device can be limited substantially.


In many embodiments, the lock 360 comprises the deflected channel 364, which may comprise one or more of a bent channel, a curved channel, a helical channel, or a serpentine channel, for example. The lock 360 may comprise a stiff substantially non-penetrable biocompatible material, for example one or more of rigid plastic, polymethylmethacrylate (hereinafter “PMMA”), polycarbonate, metal, or titanium, for example. The key 370 may comprise one or more of many components and structures of elongate structure 201 as described herein. The key 370 may comprise one or more of a deflectable key or a deflected key configured to extend along the deflected channel 364 to deliver the therapeutic fluid 260 and receive the implantable device fluid 262. The lock comprises an engagement structure 362 to engage an engagement structure 372 of the key. The engagement structure 362 may comprise an inner surface of the channel 364, and the outer surface of the deflectable key engages the inner surface of the channel so as to deflect the elongate structure 201 to advance along channel 364.


FIG. 8B1 shows an embodiment of a deflectable elongate structure 201 in an unloaded configuration prior to insertion in the lock 360 of FIG. 8B. The elongate structure comprises an axis 202, and the elongate structure may extend substantially along the axis 202 so as to provide column strength to the elongate structure 201 to penetrate the penetrable barrier 184 of access port 180. The elongate structure 201 may comprise a resistance to deflection sufficiently low so as to advance along channel 364 and a column strength sufficient to penetrate tissue and the penetrable barrier. The deflectable elongate structure 201 can be deflected substantially away from axis 202 when advanced into the lock 360.


The lock 360 may comprise a rigidity sufficient to inhibit penetration with a straight needle, and the channel 364 can be extend internally with lock 360.


The key 370 comprising the elongate structure 201 can extend through tissue such as the conjunctiva and epithelium to reach the lock 360, and the key can be configured to penetrate the tissue. The penetration of the tissue and penetrable barrier 184 inhibits contamination of the reservoir chamber as the barrier function of the conjunctiva 16 and Tenon's capsule 17 can be substantially maintained. The deflectable elongate structure 201 can be made of one or more of many components and may comprise sheath 280 and needle 270. The needle and sheath can be configured to deflect together when advanced along channel 364. The deflectable needle may comprise a metal, for example Nitinol, and the sheath may comprise a polymer such as polyimide, for example.


FIG. 8B2 shows an embodiment of a deflected elongate structure 201 in an unloaded configuration prior to insertion in the lock of FIG. 8B. The key 370 comprising deflected elongate structure may comprise one or more of many materials providing a stiffness sufficient to retain the deflected shape in the unloaded configuration. In the unloaded configuration, the deflected elongate structure 201 of key 370 extends away from axis 202. The deflected elongate structure 201 may comprise a preformed deflection profile corresponding to the path of channel 364 extending through the lock 360 from a first side of the lock toward the conjunctiva to a second side of the lock toward the reservoir chamber 140.


FIG. 8C1 shows an embodiment of an implantable therapeutic device 100 comprising a lock 360 and an exchange apparatus 200 comprising a rotatable key 370 to the lock 360. The exchange apparatus 200 can be advanced toward the implantable device 100 and rotated as shown with arrows 374. The engagement structures 372 of the key couple to the engagement structures 362 of the lock, such that the lock 360 opens to allow access of the elongate structure 201. The engagement structures may comprise one or more of many structures, for example magnets, teeth, or notches, and the engagement structures can be spaced apart at appropriate distances such that the engagement structures of the lock are keyed to the engagement structures of the key to allow access. For example the engagement structures 372 of the key may comprise magnets, and the engagement structure of the lock may comprise a magnetic material such that the key can be opened with the lock and the magnetic field extending through the conjunctiva 16 and the Tenon's capsule 17, for example. Alternatively, the conjunctiva and/or Tenon's capsule can be displaced and the engagement structures 372 of the key can contact the engagement structures 362 of the lock to allow access to the reservoir chamber.


FIG. 8C2 shows an embodiment of the implantable therapeutic device 100 of FIG. 8C1 in a unlocked configuration in which the elongate structure 201 extends through the open lock and penetrable barrier 184 to access the reservoir chamber 140 of the implantable device 100. The exchange apparatus can place the therapeutic fluid 260 in the implantable device 100 and receive the implantable device fluid 262 in the receiver container 250 as described herein.


FIG. 8D1 shows an embodiment of an implantable therapeutic device comprising 100 a slide lock 360 and exchange apparatus 200 comprising a slidable key to engage the slide lock. The exchange apparatus 200 can be advanced toward the implantable device 100 and slid as shown with arrows 374. The engagement structures 372 of the key couple to the engagement structures 362 of the lock, such that the lock 360 opens to allow access of the elongate structure 201. The engagement structures of the slide lock 360 and slide key 370 may comprise structures similar to the rotatable key and lock described with reference to FIG. 8C1.


FIG. 8D2 shows an embodiment of an implantable therapeutic device 100 in an unlocked configuration in which the elongate structure 201 extends through the open lock 360 and penetrable barrier 184 to access the reservoir chamber 140 of the implantable device. The exchange apparatus can place the therapeutic fluid 260 in the implantable device 100 and receive the implantable device fluid 262 in the receiver container 250 as described herein.



FIG. 8E shows an embodiment of an implantable therapeutic device 100 comprising a lock 360 and the elongate structure 201 of the exchange apparatus 200 comprising the key 370. The elongate structure 201 can be configured in many ways so as to comprise the key 370. The engagement structures 372 of the key 370 can be located near a distal end 212 of the elongate structure 201, for example. The engagement structures 272 can be affixed to the needle 270 and may comprise annular structures extending around the needle. Alternatively or in combination, the sheath 280 of the elongate structure may comprise the engagement structures. For example, the one or more openings 289 of the sheath 280 can be sized and located so as to comprise the engagement structures 372 of the key 370.


The lock can be configured in many ways to receive the key, and the engagement structures 362 of the lock may comprise pins aligned to a shear plane 368 when the key is inserted, for example.



FIG. 9 shows a container 400 to receive and store the exchange apparatus 200. The container 400 may comprise a barrier material 410 to inhibit evaporation from within the container to the outside environment, a cap 430 and a base supporting a soft penetrable material 420. The cap 430 may comprise a protrusion such as an annular protrusion 432 to seal around an outer portion of the wall of the container. The cap 430 may comprise a retention structure to hold the injector apparatus, for example a second protrusion, such as an annular protrusion 434 to receive and hold the exchange apparatus 200. The cap 430 may comprise a soft barrier material, such as an elastomer, for example.



FIG. 10 shows an exchange apparatus 200 having the implantable device fluid 262 comprising a fluid sample 264 within the receiver container 250. The receiver container 250 can be coupled to the elongate structure 201. The channel 254 can extend from the container to 250 to opening 258. The receiver container 250 may comprise a combination of one or more of the therapeutic fluid 260, the implantable device fluid 262 comprising sample fluid 264. Depending on the exchange apparatus and orientation, the implantable device fluid 262 comprising sample fluid 264 may comprise a substantial majority of the fluid of the receiver container 250.



FIG. 11 shows the exchange apparatus 200 having the fluid sample 264 placed partially within the storage container 400. The cap 430 is shown over but not yet covering the vent channel 254 extending from the receiver container 250 to the opening 258.



FIG. 12 shows a cap 430 of the storage container placed over the outlet channel opening 258 of channel 254 coupled to the receiver container 250 of the exchange apparatus, so as to inhibit one or more of leakage or evaporation from container 250.



FIG. 13 shows an elongate structure 201 of the exchange apparatus placed within a soft penetrable material 420 near the bottom of the storage container and the cap placed over the container so as to seal the exchange apparatus container. The soft penetrable material 420 may comprise a soft material capable of sealing, for example a soft elastomeric material such as silicone elastomer.



FIG. 14 shows an apparatus 500 to remove the sample fluid from the receiver container 250 of the exchange apparatus 200. The apparatus 500 comprises a sample container 400, a plug 520, a syringe 540 to pressurize the receiver container 250, and a coupling 530 to couple the syringe to the receiver container of the exchange apparatus 200. The coupling 530 may comprise a receptacle 536 to receive the proximal end portion of the exchange apparatus 200. The receptacle 536 may comprise a structure 532 to couple the syringe to the coupling, for example a Luer connector, a Luer-Lok™ connector, or other known connector, for example. The retention structure 532 to retain the exchange apparatus 200 and a contact structure 534 to contact the outer wall of the exchange apparatus and fluidly couple the syringe to the opening 528 when the exchange apparatus 200 is retained with the coupling 530. The contact structure 534 may inhibit flow of injection fluid from syringe 540, such as air, between the retention structure 532 and wall 252 of the exchange apparatus, for example with a seal between the retention structure 532 and the wall 252 of the exchange apparatus 200.



FIG. 15 shows a cap 520 placed on the connector 290 to couple the syringe to the exchange apparatus, so as to inhibit fluidic flow from syringe 540 through the needle of the elongate structure 201.



FIG. 16 shows the exchange apparatus placed within receptacle 536 of the coupling 530 so as to couple the receiver container 250 with the syringe 540. The syringe 540 can pressurize the channel 254 so as to displace the implantable device fluid comprising the sample fluid 264 from the receiver container 250 into a sample container 400 for analysis. The annular protrusion 534 can engage the outer wall 252 of the exchange apparatus 200 form a seal and pressurize chamber 250 when the plunger of syringe 540 is depressed. The pressurization of chamber 250 urges the implantable device fluid 262



FIG. 17 shows an exchange apparatus 200 coupled to a removable receiver container 250. The removable container 250 may comprise a penetrable barrier, for example a septum. The exchange apparatus 200 can be coupled to a syringe 300. The exchange apparatus can be coupled to a device 100 implanted in an eye with the elongate structure 201 configured to extend through the conjunctiva 16 and the penetrable barrier 184. The exchange apparatus may comprise a first channel coupled to the plurality of openings to receive the fluid from the implantable device, and a second channel coupled to a vent. The first channel 239 may extend to a first needle 710 to puncture container 250 and the second channel may extend to a second needle 720 to puncture the container 250. The first needle may have a first opening 712, and the second needle may have a second opening 722. The first opening can be located below the second opening, such that the second opening allows air to pass when liquid passes through the first opening.



FIG. 18 shows the exchange apparatus 200 coupled to the implanted device 100 so as to exchange fluid and receive sample fluid 264 from the implanted device. The container 250 can be coupled to the exchange apparatus during exchange.



FIG. 19 shows the exchange apparatus removed from the implanted device and the receiver container 250 detached from the exchange apparatus. The sample fluid 264 from the implantable device can be contained within the container 250.



FIG. 20A shows components of a container 400 to remove a sample fluid 264 from exchange apparatus 200. The container 400 may comprise a sealable container having a wall composed of a barrier material 410 to inhibit evaporation, a cap 430 and an annular protrusion 432. A support 450 can be placed within container to receive and hold the exchange apparatus 200 within the container. The support 450 may comprise a piece of soft elastomeric tubing such as silicone tubing, for example.



FIG. 20B shows an exchange apparatus 200 placed in the container 400 having components as in FIG. 20A. The exchange apparatus is placed such that the wall 252 of container 250 rests on the support 450. The elongate structure 201 extends below the support 450. The container 400 comprises an axis 400A, which axis may be aligned with the axis of exchange apparatus 200. The opening 258 coupled to container 250 with channel 254 is exposed to air.



FIGS. 20C and 20D show removal of implantable device fluid 262 comprising sample fluid 264 from exchange apparatus. The sample fluid 264 may be drawn into the container 400 with aspiration. A syringe 300 can be coupled to the exchange apparatus 200 with a connector 320 such as a locking connector, for example. The syringe 300 may comprise a piston 302 connected to a plunger 304 which allows the piston to be advanced and pulled back. The syringe 300 comprises a chamber 310 having a volume defined with the location of piston 302.


The piston of the syringe can be drawn outward to draw air from chamber 440, which chamber draws sample fluid 264 into chamber 440.



FIG. 21 shows a method 1800 of removal from an exchange apparatus with a removal container as in FIGS. 20A to 20D. A step 1810 removes the exchange apparatus 200 from the syringe after injection of the therapeutic fluid. The implantable device fluid comprising the sample fluid is contained in the receiver container 250.


A step 1810 removes therapeutic fluid 260 from the needle of the elongate structure 201 with injection of a gas comprising air from a syringe 300.


A step 1820 depresses the plunger towards the needle.


A step 1830 places the exchange apparatus 200 on the support 450 of container 400 with the exchange apparatus coupled to syringe 300. The support 450 coupled to exchange apparatus 200 may define a chamber 440. The support 450 can be shaped to inhibit air flow between and outer surface of the exchange apparatus and an inner surface of the support 450, for example with a seal formed between the outer surface of the exchange apparatus 200 and the inner surface of the support 450. The support may comprise a soft material, such as a soft elastomeric material, for example.


A step 1840 draws air from chamber 440 with syringe 300 through the injection needle of the elongate structure extending into chamber 440. The implantable device fluid 262 comprising sample fluid 264 is displaced from the receiver container with air drawn into the receiver container 250 through opening 258 of channel 254. The implantable device fluid 262 comprising sample fluid 264 falls to the lower end of chamber 440 and is contained on an inner surface of container 400.


A step 1850 removes the exchange apparatus 200 and syringe 300 from the sample container 400. The cap 430 is placed on the container 400, so as to inhibit evaporation of the implantable device fluid 260 comprising sample fluid 264.



FIG. 22 shows an exchange apparatus 200 having a receiver container 250 comprising a penetrable barrier structure 259 on a side port to remove a sample from the receiver container with a needle and syringe. The syringe can draw implantable device fluid 262 comprising sample fluid 264 from the receiver container 250 through a needle 330 passing through the penetrable barrier structure 259 on the side port.



FIG. 23A shows an exchange apparatus 200 having a receiver container 250 coupled to a sample container 400 and a syringe 300 to displace fluid from the receiver container 250. The sample container 400 is placed over the plurality of openings 236 and a needle 330 of a syringe 300 extends into a chamber 440 the sample container. The syringe 300 can draw fluid from chamber 440 so as to displace fluid from the receiver container 250. The channel 254 extends from container 250 to opening 258. Fluid drawn through needle 330 into syringe 300 urges the implantable device fluid 262 comprising sample fluid 264 through the one or more openings comprising the plurality of openings 236, and air can move inward through opening 258 and along channel 254 to displace the implantable device fluid 262 comprising sample fluid 264. The needle 270 extends through the sample container 400 such that the distal end of the needle extends beyond sample container 400. The plurality of openings 236 may comprise a plurality of openings of sheath 280.



FIG. 23B shows the sample container 400 of FIG. 23A placed over the plurality of openings 236 of the exchange apparatus. The sample container 400 may comprise a first penetrable barrier comprising penetrable barrier material 420 and a second penetrable barrier comprising penetrable barrier material 420. A first septum 422 can be located opposite a second septum 422, for example. The elongate structure 201 can extend through the first penetrable barrier and the second penetrable barrier so as to position the one or more openings between the first penetrable barrier and the second penetrable barrier. The sample container 400 may comprise a wall composed of a barrier material 410, and the wall may comprise an amount of rigidity sufficient to resist deflection when the sample is drawing with needle 330. The wall may comprise an annular shape, for example a tubular geometry. The needle 270 may extend through the second penetrable barrier so as to inhibit fluidic coupling of the syringe 300 and needle 330 with the opening on the distal end of needle 270. The sample container 400 can be shaped in many ways, for example with a spherical ball or other shape having a walls composed of penetrable barrier material 410 such that the needle tip can extend through both side of the container 400.



FIGS. 24A and 24B show an exchange apparatus having a receiver container 250 coupled to a syringe 300 with a sample container 400 placed over openings 236 of the exchange apparatus 200 so as to remove a sample fluid 264 from the receiver container 250. The sample container 400 comprises a chamber 440 enclosed with a wall comprising a barrier material 410 and a penetrable barrier material 420, in which the penetrable barrier material may comprise a septum, for example. The wall of the container 400 may comprise one or more of many shapes such as annular, spherical, cubic, ellipsoidal or oval, for example. The elongate structure 201 comprising needle 270 and sheath 280 can be advanced into the container 400 so as to place at least one opening of the plurality of openings 236 within the chamber 440 and the distal needle tip comprising the opening to place therapeutic fluid within the chamber 440. The needle can be coupled to syringe 300, and fluid drawn from chamber 440 with syringe 300 through an opening in the distal tip of needle 270. The fluid drawn through the needle 270 is replaced with the fluid passed through the plurality of openings 236.


The receiver container 250 comprising the implantable device fluid 262 comprising sample fluid 264 is fluidically coupled to the plurality of openings as described herein such that the implantable device fluid 262 comprising the therapeutic fluid 264 is passed through the plurality of openings. The channel 254 extends from the receiver container 250 to the opening 258 such that air may be drawn into the receiver container 250 to replace the volume of the displaced implantable device fluid 262 comprising sample fluid 264. In many embodiments, the implantable device fluid 262 comprising the sample fluid 264 comprises a liquid comprising water as described herein.



FIG. 25A shows an exchange apparatus 200 comprising a removable receiver container 250 comprising a removable sheath 280 placed over a needle 270. The receiver container 250 may comprise the sample container 400. The wall 252 of container 250 and needle 270 can be configured for removal and separation from the needle 270 so as to provide the sample container 400. The sheath 280 may be supported on a distal end of the wall 252 of container 250, such that the sheath 280 can be supported with the wall 252 of container 400 when removed. A plug 960 comprising penetrable barrier material 420 can be placed over the sheath 280 needle 270 prior to removal of the needle to inhibit leakage of the implantable device fluid 262 comprising sample fluid 264.



FIG. 25B shows the removable container 400 of FIG. 25A with a plug 960 comprising penetrable barrier material 420 placed over the sheath 280 and the needle 270 removed, such that the sheath 280 is supported with the container 400. The implantable device fluid 262 comprising sample fluid 264 remain in the receiver container 250 comprising sample container 400 subsequent to removal of the needle 200.



FIG. 25C shows the removable container of FIGS. 25A and 25B with plug 960 placed over the sheath 280 and a cap 430 over the removable receiver container. The cap 430 can inhibit one or more of evaporation or leakage of the implantable device fluid 262 comprising sample fluid 264.



FIGS. 26A to 26E show a centrifuge used to remove the fluid sample from the receiver container of the exchange apparatus.



FIG. 26A shows the exchange apparatus 200 comprising the receiver container 250 having the implantable device fluid 262 comprising the sample fluid 264 contained therein, in which the exchange apparatus is configured for placement within the sample container 400. The sample container 400 may comprise a centrifuge tube having a support 450 as described herein. The exchange apparatus 200 may comprise a channel 254 extending from receiver container 450 to opening 258, so as to couple the opening 258 to the plurality of openings 236. As the implantable device fluid 262 comprising sample fluid 264 contained within receiver container 250 comprises a density greater than air, the fluid within the receiver container can be displaced through the plurality of openings 236 of the exchange apparatus 200. Air can pass through opening 258 and channel 254 into the receiver container 250 to replace the volume of implantable device fluid 262 comprising sample fluid 264 displaced from receiver container 250 and through the plurality of openings 236.



FIG. 26B shows the exchange apparatus 200 placed in the sample container 400.



FIG. 26C shows the exchange apparatus 200 in the sample container 400 configured for placement in a centrifuge 500.



FIG. 26D shows the exchange apparatus 200 in the sample container 400 placed in a centrifuge 500.



FIG. 26E shows the exchange apparatus 200 within the sample container 400 subjected to force within the centrifuge 500, such that the force of the centrifuge 500 is sufficient to displace the implantable device fluid 262 comprising sample fluid 264 from the receiver container 400 through the plurality of openings 236 as described herein. The implantable device fluid 262 comprising sample fluid 264 is deposited on the lower end portion of an inner surface the sample container 400.



FIG. 26F shows an embodiment comprising exchange apparatus 200 placed in a sample container 400 comprising a centrifuge tube. The container 400 may comprise a barrier material 410 to inhibit evaporation from within the container to the outside environment, a cap 430 and a base supporting a soft penetrable material as described herein. The cap 430 may comprise a protrusion such as an annular protrusion 432 to seal around an outer portion of the wall of the container, for example. When the cap 430 is placed on the top of the tube, the chamber 440 can be sealed so as to inhibit evaporation, for example. The barrier 410 may comprise sufficient strength so as to inhibit penetration with the needle of the elongate structure 201 when placed in a centrifuge, for example.



FIG. 26G shows an embodiment comprising an exchange apparatus 200 placed in a sample container 400 comprising a centrifuge tube, in which the centrifuge tube comprises a support 450 comprising an annular shoulder 450S of the tube to engage and hold the exchange apparatus. The support 450 can engage the exchange apparatus 200 to support the exchange apparatus in a centrifuge, for example, with a gap extending between the lower surface of the tube and the distal tip of the needle of the exchange apparatus so as to inhibit penetration of the sample container with the needle. The container 400 may comprise additional structures as described herein.



FIG. 26H shows an embodiment of an exchange apparatus 200 placed in a sample container 400 comprising a centrifuge tube, in which the centrifuge tube comprises a support 450 comprising restricted portion to hold the exchange apparatus. The support 450 may comprise a rib to engage the exchange apparatus 400, for example. The rib 450R can be formed with a recess in the outer surface of the container 400. The support comprising the rib can engage and support the exchange apparatus such that a gap extends between the distal end of elongate structure 201 and the lower surface of the tube



FIG. 27A shows an embodiment of a collapsible fluid separator 510 for use with a therapeutic device. The collapsible fluid separator 510 may comprise a plunger and can be penetrable with a needle and configured to form a seal around the outer perimeter. The fluid separator 510 may comprise a distal shape profile corresponding to the distal portion of the reservoir chamber so as to displace fluid from the distal portion near the porous structure 150 as described herein. The fluid separator 510 may be penetrated with a needle and may comprise a septum, for example. The penetrable fluid separator can be penetrated with a needle for fluid removal and refill. In many embodiments, the fluid separator 510 is configured to expand and contract so as to contact the inner wall of the reservoir chamber 140 and form a seal with wall of the reservoir chamber. The fluid separator 510 can be configured to expand and contract to maintain contact with a wall having a varying cross-sectional dimension such as a varying diameter. In many embodiments, the fluid separator 510 is configured to contract so as to decrease the volume of the fluid separator such that the volume of the reservoir chamber available to receiver therapeutic fluid 260 can be substantially maintained.



FIG. 27B shows an embodiment of plunging structure 520 comprising an exchange needle 522 and an engagement structure comprising shoulder 524 suitable for use with the collapsible fluid separator as in FIG. 27A and a therapeutic device. The needle 522 comprises an internal channel to receiver fluid to remove the implantable device fluid and place the therapeutic fluid in the reservoir chamber. The plunging structure may comprise an engagement structure, for example shoulder 524, so as to engage the collapsible separator and advance the fluid separator 510 distally toward the porous structure with a thrusting movement.



FIG. 27C shows an embodiment of the collapsible fluid separator as in FIG. 27B placed within a reservoir chamber 140 of a therapeutic device 100. The collapsible separator 510 is shown near the proximal end of the implantable therapeutic device 100, which comprises the access port 180 and retention structure 120. The access port 180 may comprise a penetrable barrier 184 capable of penetration with the needle of the plunging structure, or a removable structure such as a cap, plug or the like which can be removed to introduce the plunging structure.



FIG. 27D shows an embodiment of the plunger 520 comprising the exchange needle and shoulder as in FIG. 27B advanced into the access port 180 of the therapeutic device having the collapsible fluid separator 510 placed within the reservoir chamber 140 of the therapeutic device as in FIG. 27C.



FIG. 27E shows an embodiment of the plunging structure 520 and collapsible fluid separator 510 advanced within the reservoir chamber 140 of the therapeutic device as in FIG. 27D so as to displace the implantable device fluid 562 from the reservoir chamber through the needle. The collapsible fluid separator 510 has expanded from a first cross-sectional dimension across, for example a first diameter, to a second cross-sectional dimension across, for example a second cross-sectional diameter larger than the first. The expandable and collapsible fluid separator 510 can expand or collapse so as to contact the side wall of the reservoir chamber 140 and inhibit flow between a lower side and an upper side of the expandable and collapsible fluid separator 510. The inhibited flow around the outer perimeter of the fluid separator can provide pressurization of the implantable device fluid near the tip of exchange needle 522 so as to drive implantable device fluid into the exchange needle. Alternatively or in combination, suction can be applied to the exchange needle so as to draw implantable fluid from the exchange needle 522 and advance the separator 510 toward the porous structure 150. In many embodiments, the porous structure 150 comprises a resistance to flow sufficient to inhibit flow of one or more of the implantable device fluid or the therapeutic fluid through the porous structure during the exchange as described herein.



FIG. 27F shows an embodiment of the collapsible fluid separator 510 advanced within the reservoir chamber to a location near the distal end of the reservoir chamber so as to displace most of the implantable device fluid from the reservoir chamber through the needle 522. The needle 522 may contact porous structure 150, which may comprise a rigid porous structure as described herein.



FIG. 27G shows an embodiment of the collapsible fluid separator 510 moved from the distal end of the reservoir chamber comprising porous structure 150. The collapsible fluid separator 510 can be moved in one or more of many ways to place the therapeutic fluid in the distal portion of the reservoir container. The therapeutic fluid can be injected through the needle 522, or another needle for example, so as to place the therapeutic fluid 260 in the distal portion of the container. Alternatively or in combination, the expandable and collapsible fluid separator can be pulled toward the proximal end of the reservoir chamber so as to draw therapeutic device fluid through the needle and into the reservoir chamber from an external container of the exchange apparatus as described herein.



FIG. 27H shows an embodiment of the collapsible fluid separator 510 moved from the distal end of the reservoir chamber to the proximal end of the reservoir chamber so as to fill substantially the reservoir chamber with therapeutic fluid 260. The collapsible fluid separator 510 comprises a substantially decreased size and volume so as to fit substantially within the neck of the reservoir chamber such that a substantial amount of the volume of the reservoir is filled with therapeutic fluid 260.



FIG. 27I shows an embodiment of a substantially non-collapsible fluid separator 510 placed within the reservoir chamber 140 of therapeutic device 100 having a substantially fixed cross sectional size. The container 130 comprising reservoir chamber 140 may comprise a substantially cylindrical tubular barrier 160. The fluid separator may comprise a piston slidable within the tubular barrier 160, for example.



FIG. 28A shows an embodiment of an exchange apparatus 550 comprising a balloon 560 supported on a elongate tubular member 580 capable of introduction into an implantable therapeutic device 100 as to exchange the implantable device fluid 262 with a therapeutic fluid 260.


The exchange apparatus 550 may comprise an elongate tubular structure 570 shaped to penetrate tissue, for example a needle. The elongate tubular structure 570 shaped to penetrate tissue can be advanced into access port 180 through penetrable barrier 184, followed by balloon 560 and the distal end of elongate tubular member 580, such that balloon 560 is placed in the reservoir chamber.


The balloon 560 may comprise a highly compliant balloon. As the balloon 560 is inflated, implantable device fluid is displaced out of the reservoir chamber. The balloon 560 may comprise Pebax™ or another highly elastic material such as silicone, for example, or a non-elastic material capable of being one or more of folded, rolled or compressed, for example. The balloon 560 may comprise a tubular structure and supported on the outside diameter of the needle or a sheath over the needle prior to inflation. The balloon may be designed to inflate proximally to distally, e.g. top down, to contact the inner wall of the reservoir chamber and displace fluid toward the vent needle opening. The balloon may be inflated with therapeutic fluid 260. The balloon may be retractable within a sheath, for example. A sheath may be provided to deliver the balloon through the penetrable barrier, for example with the sheath penetrating the penetrable barrier to protect and place the balloon in the reservoir chamber without substantial contact of the balloon to the penetrable barrier when the balloon is placed.


The exchange apparatus 550 comprises components and structure to inflate balloon 560 and remove implantable device fluid 262 from the reservoir chamber 140. The elongate tubular structure 570 shaped to penetrate tissue may comprise a channel 572 to fluidically couple the reservoir chamber 140 with an external container, for example. The elongate tubular member 580 may comprise a first lumen 582 and a second lumen 584, for example. The elongate tubular member 580 can be connected to one or more containers, syringes, or pumps, for example. The elongate tubular member 580 may comprise a first connector 588 fluidcially coupled to first lumen 582, and a second connector 586 fluidcially coupled to the second lumen 584, for example. The first lumen 582 of the elongate tubular member 580 can fluidically couple to channel 572 and external connector 588, for example, such that the implantable device fluid 262 can be received in a receiver container as described herein. The second lumen 584 can fluidically couple the connector 586 to balloon 560, so as to allow inflation of the balloon, for example with a syringe. The connector 586 and the connector 588 may each comprise standard known connectors as described herein, for example. The exchange apparatus 550 may comprise one or more catheter components known to a person of ordinary skill in the art in the field of catheter design and suitable for commination in accordance with the teachings described herein, for example.



FIG. 28B shows an embodiment of the balloon 260 as in FIG. 28A inflated within the therapeutic device to displace the implantable device fluid 262. The balloon 560 may be inflated with the therapeutic fluid 260 as described herein, for example. The therapeutic fluid 260, or another fluid, can be injected into the balloon with a syringe coupled to connector 586 such that the injected fluid travels along lumen 584 to inflate the balloon 560. The implantable device fluid 262 can be displaced with the balloon so as to urge the implantable device fluid 262 into channel 572 of the elongate structure 260 shaped to penetrate tissue. The porous structure 150 may comprise a substantial resistance to flow to inhibit flow of implantable device fluid 262 through the porous structure.



FIG. 28C shows an embodiment of the balloon 560 deflated within the therapeutic device 100 to provide space for the therapeutic fluid 260. In many embodiments, the receiver container as described herein, for example a bag, can be disconnected from connector 588, and a syringe comprising therapeutic fluid 560 coupled to connector 580. The syringe or other fluid source used to fill balloon 560 can be decoupled from lumen 582, and the therapeutic fluid 560 can be injected into elongate structure 570 to place therapeutic fluid 260 in reservoir chamber 140 such that the fluid within balloon 560 is displaced and the size of balloon 560 decreased. When the size of balloon 560 has decreased sufficiently, the balloon 560 and elongate structure 570 can be removed from the implantable device 100 by passing through the penetrable barrier 184. The balloon 560 and elongate structure 570 can be removed in many ways, for example by one or more of pulling on elongate tubular member 580 or injecting therapeutic fluid 560 into reservoir chamber 140, so as to displace balloon 560 and elongate structure 570 from the reservoir chamber 140. In many embodiments, reservoir chamber 140 can be pressurized with injection of therapeutic fluid 260 so as to displace the balloon 560 and elongate structure 570 through the penetrable barrier 184 with pressure.



FIG. 28D shows an embodiment of the balloon 560 punctured within the therapeutic device 100 so as to release the therapeutic fluid 260 from the balloon to the reservoir chamber 140 of the therapeutic device 100. The therapeutic 100 may comprise internal structures 590 to puncture the balloon and release the therapeutic agent. The internal structure 290 may comprise a sharp tip, for example a needle tip to penetrate the balloon 560 and release the therapeutic agent. The internal structure 590 can be supported on the wall of the reservoir chamber, for example.



FIG. 29A shows an embodiment of a deflectable fluid separator 600 placed within an implantable therapeutic device 100. The deflectable fluid separator 600 inhibits mixing of the implantable device fluid 262 with the therapeutic fluid 260. The deflectable fluid separator 600 can separate portions of the reservoir chamber so as to define a first portion 141 on a first side of the chamber and a second portion 143 on a second side of the reservoir chamber. The first portion 141 of the reservoir chamber 140 may be coupled to a first porous structure 151 to provide sustained release from the first portion and the second portion 143 of the reservoir chamber 140 may be coupled to a second porous structure 153 to provide sustained release from the second portion. The porous structures can be substantially similar to porous structure 150 as described herein. The deflectable fluid separator 600 may comprise a barrier material to inhibit flow of the therapeutic agent, and may comprise one or more of a bladder, diaphragm, a membrane, or a sheet of distensible material, for example. The deflectable fluid separator may comprise an expandable bladder capable of deflection to either side of the reservoir chamber, for example. The deflectable fluid separator may be used with exchange apparatus 200 as described herein. The elongate structure 201 of the exchange apparatus may comprise a bi-needle design as described herein, for example with a first needle to advance fluid into a first side of the bladder and a second needle to receiver fluid from a second side of the bladder, in no particular order, or simultaneously, for example.



FIG. 29B shows an embodiment of the deflectable fluid separator as in FIG. 29A displaced to the second side of the reservoir chamber to remove fluid from the second portion 143 of the reservoir chamber. The removal of fluid from portion 143 can be achieved in many ways. For example, the deflectable fluid separator can be displaced with injection into first portion 141 so as to displace implantable device fluid 262 from second portion 143. A first needle 611 and a second needle 613 can be advanced so as to extend through penetrable barrier 184 into first portion 141 and into second portion 143, respectively. The first needle can inject fluid into first portion 141 to displace fluid from second portion 143. Alternatively or in combination, the second needle 613 can be aspirated to draw fluid from second portion 143 with suction, and a fluid may be drawn into first portion 141 through first needle 611.



FIG. 29C shows an embodiment of the deflectable fluid separator 600 as in FIG. 29B displaced to the first side of the reservoir chamber with a therapeutic fluid 260 placed in the second portion 143 of the reservoir chamber 140. The therapeutic agent 110 contained within second portion 143 can be released through porous structure 153 in a manner similar to porous structure 150 as described herein. When a sufficient amount of therapeutic agent has been released from second chamber 143 for an extended time through porous structure 153, the fluid can be removed from second portion 143 as described herein and a second amount of therapeutic fluid 260 placed in first portion 141 for sustained release for another extended time through porous structure 151. The removal and placement of fluid with the deflectable separator can be repeated as many times as is helpful to treat the patient.



FIG. 30A shows an embodiment of an exchange apparatus 200 comprising a valve 700 to direct flow toward a second receiver container 704 when a sample 264 of the implantable device fluid 262 has been placed in a first receiver container 702. The valve 700 can inhibit mixing of the implantable device fluid 262 with the therapeutic fluid 260, such that sample fluid 264 may comprise no substantially amount of therapeutic fluid 260. The sample fluid 264 can be removed used for one or more assays as described herein. The valve 700 may comprise one or more of a porous structure, a float valve, an annular float valve, a ball float valve, a flap valve, a flap valve with a float, a duckbill valve, or a stopcock. The valve 700 may comprise a manual valve, or may comprise one or more structures to automatically close or open when a sufficient amount of fluid has been placed in the first receiver container. The receiver container 250 may comprise the first receiver container 702 and the second receiver container 704. The exchange apparatus 200 may comprise one or more of the elongate structure 201, needle 270, sheath 280, receiver container 250, at least one opening 258, connector 290, syringe 300, piston 302, plunger 304, chamber 310, or connector 320 as described herein, for example.


The valve 700 may be configured in many ways to provide sample 264 of implantable device fluid 262. With elongate structure 301 introduced into therapeutic device 100, an initial amount of implantable device fluid 262 can be placed in first receiver container 702 with valve 700 comprising a first configuration. The first configuration of valve 700 can fluidically couple one or more openings 236 of elongate structure 201 with the first receiver container 702 and inhibit fluidic coupling of the one or more openings of elongate structure 201 with second receiver container 702. When a sufficient amount of implantable device fluid 262 has been placed in the first receiver container 702, the configuration valve 700 can change from the first configuration to the second configuration. The second configuration of valve 700 can fluidically couple the one or more openings 236 with the second receiver container 704 and inhibit flow to the first receiver container 702, such that a majority of the therapeutic fluid 260 mixed with implantable device fluid 262 is placed in second receiver container 704.


The valve 700 may comprise a manual valve 710 operable by a user, and may comprise one or more of many valves known to a person of ordinary skill in the art, for example a stopcock or other manual or automatic valve, for example.


The sample 264 within first container 702 can be removed for analysis with one or more of many methods or structures as described herein.



FIG. 30B shows an embodiment of an exchange apparatus 200 having a valve 700 comprising a porous structure 720 to direct flow toward a second receiver container 704 when sample 264 of the implantable device fluid 262 has been placed in first receiver container 702. The valve 720 may comprise a substantially dry porous structure in an initial open configuration and a gas such as air can be situated within first receiver container 702. Implantable device fluid 262 accumulates in the first receiver container 702 and rises inside the first container 702 from a distal end near the elongate structure to a proximal end of the first container. When a sufficient amount of implantable device fluid 262 is placed on first container 702, the valve 720 contacts the implantable device fluid 262 comprising liquid and the resistance to flow of the valve 720 increases substantially. The wetted valve 720 comprises a substantially closed configuration such that the implantable device fluid 262 passes through a flow resistance structure 722. The flow resistance structure 722 comprises a resistance to flow when wet that is greater than the resistance to flow of valve 720 in the dry configuration and substantially less than the resistance to flow of valve 720 in the wet configuration, such that the dry valve 720 corresponds to a substantially open configuration and the wet valve 720 corresponds to a substantially closed configuration. The valve 720 and the flow resistance structure 722 may each comprise a porous structure similar to the porous structure for sustained release of the therapeutic agent as described herein, for example.


The valve 720 and flow resistance structure 722 can be configured in many ways to provide sample 264 of implantable device fluid 262 with no substantial portion of therapeutic fluid 260. The relative resistance to flow of the porous structure 720 when we can be substantially greater than the resistance to flow of the resistance structure 722 when wet, for example at least about twice, and in many embodiments at least about five times the resistance to flow of the flow resistance structure. The flow resistance structure 722 may comprise a valve that opens under pressure such as a duckbill valve or flap with a spring, for example. A baffle 728, a channel, or other internal structure can be provided to inhibit mixing of the therapeutic fluid 260 and implantable device fluid 262 with the sample fluid 264 when valve 720 is wet and comprises the closed configuration.



FIG. 30C shows an embodiment of an exchange apparatus 200 in which valve 700 comprises a float valve 730. The float valve 730 comprises a float ball 732 to direct flow toward a second receiver container 704 when a sample 264 of the implantable device fluid 262 has been placed in a first receiver container 702. The valve 732 can slide along first container 702. A valve 736 such as a flap valve or duckbill valve, for example, can be provided to provide a resistance to flow and drive fluid into the first receiver container 702. When the implantable device fluid 262 advances into container 702, float ball 732 rises in the first container 702 until the float ball contacts a seat 734 and inhibits flow into the first container. When float ball 732 contacts seat 734 additional flow into first container 702 is inhibited and valve 736 opens to allow implantable device fluid 262 into the second receiver container 704. The received implantable device fluid 262 mixed with therapeutic fluid 260 may displace a gas such as air through opening 258. A flow resistance structure 738 such as a second duck bill valve or baffle can be provided near the opening to the first container to inhibit mixing of sample 264 of the first receiver container 702, for example.



FIG. 30D shows an embodiment of an exchange apparatus 200 having a valve 700 comprising a float valve 740. The float valve 740 comprises a sliding annular structure 744 to direct flow toward a second receiver container 704 when a sample 264 of the implantable device fluid 262 has been placed in first receiver container 702. The sliding annular structure 744 may comprise an annular float ring 742 coupled to a tube having an opening 745 to pass fluid when the valve 740 is open. The sheath 280 can extend over needle 270 upward from the first receiver container 702 to the second receiver container 704. The sheath 280 may comprise one or more openings 236 to pass the implantable device fluid 262 into the first receiver container 702 through opening 745. As the first receiver container 702 receives implantable device fluid 262, valve 740 rises and slides axially along sheath 280 such that a portion 747 of annular structure 744 slides over one or more openings 236 to inhibit flow to the first receiver container 702.


In the closed configuration, valve 740 directs flow of the implantable device fluid 262 and therapeutic fluid 260 into second receiver container 704 through holes 748 in sheath 280. The exchange apparatus may comprise connector 290 to couple to a syringe as described herein.



FIG. 30E shows an embodiment of an exchange apparatus 200 in which valve 700 comprises a float valve 750 to direct flow toward a second receiver container when a sample of the implantable device fluid has been placed in a first receiver container. Float valve 750 comprises a flap 752. The flap 750 allows sample fluid to enter the first receiver container 702 through openings 757 of sheath 280, and when a sufficient amount of sample fluid has been received with sample container 702, float valve 750 closes to inhibit flow through openings 757. The implantable device fluid 262 is passed through opening 758 into second receiver container 704 when the float valve 750 is closed.


FIG. 31A1 shows an embodiment of an exchange apparatus 200 having a receiver container 250 comprising a fluid separator 800 comprising an internal channel 822 sized to support the implantable device fluid 262 with a pocket of air. The fluid separator 800 may comprise a tubular structure 820, for example a column, having an internal dimension such as a diameter sized to support the implantable device fluid with an immiscible separator fluid. The immiscible separator fluid may comprise one or more of an oil, a hydrophobic liquid, a gas, or air, for example. The exchange apparatus may comprise one or more of many structures as described herein such as connectors to couple to a syringe and an elongate structure comprising a sheath and needle. The internal channel 822 of fluid separator 800 can be fluidly coupled to openings 236 to receive implantable device fluid 262 as described herein. The fluid received from the implantable device can be received in receiver container so as to separate the implantable device fluid 262 from the therapeutic fluid 260. The internal channel 822 may initially comprise a gas such as air which can be displaced through opening 258 of receiver container 250.


While the exchange apparatus can be used in many ways with an immiscible separator fluid such as a gas comprising air, in many embodiments the therapeutic fluid 260 is first drawn into a syringe 300, and then the immiscible separator fluid such as air drawn into syringe 300. The syringe 300 can be coupled to the exchange apparatus 200 with the therapeutic fluid supported with the immiscible separator fluid such as air within the container, for example. In many embodiments, the barrel of the syringe comprises an inner diameter sized such that the therapeutic fluid 260 can remain free standing within the barrel of the syringe and may be supported with air, such that the air can be injected into the implantable device before the air is injected. The implantable device may comprise a maximum cross-sectional dimension, for example a maximum diameter, such the implantable device fluid can be supported and displaced with the immiscible separator fluid 810 placed in the lower portion of the reservoir chamber near porous structure 150. Injection of the immiscible separator fluid 810 displaces implantable device fluid 262 through one or more openings 236 of sheath 280 and upward into channel 822. When a substantial portion of the implantable device fluid has been displaced from the reservoir chamber, for example with air, the therapeutic fluid 260 can enter the reservoir chamber such that the implantable device fluid 262 remains substantially separated from the therapeutic fluid 260 introduced into the reservoir chamber.


The separator fluid 810 may comprise a miscible separator fluid, for example saline or other liquid capable of mixing with the therapeutic fluid 260 and the implantable device fluid 262, and the separator fluid 810 may comprise a sufficient volume so as to inhibit mixing of the therapeutic fluid 260 with the implantable device fluid 262. In many embodiments, the separator fluid 810 comprises a fluid not miscible with the therapeutic fluid 260 and implantable device fluid 262, each of which may comprise substantial amounts of water. The immiscible separator fluid 810 can inhibit mixing of the implantable device fluid 262 and the therapeutic fluid 260 with the separator fluid 810, such that the separator fluid 810 may comprise a barrier and inhibit mixing of the components of the implantable device fluid 262 with components of the therapeutic fluid 260.


FIG. 31A2 shows an embodiment of the exchange apparatus 200 of FIG. 31A1 having the implantable device fluid 262 supported with a pocket of immiscible separator fluid 810 such as air 812, so as to separate the implantable device fluid 262 from the therapeutic fluid 260. An interface 818 extends between the immiscible separator fluid 810 and the implantable device fluid 262. An interface 814 extends between the immiscible separator fluid 810 and the therapeutic fluid 260. In many embodiments, immiscible separator fluid 810 comprises a gas, and implantable device fluid 262 and therapeutic fluid 260 each comprise liquid such that interface 814 comprises a meniscus and interface 818 comprise a meniscus.


FIG. 31B1 shows an embodiment of an exchange apparatus 200 having a fluid separator 800 comprising an internal channel having a first portion 852 sized to support the implantable device fluid with a pocket of an immiscible separator fluid air and a second portion 854 sized to pass an immiscible separator fluid such as air through the implantable device fluid. The first portion may comprise a volume approximating the volume of the reservoir chamber, for example. The exchange apparatus may comprise one or more of the structures of the exchange apparatus 200 as described herein, for example receiver container 200 and container wall 252 may have dimensions so as to define the first portion 852 and the second portion 854.


FIG. 31B2 shows an embodiment of the exchange apparatus of FIG. 31B1 having the first portion 852 supporting the implantable device fluid 262 with the immiscible separator fluid 810 such as air 812. The tip 212 of needle 270 may extend to the distal end of the reservoir chamber 140 such that the bubble forms at the distal end of the reservoir to increase exchange efficiency, for example. The reservoir chamber 140 and the first portion 852 may comprise immiscible separator fluid 810 such as air 812.


FIG. 31B3 shows an embodiment of the exchange apparatus of FIGS. 31B1 and 31B2 having the first portion 852 supporting the implantable device fluid 262 with the pocket of immiscible separator fluid 810 and therapeutic fluid 260, and the second portion containing the implantable device fluid. As additional gas such as air moves upward from the first portion 852 to the second portion 854, the immiscible separator fluid comprising a gas such as air forms bubbles in second portion 854 having the increased inner dimensions and the bubble can travel upward to escape through opening 258. The first portion 852 and the second portion 854 may each comprise an annular channel having an inner dimension determined by the outside diameter of needle 270, for example. The increased outer dimension of the annular channel of the second portion 854 allows bubbles to form in the implantable device fluid 262 contained in the second portion such that the bubbles can rise and escape through valve 258.



FIG. 31C shows an embodiment of exchange apparatus 200 coupled to a syringe 300 comprising a separator structure 860 to inject a separation fluid 810 and a therapeutic fluid into therapeutic device to collect a sample 264 of implantable device fluid 262. The separator structure 860 may comprise one or more of a piston 864, a plunger, a disk or a plug having one or more holes 862. The holes 862 may comprise a sufficient resistance to flow such that the piston 864 moves downward toward the elongate structure 201 when the piston 302 is advanced.


The piston 864 can displace the immiscible separator fluid 810 comprising air, such that the immiscible separator fluid 810 is displaced into reservoir chamber 140 and forms an interfacial boundary 816. The interfacial boundary 816 moves toward sheath 280 as the implantable device fluid is displaced with the immiscible separator fluid 810. When the piston 864 has advanced a sufficient distance, movement of piston 864 along the cylinder barrel is inhibited, and the therapeutic fluid 260 is displaced through the one or more holes 862 with piston 302. The displaced therapeutic fluid 260 is placed in reservoir chamber 140, for example with injection through the needle. The immiscible separator fluid 810 is displaced with therapeutic fluid 260 such that the immiscible separator fluid 810 enters receiver container 250.


In many embodiments the receiver container 250 comprises a volume that is at least the volume of the injected material comprising therapeutic fluid 260 and immiscible separator fluid 810, such that the volume of the receiver container 250 is sufficient to retain the implantable device fluid 262 and the immiscible separator fluid 810. The volume of immiscible separator fluid 810 injected with the therapeutic fluid can be less than, approximately the same as, or greater than the volume of the therapeutic agent injected. In many embodiments, the immiscible separator fluid 810 comprises a volume sufficient to separate the therapeutic fluid from the implantable device fluid and which is substantially less than the volume of the reservoir chamber. For example, the amount of immiscible separator fluid 810 may comprise a volume that is sufficient to form a bubble within the reservoir chamber 140 and that is substantially less than the volume of the volume of reservoir chamber 140.


The receiver container 250 can be configured in many ways to receive the implantable device fluid 262 and the immiscible separator fluid 810. For example, the receiver container 250 may comprise the inside dimension sufficient to support the implantable device fluid with the immiscible separator fluid along a majority of the length of the receiver container 250. Alternatively, the first portion 852 of the receiver container may comprise the inside dimension sufficient to support the implantable device fluid 262 and the second portion 854 of the receiver container may comprise the inside dimension sufficiently large so as to pass the immiscible separator fluid 810 through the implantable device fluid. A person or ordinary skill in the art can determine the internal dimensions of the first portion and the second portion based on the teachings of the present disclosure.



FIG. 32 shows an embodiment of an exchange apparatus coupled to syringe 300 to draw therapeutic fluid into the implantable device from the container 250. The implantable device fluid 262 can be drawn from the reservoir chamber in one or more of many ways, for example with syringe so to provide aspirating suction of the implantable device fluid from the implantable device into the syringe. As the needle 272 extends through penetrable barrier 184 so as to provide a seal and the porous structure 150 comprises a resistance to flow of components of the eye, the movement of the implantable device fluid 262 into the chamber of syringe 300 results in therapeutic fluid 260 moving from chamber 250 through the one or more openings 289 in sheath 280. Air at approximately atmospheric pressure can move into container 250 to urge and displace the therapeutic fluid 260 into the reservoir chamber when the implantable device fluid 262 is drawn with the syringe.



FIG. 33 shows an embodiment of a curved needle 270 of an exchange apparatus to direct therapeutic fluid 260 toward a wall 260 of a container 230 of the reservoir chamber 240. The curved needle can be placed near the porous structure 150 and may result in a reproducible flow pattern of the therapeutic fluid 260 placed in the container. The reproducible flow pattern provided by the curved needle 270 can provide a consistent flow pattern over porous structure 150 and may provide a more uniform amount of bolus through porous structure 150.



FIG. 34 shows an embodiment of a covering 870 on a porous structure of a therapeutic device to inhibit bolus release when the therapeutic fluid is introduced. The covering 870 can inhibit bolus release when the needle is oriented toward the porous structure 150 and the covering 870, for example.



FIG. 35 shows an embodiment of a first exchange apparatus 200A coupled to a double barrel syringe 300 to exchange a first exchange fluid 900 with the implantable device fluid 262, and a second exchange apparatus 200B to exchange the first exchange fluid placed in the therapeutic device with therapeutic fluid 260. The first exchange fluid 900 may comprise the separator fluid 810 as described herein. The first exchange fluid 900 may comprise water, for example phosphate buffered saline (hereinafter “PBS”). Alternatively, the first exchange fluid may comprise an immiscible separator fluid as described herein.


The first exchange apparatus 200A and the second exchange apparatus 200B may each comprise many of the structures of exchange apparatus 200 as described herein. For example, the first exchange apparatus 200A and the second exchange apparatus 200B may each comprise the elongate structure 201 and receiver container 250 as described herein. The double barrel syringe 300 may comprise the therapeutic fluid and the first exchange fluid 900. The double barrel syringe 300 may comprise a first chamber 910 containing the first exchange fluid 900 and a second chamber 920 containing the therapeutic fluid 260. The first chamber 910 may be coupled to a first piston 912 and plunger 914 having a first length. The second chamber 920 may be coupled to a second piston 922 and plunger 924 having a second length. The first length can be longer than the second length to that the contents of the first chamber are injected before the second chamber. The first exchange apparatus 200A can be connected to the syringe 300 and the elongate structure 201 inserted into the implantable device as described herein, and the first plunger advanced so as to displaced the implantable device fluid 262 from the reservoir chamber 140 with the first exchange fluid 900. The first exchange apparatus 200A can be removed from therapeutic device implanted in the eye. The first exchange apparatus 200A can be disconnected from the syringe 300, and the second exchange apparatus 200B connected to the syringe 300 and advanced into the therapeutic device 100. The second plunger 924 can be advanced to displace the first exchange fluid 900 from the reservoir chamber 140 of the implantable device with the therapeutic fluid 260 as described herein.


In many embodiments, one or more of the components of the first exchange apparatus 200A and the second exchange apparatus 200B can be combined for use with the double barrel syringe so that the first exchange fluid and the therapeutic fluid can each be exchanged sequentially when the exchange apparatus 200 is placed in the implantable device and without removing the exchange apparatus from the implanted device. For example, the exchange apparatus 200 may comprise the first receiver 702 container to receive the implantable device fluid and the second receiver container 704 as described herein to receive the first exchange fluid, and the first receiver container and the second receiver container can be coupled to one or more valves as described herein such that the implantable device fluid 262 is directed to the first receiver container when the valve comprises a first configuration and the first exchange fluid is directed to the second receiver container when the valve comprises a second configuration as described herein.


Experimental


FIG. 36 shows an experimental test apparatus. The test apparatus comprised an injector coupled to a bi-needle exchange apparatus 200 to inject a therapeutic fluid comprising a therapeutic agent into a test implantable device 100. The therapeutic fluid comprised a 100 mg/mL formulation of ranibizumab prepared in accordance with U.S. Pat. Pub. No. 2010/0015157, entitled “Antibody Formulations”, the full disclosure of which is incorporated by reference. The injected formulation comprised a density at least about 1% greater than the fluid of the implantable device, which comprised saline.


The therapeutic fluid was injected through the penetrable barrier comprising a septum of silicone elastomer. The injector needle was approximately 33 gauge and coupled to a syringe and positioned below the receiver needle. The receiver needle received liquid from the implantable device and extended upward to a receiver container. Axis of the injector needle 202 and the axis of the implantable device 100A were oriented to obtain samples. The reservoir chamber of the implantable device comprised about 25 μL, and about 50 μL were injected. The orientation of the axes varied from 0 degrees (horizontal) 45 degrees away from horizontal. At the −45 degree orientation the penetrable barrier was located above the reservoir chamber and the opening to the receiver needle located above the opening to the injector needle.



FIG. 37 shows experimental results obtained with the test apparatus of FIG. 36. The refill efficiency corresponded to the amount of therapeutic fluid placed in the reservoir chamber of the implantable device when the 50 uL had been injected. For 0 degrees, the efficiency was about 80%. The efficiency increased with the angle to about 95% at −45 degrees.


Table 2 shows device angles and fill efficiencies corresponding to the values in the graph of FIG. 37.
















Device Angle (+/− sign arbitrary)
Refill Efficiency



















0
77.5



15
88.3



25
88.9



35
94



45
94










A concentric needle device was also tested and provided similar results.


Pressure studies have been conducted with the injector apparatus having the plurality of openings. The sheath comprised polyimide placed over a 33 Gauge needle. A first pressure gauge was coupled to a syringe on the input side of the needle, and a second pressure gauge was coupled to the implantable device reservoir chamber where the porous structure is shown above. The input pressure to the syringe of 12 N produced a pressure of 85 pounds per square inch (hereinafter “psi”) into the needle and implantable device chamber had a pressure of about 45 psi. This amount of input pressure corresponds to a clinically acceptable exchange time of about 5 seconds, for example.


Additional experiments can be conducted by a person of ordinary skill in the art based on the teachings described herein, for example experiments with an exchange apparatus comprising a polyimide sheath comprising a plurality of openings over a needle as described herein.


Additional experiments can be conducted with one or more of many release control mechanisms to determine the resistance to flow of the release control mechanism suitable for use in accordance with embodiments described herein. For example, studies can be conducted with porous structures of varying dimensions, release rates, and manufacturing processes, in order to measure the flow through the frits with pressure so as to determine the resistance to flow.


While the exemplary embodiments have been described in some detail, by way of example and for clarity of understanding, those of skill in the art will recognize that a variety of modifications, adaptations, and changes may be employed.









TABLE 1A







Therapeutic Agent List











Generic Name
Brands (Companies)
Category
Indication
Molecular Weight














2-Methoxyestradiol
(Paloma
Angiogenesis inhibitors
AMD



analogs
Pharmaceuticals)





3-aminothalidomide






13-cis retinoic acid
Accutane TM (Roche






Pharmaceuticals)





A0003
(Aqumen
A0003
AMD




BioPharmaceuticals)





A5b1 integrin
(Jerini Ophthalmic);
Inhibitors of a5b1
AMD



inhibitor
(Ophthotech)
integrin




Abarelix
Plenaxis ™ (Praecis
Anti-Testosterone
For palliative treatment of advanced
37731



Pharmaceuticals)
Agents; Antineoplastic
prostate cancer.





Agents




Abatacept
Orencia ™ (Bristol-Myers
Antirheumatic Agents
For the second line reduction of the
37697



Squibb)

signs and symptoms of moderate-






to-severe active rheumatoid






arthritis, inducing major clinical






response, slowing the progression






of structural damage, and improving






physical function in adult patients






who have



Abciximab
ReoPro ™; ReoPro ™
Anticoagulants;
For treatment of myocardial
42632



(Centocor)
Antiplatelet Agents
infarction, adjunct to percutaneous






81oronary intervention, unstable






angina



ABT-578
(Abbott Laboratories)
Limus Immunophilin






Binding Compounds




Acetonide






Adalimumab
Humira ™ (Abbott
Antirheumatic Agents;
Uveitis, AMD
25645



Laboratories)
Immunomodulatory






Agents




Aldesleukin
Proleukin ™; Proleukin ™
Antineoplastic Agents
For treatment of adults with
61118



(Chiron Corp)

metastatic renal cell carcinoma



Alefacept
Amevive ™
Immunomodulatory
For treatment of moderate to severe
42632




Agents;
chronic plaque psoriasis





Immunosuppressive






Agents




Alemtuzumab
Campath ™; Campath ™
Antineoplastic Agents
For treatment of B-cell chronic
6614



(ILEX Pharmaceuticals

lymphocytic leukemia




LP); MabCampath ™





Alpha-1-proteinase
Aralast ™ (Baxter);
Enzyme Replacement
For treatment of panacinar
28518


inhibitor
Prolastin ™ (Talecris
Agents
emphysema




Biotherapeutics C






formerly Bayer)





Alteplase
Activase ™ (Genentech
Thrombolytic Agents
For management of acute
54732



Inc)

myocardial infarction, acute






ischemic strok and for lysis of acute






pulmonary emboli



AMG-1470






Anakinra
Kineret ™ (Amgen Inc)
Anti-Inflammatory
For the treatment of adult
65403




Agents, Non-Steroidal;
rheumatoid arthritis.





Antirheumatic Agents;






Immunomodulatory






Agents




Anecortave acetate






Angiostatin






Anistreplase
Eminase ™ (Wulfing
Thrombolytic Agents
For lysis of acute pulmonary emboli,
54732



Pharma GmbH)

intracoronary emboli and






management of myocardial






infarction



Anti-angiogenesis
(Eyecopharm)
Anti-angiogenesis
AMD



peptides

peptides




Anti-angiogenesis
(TRACON Pharma)
Anti-angiogenesis
AMD



antibodies,

antibodies




TRC093, TRC105






Anti-angiogeric
Icon-1 ™ (Iconic
Anti-angiogeric
AMD



bifunctional protein
Therapeutics)
bifunctional protein,






Icon-1




Anti-endothelial






growth factor






Antihemophilic
Advate ™; Alphanate ™;
Coagulants; Thrombotic
For the treatment of hemophilia A,
70037


Factor
Bioclate ™; Helixate ™;
Agents
von Willebrand diseae and Factor




Helixate FS ™; Hemofil

XIII deficiency




M ™; Humate-P ™;






Hyate: C ™; Koate-HP ™;






Kogenate ™; Kogenate






FS ™; Monarc-M ™;






Monoclate-P ™;






ReFacto ™; Xyntha ™





Antithymocyte
Genzyme);
Immunomodulatory
For prevention of renal transplant
37173


globulin
Thymoglobulin ™
Agents
rejection




(SangStat Medical





Anti-hypertensive
(MacuCLEAR)
Anti-hypertensive
AMD



MC1101

MC1101




Anti-platelet devired






growth factor






Anti-VEGF
(Neurotech); Avastin ™
Anti-VEGF
AMD




(NeoVista)





AP23841
(Ariad)
Limus Immunophilin






Binding Compounds




ARC1905
Ophthotech
Complement Cascade






Inhibitor (Factor C5)




Aprotinin
Trasylol ™
Antifibrinolytic Agents
For prophylactic use to reduce
90569





perioperative blood loss and the






need for blood transfusion in






patients undergoing






cardiopulmonary bypass in the






course of coronary artery bypass






graft surgery who are at an






increased risk for blood loss and






blood transfusio



Arcitumomab
CEA-Scan ™
Diagnostic Agents;
For imaging colorectal tumors
57561




Imaging Agents




Asparaginase
Elspar ™ (Merck & co.
Antineoplastic Agents
For treatment of acute lympocytic
132.118



Inc)

leukemia and non-Hodgkins






lymphoma



Axitinib

Tyrosine Kinase

386




Inhibitors




Basiliximab
Simulect ™ (Novartis
Immunomodulatory
For prophylactic treatment of kidney
61118



Pharmaceuticals)
Agents;
transplant rejection





Immunosuppressive






Agents




Becaplermin
Regranex ™; Regranex ™
Anti-Ulcer Agents;
For topical treatment of skin ulcers
123969



(OMJ Pharmaceuticals)
Topical
(from diabetes)



Bevacizumab
Avastin ™; Avastin ™
Antiangiogenesis
For treatment of metastatic
27043



(Genentech Inc)
Agents; Antineoplastic
colorectal cancer





Agents




Bivalirudin
Angiomax ™; Angiomax ™
Anticoagulants;
For treatment of heparin-induced
70037



(Medicines Co or MDCO);
Antithrombotic Agents
thrombocytopenia




Angiox ™





Bortezomib

Proteosome Inhibitors




Bosutinib

Tyrosine Kinase

530




Inhibitors




Botulinum Toxin
BOTOX ™ (Allegran Inc);
Anti-Wrinkle Agents;
For the treatment of cervical
23315


Type A
BOTOX Cosmetic ™
Antidystonic Agents;
dystonia in adults to decrease the




(Allegran Inc); Botox ™;
Neuromuscular Blocking
severity of abnormal head position




Dysport ™
Agents
and neck pain associated with






cervical dystonia. Also for the






treatment of severe primary axillary






hyperhidrosis that is inadequately






managed with topical



Botulinum Toxin
Myobloc ™ (Solstice
Antidystonic Agents
For the treatment of patients with
12902


Type B
Neurosciences);

cervical dystonia to reduce the




Neurobloc ™ (Solstice

severity of abnormal head position




Neurosciences)

and neck pain associated with






cervical dystonia.



C5 inhibitor
(Jerini Ophthalmic);
Inhibitors of C5
AMD




(Ophthotech)





Cal101
Calistoga
PI3Kdelta Inhibitor
AMD, DME



Canstatin






Capromab
ProstaScint ™ (Cytogen
Imaging Agents
For diagnosis of prostate cancer
84331



Corp)

and detection of intra-pelvic






metastases



Captopril

ACE Inhibitors




CCI-779
(Wyeth)
Limus Immunophilin






Binding Compounds




Cediranib

Tyrosine Kinase

450




Inhibitors




Celecoxib

Cyclooxygenase






Inhibitors




Cetrorelix
Cetrotide ™
Hormone Antagonists;
For the inhibition of premature LH
78617




Infertility Agents
surges in women undergoing






controlled ovarian stimulation



Cetuximab
Erbitux ™; Erbitux ™
Antineoplastic Agents
For treatment of metastatic
42632



(ImClone Systems Inc)

colorectal cancer.



Choriogonadotropin
Novarel ™; Ovidrel ™;
Fertility Agents;
For the treatment of female infertility
78617


alfa
Pregnyl ™; Profasi ™
Gonadotropins




Cilary neurotrophic
(Neurotech)
Cilary neurotrophic
AMD



factor

factor




Coagulation Factor
Benefix ™ (Genetics
Coagulants; Thrombotic
For treatment of hemophilia
267012


IX
Institute)
Agents
(Christmas disease).



Coagulation factor
NovoSeven ™ (Novo
Coagulants; Thrombotic
For treatment of hemorrhagic
54732


VIIa
Nordisk)
Agents
complications in hemophilia A and B



Colchicines






Collagenase
Cordase ™; Santyl ™
Anti-Ulcer Agents;
For treatment of chronic dermal
138885



(Advance Biofactures
Topical
ulcers and severe skin burns




Corp); Xiaflextm ™





Complement factor
(Optherion); (Taligen
Complement factor H
AMD, Geographic Atrophy



H recombinant
Therapeutics)
recombinant




Compstatin
(Potentia
Complement Factor C3
AMD



derivative peptide,
Pharmaceuticals)
Inhibitors; Compstatin




POT-4

Derivative Peptides




Corticotropin
ACTH ™; Acethropan ™;
Diagnostic Agents
For use as a diagnostic agent in the
33927



Acortan ™; Acthar ™;

screening of patients presumed to




Exacthin ™; H.P. Acthar

have adrenocortical insufficiency.




Gel ™; Isactid ™; Purified






cortrophin gel ™;






Reacthin ™; Solacthyl ™;






Tubex





Cosyntropin
Cortrosyn ™; Synacthen
Diagnostic Agents
For use as a diagnostic agent in the
33927



depot ™

screening of patients presumed to






have adrenocortical insufficiency.



Cyclophilins

Limus Immunophilin






Binding Compounds




Cyclosporine
Gengraf ™ (Abbott labs);
Antifungal Agents;
For treatment of transplant
32953



Neoral ™ (Novartis);
Antirheumatic Agents;
rejection, rheumatoid arthritis,




Restasis ™; Restasis ™
Dermatologic Agents;
severe psoriasis




(Allergan Inc);
Enzyme Inhibitors;





Sandimmune ™
Immunomodulatory





(Novartis); Sangcya ™
Agents;






Immunosuppressive






Agents




Daclizumab
Zenapax ™ (Hoffmann-La
Immunomodulatory
For prevention of renal transplant
61118



Roche Inc)
Agents;
rejection; Uveitis





Immunosuppressive






Agents




Darbepoetin alfa
Aranesp ™ (Amgen Inc.)
Antianemic Agents
For the treatment of anemia (from
55066





renal transplants or certain HIV






treatment)



Dasatinib

Tyrosine Kinase

488




Inhibitors




Defibrotide
Dasovas ™; Noravid ™;
Antithrombotic Agents
Defibrotide is used to treat or
36512



Prociclide ™

prevent a failure of normal blood






flow (occlusive venous disease,






OVD) in the liver of patients who






have had bone marrow transplants






or received certain drugs such as






oral estrogens, mercaptopurine,






and many others.



Denileukin diftitox
Ontak ™
Antineoplastic Agents
For treatment of cutaneous T-cell
61118





lymphoma



Desmopressin
Adiuretin ™;
Antidiuretic Agents;
For the management of primary
46800



Concentraid ™; Stimate ™
Hemostatics; Renal
nocturnal enuresis and indicated as





Agents
antidiuretic replacement therapy in






the management of central diabetes






insipidus and for the management






of the temporary polyuria and






polydipsia following head trauma or






surgery in the pitu



Dexamethasone
Ozurdex ™ (Allergan)
Glucocorticoid
DME, inflammation, macular edema
392





following branch retinal vein






occlusion (BRVO) or central retinal






vein occlusion (CRVO)



Diclofenac

Cyclooxygenase






Inhibitors




Dithiocarbamate

NFκB Inhibitor




Dornase Alfa
Dilor ™; Dilor-400 ™;
Enzyme Replacement
For the treatment of cystic fibrosis.
7656 (double



Lufyllin ™; Lufyllin-400 ™;
Agents

strand)



Neothylline ™;






Pulmozyme ™






(Genentech Inc)





Drotrecogin alfa
Xigris ™; Xigris ™ (Eli Lilly
Antisepsis Agents
For treatment of severe sepsis
267012



& Co)





Eculizumab
Soliris ™; Soliris ™
Complement Cascade
AMD
188333



(Alexion
Inhibitor (Factor C5)





Pharmaceuticals)





Efalizumab
Raptiva ™; Raptiva ™
Immunomodulatory
For the treatment of adult patients
128771



(Genentech Inc)
Agents;
with moderate to severe chronic





Immunosuppressive
plaque psoriasis, who are





Agents
candidates for phototherapy or






systemic therapy.



Endostatin






Enfuvirtide
Fuzeon ™; Fuzeon ™
Anti-HIV Agents; HIV
For treatment of HIV AIDS
16768



(Roche Pharmaceuticals)
Fusion Inhibitors




Epoetin alfa
Epogen ™ (Amgen Inc.);
Antianemic Agents
For treatment of anemia (from renal
55066



Epogin ™ (Chugai);

transplants or certain HIV




Epomax ™ (Elanex);

treatment)




Eprex ™ (Janssen-Cilag.






Ortho Biologics LLC);






NeoRecormon ™ (Roche);






Procrit ™ (Ortho Biotech);






Recormon ™ (Roche)





Eptifibatide
Integrilin ™; Integrilin ™
Anticoagulants;
For treatment of myocardial
7128



(Millennium Pharm)
Antiplatelet Agents;
infarction and acute coronary





Platelet Aggregation
syndrome.





Inhibitors




Erlotinib

Tyrosine Kinase

393




Inhibitors




Etanercept
Enbrel ™; Enbrel ™
Antirheumatic Agents;
Uveitis, AMD
25645



(Immunex Corp)
Immunomodulatory






Agents




Everolimus
Novartis
Limus Immunophilin
AMD





Binding Compounds,






mTOR




Exenatide
Byetta ™; Byetta ™

Indicated as adjunctive therapy to
53060



(Amylin/Eli Lilly)

improve glycemic control in patients






with Type 2 diabetes mellitus who






are taking metformin, a






sulfonylurea, or a combination of






both, but have not achieved






adequate glycemic control.



FCFD4514S
Genentech/Roche
Complement Cascade
AMD, Geographic Atrophy





Inhibitor (Factor D)




Felypressin
Felipresina ™ [INN-
Renal Agents;
For use as an alternative to
46800



Spanish]; Felipressina ™
Vasoconstrictor Agents
adrenaline as a 91 ocalizing agent,




[DCIT]; Felypressin ™

provided that local ischaemia is not




[USAN:BAN:INN];

essential.




Felypressine ™ [INN-






French]; Felypressinum ™






[INN-Latin];






Octapressin ™





Fenretinide
Sirion/reVision
Binding Protein
AMD, Geographic Atrophy




Therapeutics
Antagonist for Oral






Vitamin A




Filgrastim
Neupogen ™ (Amgen
Anti-Infective Agents;
Increases leukocyte production, for
28518



Inc.)
Antineutropenic Agents;
treatment in non-myeloid





Immunomodulatory
cancer, neutropenia and bone





Agents
marrow transplant



FK605-binding

Limus Immunophilin




proteins, FKBPs

Binding Compounds




Fluocinolone
Retisert ™ (Bausch &
Glucocorticoid
Retinal inflammation, diabetic
453


Acetonide
Lomb); Iluvien ™ (Alimera

macular edema




Sciences, Inc.)





Follitropin beta
Follistim ™ (Organon);
Fertility Agents
For treatment of female infertility
78296



Gonal F ™; Gonal-F ™





Fumagillin






Galsulfase
Naglazyme ™;
Enzyme Replacement
For the treatment of adults and
47047



Naglazyme ™ (BioMarin
Agents
children with




Pharmaceuticals)

Mucopolysaccharidosis VI.



Gefitinib

Tyrosine Kinase

447




Inhibitors




Gemtuzumab
Mylotarg ™; Mylotarg ™
Antineoplastic Agents
For treatment of acute myeloid
39826


ozogamicin
(Wyeth)

leukemia



Glatiramer Acetate
Copaxone ™
Adjuvants, Immunologic;
For reduction of the frequency of
29914




Immunosuppressive
relapses in patients with Relapsing-





Agents
Remitting Multiple Sclerosis.



Glucagon
GlucaGen ™ (Novo
Antihypoglycemic
For treatment of severe
54009


recombinant
Nordisk); Glucagon ™ (Eli
Agents
hypoglycemia, also used in




Lilly)

gastrointestinal imaging



Goserelin
Zoladex ™
Antineoplastic Agents;
Breast cancer; Prostate carcinoma;
78617




Antineoplastic Agents,
Endometriosis





Hormonal




Human Serum
Albutein ™ (Alpha
Serum substitutes
For treatment of severe blood loss,
39000


Albumin
Therapeutic Corp)

hypervolemia, hypoproteinemia



Hyaluronidase
Vitragan ™; Vitrase ™;
Anesthetic Adjuvants;
For increase of absorption and
69367



Vitrase ™ (Ista Pharma)
Permeabilizing Agents
distribution of other injected drugs






and for rehydration



Ibritumomab
Zevalin ™ (IDEC
Antineoplastic Agents
For treatment of non-Hodgkin's
33078



Pharmaceuticals)

lymphoma



Idursulfase
Elaprase ™ (Shire
Enzyme Replacement
For the treatment of Hunter
47047



Pharmaceuticals)
Agents
syndrome in adults and children






ages 5 and older.



Imatinib

Tyrosine Kinase
AMD, DME
494




Inhibitors




Immune globulin
Civacir ™; Flebogamma ™
Anti-Infectives;
For treatment of
42632



(Instituto Grifols SA);
Immunomodulatory
immunodeficiencies,




Gamunex ™ (Talecris
Agents
thrombocytopenic purpura,




Biotherapeutics)

Kawasaki disease,






gammablobulinemia, leukemia,






bone transplant



Infliximab
Remicade ™ (Centocor
Immunomodulatory
Uveitis, AMD
25645



Inc)
Agents;






Immunosuppressive






Agents




Insulin Glargine
Lantus ™
Hypoglycemic Agents
For treatment of diabetes (type I
156308


recombinant


and II)



Insulin Lyspro
Humalog ™ (Eli Lily);
Hypoglycemic Agents
For treatment of diabetes (type I
154795


recombinant
Insulin Lispro (Eli Lily)

and II)



Insulin recombinant
Novolin R ™ (Novo
Hypoglycemic Agents
For treatment of diabetes (type I
156308



Nordisk)

and II)



Insulin, porcine
Iletin II ™
Hypoglycemic Agents
For the treatment of diabetes (type I
156308





and II)



Interferon






Interferon Alfa-2a,
Roferon A ™ (Hoffmann-
Antineoplastic Agents;
For treatment of chronic hepatitis C,
57759


Recombinant
La Roche Inc); Veldona ™
Antiviral Agents
hairy cell leukemia, AIDS-related




(Amarillo Biosciences)

Kaposi's sarcoma, and chronic






myelogenous leukemia. Also for the






treatment of oral warts arising from






HIV infection.



Interferon Alfa-2b,
Intron A ™ (Schering
Antineoplastic Agents;
For the treatment of hairy cell
57759


Recombinant
Corp)
Antiviral Agents;
leukemia, malignant melanoma,





Immunomodulatory
and AIDS-related Kaposi's





Agents
sarcoma.



Interferon alfacon-1
Advaferon ™; Infergen ™
Antineoplastic Agents;
For treatment of hairy cell leukemia,
57759



(InterMune Inc)
Antiviral Agents;
malignant melanoma, and AIDS-





Immunomodulatory
related Kaposi's sarcoma





Agents




Interferon alfa-n1
Wellferon ™
Antiviral Agents;
For treatment of venereal or genital
57759



(GlaxoSmithKline)
Immunomodulatory
warts caused by the Human





Agents
Papiloma Virus



Interferon alfa-n3
Alferon ™ (Interferon
Antineoplastic Agents;
For the intralesional treatment of
57759



Sciences Inc.); Alferon
Antiviral Agents;
refractory or recurring external




LDO ™; Alferon N
Immunomodulatory
condylomata 95cuminate.




Injection ™
Agents




Interferon beta-1b
Betaseron ™ (Chiron
Antiviral Agents;
For treatment of relapsing/remitting
57759



Corp)
Immunomodulatory
multiple sclerosis





Agents




Interferon gamma-
Actimmune ™;
Antiviral Agents;
For treatment of Chronic
37835


1b
Actimmune ™ (InterMune
Immunomodulatory
granulomatous disease,




Inc)
Agents
Osteopetrosis



Lapatinib

Tyrosine Kinase

581




Inhibitors




Lepirudin
Refludan ™
Anticoagulants;
For the treatment of heparin-
70037




Antithrombotic Agents;
induced thrombocytopenia





Fibrinolytic Agents




Lestaurtinib

Tyrosine Kinase

439




Inhibitors




Leuprolide
Eligard ™ (Atrix Labs/QLT
Anti-Estrogen Agents;
For treatment of prostate cancer,
37731



Inc)
Antineoplastic Agents
endometriosis, uterine fibroids and






premature puberty



Lutropin alfa
Luveris ™ (Serono)
Fertility Agents
For treatment of female infertility
78617


Mecasermin
Increlex ™; Increlex ™

For the long-term treatment of
154795



(Tercica); Iplex

growth failure in pediatric patients






with Primary IGFD or with GH gene






deletion who have developed






neutralizing antibodies to GH. It is






not indicated to treat Secondary






IGFD resulting from GH deficiency,






malnutrition, hypoth



Menotropins
Repronex ™
Fertility Agents
For treatment of female infertility
78617


Methotrexate

Immunomodulatory
Uveitis, DME



mTOR inhibitors






Muromonab
Orthoclone OKT3 ™
Immunomodulatory
For treatment of organ transplant
23148



(Ortho Biotech)
Agents;
recipients, prevention of organ





Immunosuppressive
rejection





Agents




Natalizumab
Tysabri ™
Immunomodulatory
For treatment of multiple sclerosis.
115334




Agents




Nepafenac

Cyclooxygenase






Inhibitors




Nesiritide
Natrecor ™
Cardiac drugs
For the intravenous treatment of
118921





patients with acutely






decompensated congestive heart






failure who have dyspnea at rest or






with minimal activity.



Nilotinib

Tyrosine Kinase

530




Inhibitors




NS398

Cyclooxygenase






Inhibitors




Octreotide
Atrigel ™; Longastatin ™;
Anabolic Agents;
For treatment of acromegaly and
42687



Sandostatin ™;
Antineoplastic Agents,
reduction of side effects from




Sandostatin LAR ™;
Hormonal;
cancer chemotherapy




Sandostatin LAR ™
Gastrointestinal Agents;





(Novartis)
Hormone Replacement






Agents




Omalizumab
Xolair ™ (Genentech Inc)
Anti-Asthmatic Agents;
For treatment of asthma caused by
29596




Immunomodulatory
allergies





Agents




Oprelvekin
Neumega ™; Neumega ™
Coagulants;
Increases reduced platelet levels
45223



(Genetics Institute Inc)
Thrombotics
due to chemotherapy



OspA lipoprotein
LYMErix ™ (SmithKline
Vaccines
For prophylactic treatment of Lyme
95348



Beecham)

Disease



OT-551
(Othera)
Anti-oxidant eyedrop
AMD



Oxytocin
Oxytocin ™ (BAM
Anti-tocolytic Agents;
To assist in labor, elective labor
12722



Biotech); Pitocin ™
Labor Induction Agents;
induction, uterine contraction




(Parke-Davis);
Oxytocics
induction




Syntocinon ™ (Sandoz)





Palifermin
Kepivance ™ (Amgen Inc)
Antimucositis Agents
For treatment of mucositis (mouth
138885





sores)



Palivizumab
Synagis ™
Antiviral Agents
For treatment of respiratory
63689





diseases casued by respiratory






syncytial virus



Panitumumab
Vectibix ™; Vectibix ™
Antineoplastic Agents
For the treatment of EGFR-
134279



(Amgen)

expressing, metastatic colorectal






carcinoma with disease progression






on or following fluoropyrimidine-,






oxaliplatin-, and irinotecan-






containing chemotherapy regimens.



PDGF inhibitor
(Jerini Ophthalmic);
Inhibitors of PDGF
AMD




(Ophthotech)





PEDF (pigment






epithelium derived






factor)






Pegademase
Adagen ™ (Enzon Inc.)
Enzyme Replacement
For treatment of adenosine
36512


bovine

Agents
deaminase deficiency



Pegaptanib
Macugen ™
Oligonucleotide
For the treatment of neovascular
103121





(wet) age-related macular






degeneration.



Pegaspargase
Oncaspar ™ (Enzon Inc)
Antineoplastic Agents
For treatment of acute
132.118





lymphoblastic leukemia



Pegfilgrastim
Neulasta ™ (Amgen Inc.)
Anti-Infective Agents;
Increases leukocyte production, for
28518




Antineutropenic Agents;
treatment in non-myeloid cancer,





Immunomodulatory
neutropenia and bone marrow





Agents
transplant



Peginterferon alfa-
Pegasys ™ (Hoffman-La
Antineoplastic Agents;
For treatment of hairy cell leukemia,
57759


2a
Roche Inc)
Antiviral Agents;
malignant melanoma, and AIDS-





Immunomodulatory
related Kaposi's sarcoma.





Agents




Peginterferon alfa-
PEG-Intron (Schering
Antineoplastic Agents;
For the treatment of chronic
57759


2b
Corp); Unitron PEG ™
Antiviral Agents;
hepatitis C in patients not previously





Immunomodulatory
treated with interferon alpha who





Agents
have compensated liver disease






and are at least 18 years of age.



Pegvisomant
Somavert ™ (Pfizer Inc)
Anabolic Agents;
For treatment of acromegaly
71500




Hormone Replacement






Agents




Pentoxifylline






Perindozril

ACE Inhibitors




Pimecrolimus

Limus Immunophilin






Binding Compounds




PKC (protein kinase






C) inhibitors






POT-4
Potentia/Alcon
Complement Cascade
AMD





Inhibitor (Factor C3)




Pramlintide
Symlin ™; Symlin ™

For the mealtime treatment of Type
16988



(Amylin Pharmaceuticals)

I and Type II diabetes in






combination with standard insulin






therapy, in patients who have failed






to achieve adequate glucose control






on insulin monotherapy.



Proteosome
Velcade ™

Proteosome inhibitors



inhibitors






Pyrrolidine






Quinopril

ACE Inhibitors




Ranibizumab
Lucentis ™

For the treatment of patients with
27043





neovascular (wet) age-related






macular degeneration.



Rapamycin
(MacuSight)
Limus Immunophilin
AMD



(siroliums)

Binding Compounds




Rasburicase
Elitek ™; Elitek ™ (Sanofi-
Antihyperuricemic
For treatment of hyperuricemia,
168.11



Synthelabo Inc);
Agents
reduces elevated plasma uric acid




Fasturtec ™

levels (from chemotherapy)



Reteplase
Retavase ™ (Centocor);
Thrombolytic Agents
For lysis of acute pulmonary emboli,
54732



Retavase ™ (Roche)

intracoronary emboli and






management of myocardial






infarction



Retinal stimulant
Neurosolve ™
Retinal stimulants
AMD




(Vitreoretinal






Technologies)





Retinoid(s)






Rituximab
MabThera ™; Rituxan ™
Antineoplastic Agents
For treatment of B-cell non-
33078





Hodgkins lymphoma (CD20






positive)



RNAI (RNA






interference of






angiogenic factors)






Rofecoxib
Vioxx ™; Ceoxx ™;
Cyclooxygenase





Ceeoxx ™ (Merck & Co.)
Inhibitors




Rosiglitazone

Thiazolidinediones




Ruboxistaurin
Eli Lilly
Protein Kinase C (PKC)-
DME, diabetic peripheral
469




b Inhibitor
retinopathy



Salmon Calcitonin
Calcimar ™; Miacalcin ™
Antihypocalcemic
For the treatment of post-
57304



(Novartis)
Agents; Antiosteporotic
menopausal osteoporosis





Agents; Bone Density






Conservation Agents




Sargramostim
Immunex ™; Leucomax ™
Anti-Infective Agents;
For the treatment of cancer and
46207



(Novartis); Leukine ™;
Antineoplastic Agents;
bone marrow transplant




Leukine ™ (Berlex
Immunomodulatory





Laboratories Inc)
Agents




SAR 1118
SARCode
Immunomodulatory
Dry eye, DME, conjunctivitis





Agent




SDZ-RAD

Limus Immunophilin






Binding Compounds




Secretin
SecreFlo ™; Secremax ™,
Diagnostic Agents
For diagnosis of pancreatic
50207



SecreFlo ™ (Repligen

exocrine dysfunction and




Corp)

gastrinoma



Selective inhibitor






of the factor 3






complement






cascade






Selective inhibitor






of the factor 5






complement






cascade






Semaxanib

Tyrosine Kinase

238




Inhibitors




Sermorelin
Geref ™ (Serono Pharma)
Anabolic Agents;
For the treatment of dwarfism,
47402




Hormone Replacement
prevention of HIV-induced weight





Agents
loss



Serum albumin
Megatope ™ (IsoTex
Imaging Agents
For determination of total blood and
39000


iodinated
Diagnostics)

plasma volumes



SF1126
Semafore
PI3k/mTOR Inhibition
AMD, DME



Sirolimus
(MacuSight)
Limus Immunophilin
AMD



reformulation

Binding Compounds




(rapamycin)






siRNA molecule
(Quark Pharmaceuticals)
siRNA molecule
AMD



synthetic, FTP-

synthetic




801i-14






Somatropin
BioTropin ™ (Biotech
Anabolic Agents;
For treatment of dwarfism,
71500


recombinant
General); Genotropin ™
Hormone Replacement
acromegaly and prevention of HIV-




(Pfizer); Humatrope ™ (Eli
Agents
induced weight loss




Lilly); Norditropin ™ (Novo






Nordisk); Nutropin ™






(Genentech Inc.);






NutropinAQ ™






(Genentech Inc.);






Protropin ™ (Genentech






Inc.); Saizen ™ (Serono






SA); Serostim ™;






Serostim ™ (Serono SA);






Tev-Tropin ™ (GATE)





Squalamine






Streptokinase
Streptase ™ (Aventis
Thrombolytic Agents
For the treatment of acute evolving
90569



Behringer GmbH)

transmural myocardial infarction,






pulmonary embolism, deep vein






thrombosis, arterial thrombosis or






embolism and occlusion of






arteriovenous cannulae



Sunitinib

Tyrosine Kinase

398




Inhibitors




TA106
Taligen
Complement Cascade
AMD





Inhibitor (Factor B)




Tacrolimus

Limus Immunophilin






Binding Compounds




Tenecteplase
TNKase ™ (Genentech
Thrombolytic Agents
For treatment of myocardial
54732



Inc)

infarction and lysis of intracoronary






emboli



Teriparatide
Apthela ™; Forsteo ™;
Bone Density
For the treatment of osteoporosis in
66361



Forteo ™; Fortessa ™;
Conservation Agents
men and postmenopausal women




Opthia ™; Optia ™;

who are at high risk for having a




Optiah ™; Zalectra ™;

fracture. Also used to increase bone




Zelletra ™

mass in men with primary or






hypogonadal osteoporosis who are






at high risk for fracture.



Tetrathiomolybdate






Thalidomide
Celgene
Anti-inflammatory, Anti-
Uveitis





proliferative




Thyrotropin Alfa
Thyrogen ™ (Genzyme
Diagnostic Agents
For detection of residueal or
86831



Inc)

recurrent thyroid cancer



Tie-1 and Tie-2






kinase inhibitors






Toceranib

Tyrosine Kinase

396




Inhibitors




Tositumomab
Bexxar ™ (Corixa Corp)
Antineoplastic Agents
For treatment of non-Hodgkin's
33078





lymphoma (CD20 positive, follicular)



TPN 470 analogue






Trastuzumab
Herceptin ™ (Genentech)
Antineoplastic Agents
For treatment of HER2-positive
137912





pulmonary breast cancer



Triamcinolone
Triesence ™
Glucocorticoid
DME, For treatment of inflammation
435


acetonide


of the retina



Troglitazone

Thiazolidinediones




Tumistatin






Urofollitropin
Fertinex ™ (Serono S.A.)
Fertility Agents
For treatment of female infertility
78296


Urokinase
Abbokinase ™;
Thrombolytic Agents
For the treatment of 105ulmonary
90569



Abbokinase ™ (Abbott

embolism, coronary artery




Laboratories)

thrombosis and IV catheter






clearance



Vandetanib

Tyrosine Kinase

475




Inhibitors




Vasopressin
Pitressin ™; Pressyn ™
Antidiuretics; Oxytocics;
For the treatment of enuresis,
46800




Vasoconstrictor Agents
polyuria, diabetes insipidus,






polydipsia and oesophageal varices






with bleeding



Vatalanib

Tyrosine Kinase

347




Inhibitors




VEGF receptor






kinase inhibitor






VEGF Trap
Aflibercept ™ (Regneron
Genetically Engineered
DME, cancer, retinal vein occlusion,
96600



Pharmaceuticals, Bayer
Antibodies
choroidal neovascularization, delay




HealthCare AG)

wound healing, cancer treatment



Visual Cycle
(Acucela)
Visual Cycle Modulator
AMD



Modulator ACU-






4229






Vitamin(s)






Vitronectin receptor






antagonists






Volociximab
Ophthotech
alpha5beta1 Integrin
AMD





Inhibitor




XL765
Exelixis/Sanofi-Aventis
PI3k/mTOR Inhibition
AMD, DME








Claims
  • 1. A system for injecting a therapeutic agent into an ocular implant, the ocular implant being at least partially implanted in an eye, the system comprising: a connector configured to reversibly couple to a syringe;a needle fixedly coupled to the connector and having a wall defining an injection lumen configured for injecting a therapeutic agent into the ocular implant through an opening from the injection lumen, the therapeutic agent having a first fluid density;a sheath fixedly positioned over the needle, the sheath having a wall defining an outlet lumen between an inner diameter of the wall of the sheath and an outer diameter of the wall of the needle, the wall of the sheath having a wall thickness and at least one opening extending through the wall thickness into the outlet lumen, the outlet lumen providing a pathway through which pre-existing liquid in the ocular implant exits the ocular implant as therapeutic agent is injected into the ocular implant through the needle, the pre-existing liquid having a second fluid density; anda receiver chamber fixedly coupled to the sheath and fluidly coupled to the outlet lumen of the sheath, the receiver chamber configured to receive the pre-existing liquid that exits the ocular implant via the at least one opening extending through the wall thickness of the sheath,wherein the injection lumen is in a fixed position relative to the outlet lumen such that the opening from the injection lumen is positioned distal to a distal end of the sheath, andwherein injection of the therapeutic agent into the ocular implant upon application of positive pressure by the syringe via the injection lumen displaces, with at least partial separation from the injected therapeutic agent, the pre-existing liquid in the ocular implant into the receiver chamber via the at least one opening of the sheath.
  • 2. A system as in claim 1, wherein a distal tip of the sheath tapers such that at least a portion of the distal tip of the sheath contacts an outer surface of the needle.
  • 3. A system as in claim 2, wherein the distal tip of the sheath tapers at an angle of no more than about 20 degrees to a longitudinal axis of the sheath.
  • 4. A system as in claim 1, wherein at least a portion of a distal tip of the sheath is spaced from an outer surface of the needle.
  • 5. A system as in claim 1, wherein the receiver chamber is removable from the injection system.
  • 6. A system as in claim 1, wherein the receiver chamber is removable from the injection system and contains a sample of the displaced pre-existing liquid from the ocular implant, and further comprising a sample container sized and shaped to receive the receiver chamber, the sample container being sized and shaped for placement into a centrifuge.
  • 7. A system as in claim 1, wherein the wall includes a plurality of openings extending through the wall thickness, the plurality of openings positioned circumferentially about the sheath.
  • 8. A system as in claim 1, further comprising a stop coupled to a distal end region of the receiver chamber such that the needle and the sheath extend through the stop, the stop having a surface configured to engage a tissue of the patient.
  • 9. A system as in claim 8, wherein the at least one opening of the sheath is positioned distal to the receiver chamber and is separated distally from the stop by a distance from about 0.25 to about 2 mm.
  • 10. A system as in claim 9, wherein the at least one opening of the sheath is a plurality of openings extending through the wall thickness that are located at a plurality of circumferential locations around a longitudinal axis of the sheath.
  • 11. A system as in claim 9, wherein the at least one opening of the sheath is a plurality of openings extending through the wall thickness that are located at a plurality of axial locations along a longitudinal axis of the sheath.
  • 12. A system as in claim 1, wherein the receiver chamber comprises a penetrable barrier configured to be penetrated by a needle in order to draw a sample from the receiver chamber.
  • 13. A system as in claim 1, wherein the second fluid density is less than the first fluid density.
  • 14. A system as in claim 1, wherein the therapeutic agent has a first fluid viscosity and the pre-existing liquid in the ocular implant has a second fluid viscosity that is less than the first fluid viscosity.
  • 15. A system as in claim 1, wherein the connector comprises a Luer connector, a pressure fit connector, a non-standard connector, or a lock and key mechanism.
  • 16. A system as in claim 1, wherein the connector comprises a lock and the syringe comprises a key configured to unlock the lock of the connector forming a lock and key mechanism to limit access to the system.
  • 17. A system as in claim 16, wherein therapeutic agent flows from the syringe through the at least one opening from the injection lumen when the connector is reversibly coupled to the syringe.
  • 18. A system as in claim 1, wherein a predetermined amount of the therapeutic fluid injected into the ocular implant corresponds to no more than about twice a volume of the ocular implant.
  • 19. A system as in claim 18, wherein the volume of the ocular implant is no more than about 100 uL.
  • 20. A system as in claim 18, wherein the syringe is pre-filled with the predetermined amount of the therapeutic fluid.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority of the following U.S. Provisional patent applications: (1) U.S. Provisional Application Ser. No. 61/535,900, titled, “Fluid Exchange Apparatus and Methods,” filed on Sep. 16, 2011; and (2) U.S. Provisional Application Ser. No. 61/595,604, titled, “Fluid Exchange Apparatus and Methods,” filed on Feb. 6, 2012. The disclosures of the Provisional patent applications are hereby incorporated by reference in their entirety.

US Referenced Citations (432)
Number Name Date Kind
1747814 Bradley Feb 1930 A
2564977 Hu Aug 1951 A
2585815 McLintock Feb 1952 A
3232117 Gilmont Feb 1966 A
3416530 Ness Dec 1968 A
3612089 Beguiristain Oct 1971 A
3618604 Ness Nov 1971 A
3641237 Gould et al. Feb 1972 A
3734095 Santomieri May 1973 A
3828777 Ness Aug 1974 A
3831583 Edmunds, Jr. et al. Aug 1974 A
3845201 Haddad Oct 1974 A
3902495 Weiss et al. Sep 1975 A
3914402 Shell Oct 1975 A
3916899 Theeuwes et al. Nov 1975 A
3926188 Baker et al. Dec 1975 A
3949748 Malmin Apr 1976 A
3949750 Freeman Apr 1976 A
3961628 Arnold Jun 1976 A
3977404 Theeuwes Aug 1976 A
3995635 Higuchi et al. Dec 1976 A
4008719 Theeuwes et al. Feb 1977 A
4014333 McIntyre Mar 1977 A
4014334 Theeuwes et al. Mar 1977 A
4014335 Arnold Mar 1977 A
4034756 Higuchi et al. Jul 1977 A
4034758 Theeuwes Jul 1977 A
4077407 Theeuwes et al. Mar 1978 A
4111201 Theeuwes Sep 1978 A
4111203 Theeuwes Sep 1978 A
4135514 Zaffaroni et al. Jan 1979 A
4160452 Theeuwes Jul 1979 A
4164559 Miyata et al. Aug 1979 A
4179497 Cohen et al. Dec 1979 A
4186184 Zaffaroni Jan 1980 A
4200098 Ayer et al. Apr 1980 A
4220152 Dresback Sep 1980 A
4220153 Dresback Sep 1980 A
4256108 Theeuwes Mar 1981 A
4298000 Thill et al. Nov 1981 A
4300557 Refojo et al. Nov 1981 A
4309776 Berguer Jan 1982 A
4326525 Swanson et al. Apr 1982 A
4327725 Cortese et al. May 1982 A
4343787 Katz Aug 1982 A
4439196 Higuchi Mar 1984 A
4439198 Brightman, II et al. Mar 1984 A
4475916 Himmelstein Oct 1984 A
4484922 Rosenwald Nov 1984 A
4519801 Edgren May 1985 A
4609374 Ayer Sep 1986 A
4627850 Deters et al. Dec 1986 A
4634418 Binder Jan 1987 A
4634427 Hannula et al. Jan 1987 A
4673405 Guittard et al. Jun 1987 A
4693886 Ayer Sep 1987 A
4712550 Sinnett Dec 1987 A
4730013 Bondi et al. Mar 1988 A
4737150 Baeumle et al. Apr 1988 A
4774091 Yamahira et al. Sep 1988 A
4777049 Magruder et al. Oct 1988 A
4781675 White Nov 1988 A
4851228 Zentner et al. Jul 1989 A
4853229 Theeuwes Aug 1989 A
4863457 Lee Sep 1989 A
4865846 Kaufman Sep 1989 A
4883459 Calderon Nov 1989 A
4959217 Sanders et al. Sep 1990 A
4979938 Stephen et al. Dec 1990 A
5049142 Herrick et al. Sep 1991 A
5053030 Herrick et al. Oct 1991 A
5084021 Baldwin Jan 1992 A
5098443 Parel et al. Mar 1992 A
5128145 Edgren et al. Jul 1992 A
5141748 Rizzo Aug 1992 A
5147647 Darougar Sep 1992 A
5164188 Wong Nov 1992 A
5171270 Herrick Dec 1992 A
5174999 Magruder et al. Dec 1992 A
5238687 Magruder et al. Aug 1993 A
5273530 del Cerro et al. Dec 1993 A
5277912 Lowe et al. Jan 1994 A
5282829 Hermes Feb 1994 A
5300114 Gwon et al. Apr 1994 A
5322504 Doherty et al. Jun 1994 A
5322691 Darougar et al. Jun 1994 A
5324518 Orth et al. Jun 1994 A
5334189 Wade Aug 1994 A
5336175 Mames Aug 1994 A
5364343 Apolet et al. Nov 1994 A
5378475 Smith et al. Jan 1995 A
5413572 Wong et al. May 1995 A
5443505 Wong et al. Aug 1995 A
5466233 Weiner et al. Nov 1995 A
5476448 Urich Dec 1995 A
5476511 Gwon et al. Dec 1995 A
5554132 Straits et al. Sep 1996 A
5562915 Lowe et al. Oct 1996 A
5576480 Hopkins et al. Nov 1996 A
5578042 Cumming Nov 1996 A
5674193 Hayes Oct 1997 A
5681572 Seare, Jr. Oct 1997 A
5725493 Avery et al. Mar 1998 A
5755684 Chen May 1998 A
5766242 Wong et al. Jun 1998 A
5770076 Chu et al. Jun 1998 A
5773019 Ashton et al. Jun 1998 A
5797898 Santini, Jr. et al. Aug 1998 A
5807581 Rosenblatt et al. Sep 1998 A
5817075 Giungo Oct 1998 A
5824072 Wong Oct 1998 A
5830173 Avery et al. Nov 1998 A
5830492 Usala Nov 1998 A
5830546 Ehret et al. Nov 1998 A
5836935 Ashton et al. Nov 1998 A
5868697 Richter et al. Feb 1999 A
5902598 Chen et al. May 1999 A
5916584 O'Donoghue et al. Jun 1999 A
5928662 Phillips Jul 1999 A
5951512 Dalton Sep 1999 A
5968008 Grams Oct 1999 A
5972369 Roorda et al. Oct 1999 A
5985328 Chu et al. Nov 1999 A
6001386 Ashton et al. Dec 1999 A
6123861 Santini, Jr. et al. Sep 2000 A
6196993 Cohan et al. Mar 2001 B1
6251090 Avery et al. Jun 2001 B1
6303290 Liu et al. Oct 2001 B1
6331313 Wong et al. Dec 2001 B1
6331523 Kljavin et al. Dec 2001 B1
6375972 Guo et al. Apr 2002 B1
6395300 Straub et al. May 2002 B1
6413540 Yaacobi Jul 2002 B1
6416777 Yaacobi Jul 2002 B1
6420399 Graff et al. Jul 2002 B1
6468264 Gillis et al. Oct 2002 B1
6472162 Coelho et al. Oct 2002 B1
6605066 Gravagna et al. Aug 2003 B1
6663668 Chaouk et al. Dec 2003 B1
6669950 Yaacobi Dec 2003 B2
6685940 Andya et al. Feb 2004 B2
6695821 Sjaarda Feb 2004 B1
6713081 Robinson et al. Mar 2004 B2
6719750 Varner et al. Apr 2004 B2
6740077 Brandau et al. May 2004 B1
6756049 Brubaker et al. Jun 2004 B2
6756058 Brubaker et al. Jun 2004 B2
6869412 Ross Mar 2005 B2
6932983 Straub et al. Aug 2005 B1
6976982 Santini et al. Dec 2005 B2
6986900 Yaacobi Jan 2006 B2
7026329 Crain et al. Apr 2006 B2
7074426 Kochinke Jul 2006 B2
7077848 de Juan, Jr. et al. Jul 2006 B1
7090681 Weber et al. Aug 2006 B2
7094222 Siekas et al. Aug 2006 B1
7094226 Yaacobi Aug 2006 B2
7117870 Prescott Oct 2006 B2
7141023 Diermann et al. Nov 2006 B2
7141152 Le Febre Nov 2006 B2
7181287 Greenberg Feb 2007 B2
7195774 Carvalho et al. Mar 2007 B2
7195778 Fleshner-Barak et al. Mar 2007 B2
7211272 Renner et al. May 2007 B2
7276050 Franklin Oct 2007 B2
7468065 Weber et al. Dec 2008 B2
7476510 Kapur et al. Jan 2009 B2
7585517 Cooper et al. Sep 2009 B2
7615141 Schwartz et al. Nov 2009 B2
7621907 Rodstrom Nov 2009 B2
7625927 Klimko et al. Dec 2009 B2
7678078 Peyman et al. Mar 2010 B1
7686016 Wharton et al. Mar 2010 B2
7699820 French Apr 2010 B1
7709049 Chappa May 2010 B2
7883717 Varner et al. Feb 2011 B2
7893040 Loftsson et al. Feb 2011 B2
7906136 Wong et al. Mar 2011 B2
7909800 Cazzini Mar 2011 B2
7914442 Gazdzinski Mar 2011 B1
7939094 Schwarz et al. May 2011 B2
7973068 Demopulos et al. Jul 2011 B2
8905963 de Juan, Jr. et al. Dec 2014 B2
20020026176 Varner et al. Feb 2002 A1
20020086051 Viscasillas Jul 2002 A1
20020106395 Brubaker Aug 2002 A1
20020110591 Brubaker et al. Aug 2002 A1
20020110592 Brubaker et al. Aug 2002 A1
20020110635 Brubaker et al. Aug 2002 A1
20020188244 Smith Dec 2002 A1
20030003129 Yaacobi Jan 2003 A1
20030005945 Onishi et al. Jan 2003 A1
20030014036 Varner et al. Jan 2003 A1
20030047011 Diermann et al. Mar 2003 A1
20030118649 Gao et al. Jun 2003 A1
20030119177 Gruber et al. Jun 2003 A1
20030176854 Rodstrom Sep 2003 A1
20030185872 Kochinke Oct 2003 A1
20030212383 Cote et al. Nov 2003 A1
20030235603 Schwarz et al. Dec 2003 A1
20040011651 Becker et al. Jan 2004 A1
20040019325 Shekalim Jan 2004 A1
20040024371 Plicchi et al. Feb 2004 A1
20040029832 Zeldis Feb 2004 A1
20040092911 Yaacobi May 2004 A1
20040106906 Yaacobi Jun 2004 A1
20040131654 Yaacobi Jul 2004 A1
20040131655 Yaacobi Jul 2004 A1
20040171997 Wilson et al. Sep 2004 A1
20040209359 Yayon et al. Oct 2004 A1
20040230183 Breegi Nov 2004 A1
20040247487 Commercon et al. Dec 2004 A1
20040260380 Marco et al. Dec 2004 A1
20040260381 Marco et al. Dec 2004 A1
20050064010 Cooper et al. Mar 2005 A1
20050074497 Schultz Apr 2005 A1
20050112175 Yaacobi May 2005 A1
20050112759 Radisic et al. May 2005 A1
20050113806 De Carvalho et al. May 2005 A1
20050119737 Bene et al. Jun 2005 A1
20050143363 de Juan, Jr. et al. Jun 2005 A1
20050154399 Weber et al. Jul 2005 A1
20050163711 Nycz et al. Jul 2005 A1
20050181018 Peyman Aug 2005 A1
20050244467 Nivaggioli et al. Nov 2005 A1
20050244469 Whitcup et al. Nov 2005 A1
20050244472 Hughes et al. Nov 2005 A1
20050255144 Schultz et al. Nov 2005 A1
20050256499 Pettis et al. Nov 2005 A1
20050271703 Anderson et al. Dec 2005 A1
20050271706 Anderson et al. Dec 2005 A1
20050276837 Anderson et al. Dec 2005 A1
20050277802 Larsen et al. Dec 2005 A1
20050281861 Hughes et al. Dec 2005 A1
20050281863 Anderson et al. Dec 2005 A1
20050287188 Anderson et al. Dec 2005 A1
20060013835 Anderson et al. Jan 2006 A1
20060039952 Yaacobi Feb 2006 A1
20060052754 Fields Mar 2006 A1
20060057277 Chappa Mar 2006 A1
20060073182 Wong et al. Apr 2006 A1
20060104969 Oray et al. May 2006 A1
20060110428 DeJuan et al. May 2006 A1
20060129215 Helmus et al. Jun 2006 A1
20060154981 Klimko et al. Jul 2006 A1
20060172941 Rastelli et al. Aug 2006 A1
20060182783 Hughes et al. Aug 2006 A1
20060189608 Bingaman Aug 2006 A1
20060200097 Humayun et al. Sep 2006 A1
20060233858 Tzekov et al. Oct 2006 A1
20060246112 Snyder et al. Nov 2006 A1
20060257450 Mudumba et al. Nov 2006 A1
20060258000 Allen et al. Nov 2006 A1
20060258994 Avery Nov 2006 A1
20070020336 Loftsson et al. Jan 2007 A1
20070021357 Tobia et al. Jan 2007 A1
20070026037 Kloke et al. Feb 2007 A1
20070059336 Hughes et al. Mar 2007 A1
20070071756 Peyman Mar 2007 A1
20070072933 Peyman Mar 2007 A1
20070077270 Wen Apr 2007 A1
20070078359 Luloh et al. Apr 2007 A1
20070083155 Muller Apr 2007 A1
20070088414 Campbell et al. Apr 2007 A1
20070119450 Wharton et al. May 2007 A1
20070128644 Munenaka Jun 2007 A1
20070131610 Peng et al. Jun 2007 A1
20070131611 Peng et al. Jun 2007 A1
20070134305 Zilberman Jun 2007 A1
20070141111 Suokas et al. Jun 2007 A1
20070191863 de Juan, Jr. et al. Aug 2007 A1
20070197491 Robin et al. Aug 2007 A1
20070203174 Klimko et al. Aug 2007 A1
20070212388 Patravale et al. Sep 2007 A1
20070212397 Roth Sep 2007 A1
20070219632 Castillejos Sep 2007 A1
20070233037 Gifford, III et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070243230 de Juan, Jr. et al. Oct 2007 A1
20070260201 Prausnitz et al. Nov 2007 A1
20070265599 Castillejos Nov 2007 A1
20070269487 de Juan, Jr. et al. Nov 2007 A1
20080003219 Peyman Jan 2008 A1
20080004329 Jamieson et al. Jan 2008 A1
20080015545 Sanchez et al. Jan 2008 A1
20080020045 Chappa et al. Jan 2008 A1
20080038316 Wong et al. Feb 2008 A1
20080057561 Takahashi et al. Mar 2008 A1
20080066739 LeMahieu et al. Mar 2008 A1
20080066741 LeMahieu et al. Mar 2008 A1
20080069854 Xiao et al. Mar 2008 A1
20080089923 Burkstrand et al. Apr 2008 A1
20080108954 Mathias May 2008 A1
20080111282 Xie et al. May 2008 A1
20080124372 Hossainy et al. May 2008 A1
20080139674 Archambeau et al. Jun 2008 A1
20080145406 Asgharian et al. Jun 2008 A1
20080146679 Archambeau et al. Jun 2008 A1
20080147021 Jani Jun 2008 A1
20080152694 Lobl et al. Jun 2008 A1
20080154241 Burkstrand et al. Jun 2008 A1
20080161741 Bene et al. Jul 2008 A1
20080167600 Peyman Jul 2008 A1
20080172014 Whitcup et al. Jul 2008 A1
20080181930 Rodstrom et al. Jul 2008 A1
20080195218 Jones Aug 2008 A1
20080207502 Rastelli et al. Aug 2008 A1
20080213611 Asgari Sep 2008 A1
20080216736 David Sep 2008 A1
20080228127 Burns et al. Sep 2008 A1
20080233053 Gross et al. Sep 2008 A1
20080233171 Whitcup et al. Sep 2008 A1
20080233172 Whitcup et al. Sep 2008 A1
20080233173 Whitcup et al. Sep 2008 A1
20080241219 Whitcup et al. Oct 2008 A1
20080241220 Whitcup et al. Oct 2008 A1
20080241221 Whitcup et al. Oct 2008 A1
20080241222 Whitcup et al. Oct 2008 A1
20080241223 Nivaggioli et al. Oct 2008 A1
20080249501 Yamasaki Oct 2008 A1
20080286338 Rosenthal et al. Nov 2008 A1
20080292679 Lyons et al. Nov 2008 A1
20080293691 Brigandi et al. Nov 2008 A1
20090005864 Eggleston Jan 2009 A1
20090012485 Michaels et al. Jan 2009 A1
20090036827 Cazzini Feb 2009 A1
20090043253 Podaima Feb 2009 A1
20090047335 Rastelli et al. Feb 2009 A1
20090061071 McMorrow et al. Mar 2009 A1
20090074786 Dor et al. Mar 2009 A1
20090081271 Clarke et al. Mar 2009 A1
20090081272 Clarke et al. Mar 2009 A1
20090082631 Cronin et al. Mar 2009 A1
20090087494 Kompella et al. Apr 2009 A1
20090092654 de Juan, Jr. et al. Apr 2009 A1
20090093752 Richard et al. Apr 2009 A1
20090099626 de Juan, Jr. et al. Apr 2009 A1
20090104243 Utkhede et al. Apr 2009 A1
20090105749 de Juan, Jr. et al. Apr 2009 A1
20090124997 Pettis et al. May 2009 A1
20090192493 Meng et al. Jul 2009 A1
20090196903 Kliman Aug 2009 A1
20090214601 Chappa et al. Aug 2009 A1
20090220572 Deschatelets et al. Sep 2009 A1
20090224064 Brodbeck et al. Sep 2009 A1
20090234449 de Juan, Jr. et al. Sep 2009 A1
20090240208 Cowan Sep 2009 A1
20090240215 Humayun et al. Sep 2009 A1
20090247458 Watson et al. Oct 2009 A1
20090258069 Burnier et al. Oct 2009 A1
20090259212 Saabbah Oct 2009 A1
20090263346 Taft et al. Oct 2009 A1
20090263495 Watson et al. Oct 2009 A1
20090274730 Watson et al. Nov 2009 A1
20090274771 Watson et al. Nov 2009 A1
20090280470 Fare et al. Nov 2009 A1
20090306025 Lane Dec 2009 A1
20090306595 Shih et al. Dec 2009 A1
20090318545 Silver et al. Dec 2009 A1
20090324686 Cooper et al. Dec 2009 A1
20090324687 Cooper et al. Dec 2009 A1
20090324688 Cooper et al. Dec 2009 A1
20090324689 Cooper et al. Dec 2009 A1
20090324690 Cooper et al. Dec 2009 A1
20090326448 Huo et al. Dec 2009 A1
20090326489 Kensy et al. Dec 2009 A1
20100003333 Watson et al. Jan 2010 A1
20100004189 Watson et al. Jan 2010 A1
20100008997 Watson et al. Jan 2010 A1
20100009008 Watson et al. Jan 2010 A1
20100010452 Paques et al. Jan 2010 A1
20100011888 Pawliszyn et al. Jan 2010 A1
20100015157 Andya et al. Jan 2010 A1
20100015158 Robinson et al. Jan 2010 A1
20100016786 Drews et al. Jan 2010 A1
20100021464 Archambeau et al. Jan 2010 A1
20100022943 Mauch et al. Jan 2010 A1
20100022945 Rodstrom Jan 2010 A1
20100023033 Mauch et al. Jan 2010 A1
20100028442 Archambeau et al. Feb 2010 A1
20100028443 Watson et al. Feb 2010 A1
20100030136 Dacquay et al. Feb 2010 A1
20100034870 Sim et al. Feb 2010 A1
20100083963 Wharton et al. Apr 2010 A1
20100100054 Cormier et al. Apr 2010 A1
20100114017 Lenker et al. May 2010 A1
20100114309 de Juan, Jr. et al. May 2010 A1
20100158980 Kopczynski et al. Jun 2010 A1
20100168535 Robinson et al. Jul 2010 A1
20100174272 Weiner Jul 2010 A1
20100185205 Novakovic et al. Jul 2010 A1
20100189765 Erickson et al. Jul 2010 A1
20100191176 Ho et al. Jul 2010 A1
20100197512 Trinkle et al. Aug 2010 A1
20100211041 Omori et al. Aug 2010 A1
20100216702 Szkudlinski et al. Aug 2010 A1
20100221309 Myers et al. Sep 2010 A1
20100227904 Kabra et al. Sep 2010 A1
20100255061 De Juan, Jr. et al. Oct 2010 A1
20100256597 Prausnitz et al. Oct 2010 A1
20100266664 Asgharian et al. Oct 2010 A1
20100286121 Rohrs et al. Nov 2010 A1
20100286791 Goldsmith Nov 2010 A1
20100297046 Schwartz et al. Nov 2010 A1
20100297120 Beliveau et al. Nov 2010 A1
20100297193 Archambeau et al. Nov 2010 A1
20100303917 Watson et al. Dec 2010 A1
20100303918 Watson et al. Dec 2010 A1
20100310664 Watson et al. Dec 2010 A1
20100310665 Watson et al. Dec 2010 A1
20100316723 Watson et al. Dec 2010 A1
20100330146 Chauhan et al. Dec 2010 A1
20110009571 Taft et al. Jan 2011 A1
20110014264 Helmus et al. Jan 2011 A1
20110033933 Gharib et al. Feb 2011 A1
20110034448 Chang et al. Feb 2011 A1
20110081384 Archambeau et al. Apr 2011 A1
20110098686 Varner et al. Apr 2011 A1
20110104155 Rekik May 2011 A1
20110108025 Fink et al. May 2011 A1
20110111006 Wong et al. May 2011 A1
20110112188 Tobia et al. May 2011 A1
20110117083 Bais et al. May 2011 A1
20110125178 Drews et al. May 2011 A1
20110159073 De Juan et al. Jun 2011 A1
20110190723 Fangrow Aug 2011 A1
20110206646 Alfonso et al. Aug 2011 A1
20110281901 Gupta Nov 2011 A1
20120029445 De Juan, Jr. et al. Feb 2012 A1
20120029470 De Juan, Jr. et al. Feb 2012 A1
20130245544 de Juan, Jr. Sep 2013 A1
20130324942 de Juan, Jr. et al. Dec 2013 A1
Foreign Referenced Citations (135)
Number Date Country
0033042 Aug 1984 EP
0228185 Jul 1990 EP
0498471 Aug 1992 EP
0500143 Aug 1992 EP
0295248 Mar 1993 EP
0671165 Sep 1995 EP
0944658 Jun 2003 EP
1671624 Jun 2006 EP
1385452 Sep 2006 EP
1409065 Jan 2007 EP
1337284 Dec 2007 EP
1911481 Apr 2008 EP
1521572 Mar 2009 EP
01-149716 Jun 1989 JP
01-197429 Aug 1989 JP
08509636 Oct 1996 JP
2001-518880 Oct 2001 JP
2004-516889 Jun 2004 JP
WO 8804573 Jun 1988 WO
WO 9007545 Jul 1990 WO
WO-9424969 Nov 1994 WO
WO 9528984 Nov 1995 WO
WO 9729850 Aug 1997 WO
WO 9825982 Jun 1998 WO
WO-9843611 Oct 1998 WO
WO 9911244 Mar 1999 WO
WO 0048660 Aug 2000 WO
WO 0126714 Apr 2001 WO
WO 0150943 Jul 2001 WO
WO 0168016 Sep 2001 WO
WO-02053128 Jul 2002 WO
WO 02100318 Dec 2002 WO
WO-03028765 Apr 2003 WO
WO 03077972 Sep 2003 WO
WO 03082188 Oct 2003 WO
WO 2004000267 Dec 2003 WO
WO 2004112653 Dec 2004 WO
WO 2005016401 Feb 2005 WO
WO 2005027906 Mar 2005 WO
WO 2005028006 Mar 2005 WO
WO-2005025413 Mar 2005 WO
WO 2005025413 Mar 2005 WO
WO 2005091922 Oct 2005 WO
WO 2005107705 Nov 2005 WO
WO 2005110362 Nov 2005 WO
WO 2005110436 Nov 2005 WO
WO 2005110473 Nov 2005 WO
WO 2005117780 Dec 2005 WO
WO 2006014484 Feb 2006 WO
WO 2006015385 Feb 2006 WO
WO 2006023530 Mar 2006 WO
WO 2006031358 Mar 2006 WO
WO 2006031388 Mar 2006 WO
WO 2006044614 Apr 2006 WO
WO 2006050221 May 2006 WO
WO 2006068838 Jun 2006 WO
WO 2006071554 Jul 2006 WO
WO 2006082588 Aug 2006 WO
WO 2006108054 Oct 2006 WO
WO 2006127962 Nov 2006 WO
WO 2006138609 Dec 2006 WO
WO 2007012974 Feb 2007 WO
WO 2007035473 Mar 2007 WO
WO 2007035621 Mar 2007 WO
WO 2007038453 Apr 2007 WO
WO 2007044534 Apr 2007 WO
WO 2007047744 Apr 2007 WO
WO 2007066339 Jun 2007 WO
WO 2007084582 Jul 2007 WO
WO 2007084765 Jul 2007 WO
WO 2007101204 Sep 2007 WO
WO 2007115259 Oct 2007 WO
WO 2007117394 Oct 2007 WO
WO 2007131050 Nov 2007 WO
WO 2007133761 Nov 2007 WO
WO 2007133762 Nov 2007 WO
WO 2008003043 Jan 2008 WO
WO 2008005240 Jan 2008 WO
WO 2008011125 Jan 2008 WO
WO 2008019265 Feb 2008 WO
WO 2008033924 Mar 2008 WO
WO 2008040062 Apr 2008 WO
WO 2008045272 Apr 2008 WO
WO 2008052145 May 2008 WO
WO 2008060359 May 2008 WO
WO 2008061043 May 2008 WO
WO 2008076544 Jun 2008 WO
WO 2008094989 Aug 2008 WO
WO 2008115290 Sep 2008 WO
WO 2008116165 Sep 2008 WO
WO 2008144340 Nov 2008 WO
WO 2008144919 Dec 2008 WO
WO 2009012075 Jan 2009 WO
WO 2009023615 Feb 2009 WO
WO 2009046164 Apr 2009 WO
WO 2009055620 Apr 2009 WO
WO 2009055671 Apr 2009 WO
WO 2009055729 Apr 2009 WO
WO 2009055824 Apr 2009 WO
WO 2009061607 May 2009 WO
WO 2009073192 Jun 2009 WO
WO 2009086112 Jul 2009 WO
WO 2009089409 Jul 2009 WO
WO 2009094466 Jul 2009 WO
WO 2009112878 Sep 2009 WO
WO 2009117112 Sep 2009 WO
WO 2009124096 Oct 2009 WO
WO 2009128932 Oct 2009 WO
WO 2009134929 Nov 2009 WO
WO 2009137777 Nov 2009 WO
WO-2009137780 Nov 2009 WO
WO 2010008424 Jan 2010 WO
WO 2010021993 Feb 2010 WO
WO 2010047753 Apr 2010 WO
WO 2010062628 Jun 2010 WO
WO 2010066714 Jun 2010 WO
WO 2010075565 Jul 2010 WO
WO 2010078063 Jul 2010 WO
WO 2010088548 Aug 2010 WO
WO 2010093945 Aug 2010 WO
WO 2010095940 Aug 2010 WO
WO 2010125416 Nov 2010 WO
WO 2010126908 Nov 2010 WO
WO 2010135369 Nov 2010 WO
WO 2010141729 Dec 2010 WO
WO 2010147661 Dec 2010 WO
WO 2011008896 Jan 2011 WO
WO 2011008897 Jan 2011 WO
WO 2011028850 Mar 2011 WO
WO 2011034627 Mar 2011 WO
WO 2011079232 Jun 2011 WO
WO 2012019136 Feb 2012 WO
WO-2012019047 Feb 2012 WO
WO-2013003620 Jan 2013 WO
WO-2013022801 Feb 2013 WO
Non-Patent Literature Citations (71)
Entry
U.S. Appl. No. 13/814,461, filed Aug. 14, 2013, 2013/0324918.
U.S. Appl. No. 13/814,464, filed Aug. 14, 2013, 2013/0324942.
U.S. Appl. No. 13/814,466, filed Jun. 28, 2013, 2013/0274691.
U.S. Appl. No. 13/814,470, filed Jun. 19, 2013, 2013/0274692.
U.S. Appl. No. 13/831,695, filed Mar. 15, 2013, 2013/0204209.
U.S. Appl. No. 13/849,445, filed Mar. 22, 2013, 2013/0218081.
U.S. Appl. No. 13/884,343, filed Oct. 14, 2013, 2014/0033800.
U.S. Appl. No. 13/889,328, filed May 7, 2013, 2013/0245544.
U.S. Appl. No. 13/889,339, filed May 7, 2013, 2013/0245573.
U.S. Appl. No. 13/942,610, filed Jul. 15, 2013, 2013/0304031.
U.S. Appl. No. 13/988,298, filed Oct. 14, 2013, 2014/0031769.
PCT/US2012/055216, Sep. 13, 2012, WO2013/040247.
PCT/US2013/022770, Jan. 23, 2013, WO2013/116061.
International Search Report and Written Opinion of PCT Application No. PCT/US2010/022631, dated May 18, 2010, 11 pages total.
Andrews, “Effect of nonsteroidal anti-inflammatory drugs on LFA-1 and ICAM-1 expression in gastric mucosa,” Am J Physiol. Apr. 1994;266(4 Pt 1):G657-664.
Arvo, Agenda for the Summer Eye Research Conference, (Jul. 2009).
Avery et al., “Intravitreal bevacizumab (Avastin) in the treatment of proliferative diabetic retinopathy,” Ophthalmology. Oct. 2006, 113(10):1695-1705.e6.
Bakri et al., “The effect of intravitreal triamcinolone acetonide on intraocular pressure,” Ophthalmic Surgery, Lasers and Imaging, Sep./Oct. 2003; 34(5): 386-390.
Bird et al., Transport Phenomena, John Wiley & Sons, Inc., New York, 1960, pp. 196-201.
Block et al., “Solubility and dissolution of triamcinolone acetonide,” Journal of Pharmaceutical Sciences, Apr. 1973; 62(4):617-621.
Breslin, C.W., et al., “Chapter 7. Slow Release Artificial Tears”, Symposium on Ocular Therapy pp. 77-83, 1977.
Castro et al., “Effect of COX inhibitors on VEGF-induced retinal vascular leakage and experimental corneal and choroidal neovascularization,” Exp Eye Res. Aug. 2004;79(2):275-285.
Chirila et al., “The Vitreous Humor” in Handbook of Biomaterial Properties, eds. Black & Hastings. Chapman & Hall, London, 1998; pp. 125-131.
Cousins et al., “Program # 1251—Targeting Complement Factor 5 in Combination with Vascular Endothelial Growth Factor (VEGF) Inhibition for Neovascular Age Related Macular Degeneration (AMD): Results of a Phase 1 Study,” [Presentation Abstract], AMD Clinical Trials Session # 220, May 3, 2010.
Deissler et al., “VEGF-induced effects on proliferation, migration and tight junctions are restored by ranibizumab (Lucentis) in microvascular retinal endothelial cells,”Br J Ophthalmol 2008; 92:839-843.
Del Amo, et al., Current & future ophthalmic drug delivery systems . . . , Drug Discovery Today, vol. 13, Nos. 3/4, Feb. 2008.
Donoso et al., “The role of inflammation in the pathogenesis of age-related macular degeneration,” Surv Ophthalmol. Mar.-Apr. 2006;51(2):137-52.
Duvvuri et al., Drug Delivery to the Retina: Challenges and Opportunities, Expert Opinion on Biological Therapy, 2003, vol. 3(1): 45-56.
European Medicine Agency, Scientific Discussion; retrieved from the Internet; <http://www.ema.europa.eu/docs/en—GB/document—library/EPAR—-—Scientific—Discussion/human/000715/WC500043550.pdf>, EMEA 2007, 54 pages total. 2007.
Funatsu et al. “Association of vitreous inflammatory factors with diabetic macular edema,” Ophthalmology 2009;116:73-79.
Gaudana et al., Recent Perspectives in Ocular Drug Delivery, Pharmaceutical Research, 2008.
Gaudreault et al., “Preclinical Pharmacokinetics of Ranibizumab (rhuFabV2) after a Single Intravitreal Administration,” Investigative Ophthalmology and Visual Science. 2005;46:726-733. Retrieved from the Internet: <<http://www.iovs.org/cgi/reprint/46/2/726>>.
Gillies et al., “Intravitreal triamcinolone for refractory diabetic macular edema: two-year results of a double-masked, placebo-controlled, randomized clinical trial,” Ophthalmology. Sep. 2006;113(9):1533-1538.
Haller, An Overview of Sustained-release Drug Implants, Retinal Physician, Jan. 2008.
Hastedt & Wright, “Diffusion in porous materials above the percolation threshold,” Pharm. Res. Sep. 1990; 7(9):893-901 (1990).
Heier et al, “Ketorolac versus prednisolone versus combination therapy in the treatment of acute pseudophakic cystoid macular edema,” Ophthalmology. Nov. 2000;107(11):2034-2038 ;discussion 2039.
Janoria et al., Novel Approaches to Retinal Drug Delivery, Expert Opinion Drug Delivery, 2007.
Jena et al., “A Novel Technique for Surface Area and Particle Size Determination of Components of Fuel Cells and Batteries,” Porous Materials, Inc., Dec. 2006, 3 pages total. Downloaded from the Internet: <<http://www.pmiapp.com/publications/docs/A—Novel—technique—for—surface—area.pdf>>.
“Juvederm”, FDA, 2006, XP002670727, Retrieved from the Internet: URL:http://www.accessdata.fda.gov/cdrh—docs/pdf5/P050047b.pdf [retrieved on Mar. 1, 2012] p. 1, last paragraph.
Kang et al., “Inhibitory effects of anti-inflammatory drugs on interleukin-6 bioactivity,” Biol Pharm Bull. Jun. 2001;24(6):701-703.
Katz, I.M., et al., “A Soluble Sustained-Release Ophthalmic Delivery Unit”, 8:5 (May 1977) pp. 728-734.
Lamberts, D.W., M.D., et al., “A Clinical Study of Slow-Releasing Artificial Tears”, Ophthalmology 85 (1978) pp. 794-800.
Lee, D.A., et al., “Glaucoma Filtration Surgery in Rabbits Using Bioerodible Polymers and 5-Fluorouracil”, Ophthalmology 94:12 (1987) pp. 1523-1530.
Lee, D.A., et al., “The Use of Bioerodible Polymers and 5-Fluorouracil in Glaucoma Filtration Surgery”, Investigative Ophthalmology & Visual Science 29-11 (1988) pp. 1692-1697.
Li, et al., An electrochemical intraocular drug delivery device, Science Direct, Sensors and Actuators, www.sciencedirect.com,Jul. 4, 2007.
Lopez-Armada et al., “Modulation of cell recruitment by anti-inflammatory agents in antigen-induced arthritis,” Ann Rheum Dis Nov. 2002;61(11):1027-1030.
Luncentis, INN-Ranibizumab, “Scientific Discussion,” European Medicines Agency ; retrieved from the Internet<http://www.ema.europa.eu/docs/en—GB/document—library/EPAR—-—Assessment—Report—-—Variation/human/000715/WC500101009.pdf> 2010/2011.
MAbPac SCX-10 Column for Monoclonal Antibody Variant Analysis, http://www.dionex.com/en-us/webdocs/87008-DS-MAbPac-SCX-10-Column-20Aug2010-LPN2567-03.pdf.
Metal Powder Industries Federation, Porous Metal Design Guidebook, 2007, 24 pages total. Downloaded from the Internet: <<http://www.mpif.org/DesignCenter/porous.pdf>>.
Miller, DP, et al., Thermophysical Properties of Trehalose and Its Concentrated Aqueous Solutions, Pharmaceutical Research, vol. 14, No. 5, 1997, pp. 578-590.
Molokhia et al, “Transscleral iontophoretic and intravitreal delivery of a macromolecule: Study of ocular distribution in vivo and postmortem with MRI”, Experimental Eye Research 88 (2009) 418-425.
Moritera, T., et al., “Microspheres of Biodegradable Polymers as a Drug-Delivery System in the Vitreous”, Investigative Ophthalmology & Visual Science 32-6 (1991) pp. 1785-1790.
Mott Corporation, “Sintered Metal Powder Media,” American Filtration & Separation Society 2007, 2 pages total. Downloaded from the Internet:<<http://www.afssociety.org/education/0907oneminute.htm>>.
Navarro, “The Optical Design of the Human Eye: a Critical Review,” J Optom, Jan.-Mar. 2009 2(1): 3-18.
Nutan, MTH, et al., General Principles of Suspensions, in Pharmaceutical Suspensions Fron Formulation Development to Manufacturing, editors AK Kulshreshtha, et al., Spinger, 2010.
Okabe et al., “Intraocular tissue distribution of betamethasone after intrascleral administration using a non-biodegradable sustained drug delivery device,” Investigative Ophthalmology and Visual Science. 2003;44:2702-2707. Downloaded from the Internet: <<http://www.iovs.org/cgi/reprint/44/6/2702>>.
Rosenfeld, “The Latest Research: Intravitreal Bevacizumab for Proliferative Diabetic Retinopathy,” Review of Ophthalmology's Retina Online, Feb. 2006; retrieved from the Internet: http://www.revophth.com/archive/newsletter/0206—retina.htm.
Sanborn G.E., et al., Sustained-Release Ganciclovir Therapy for Treatment of Cytomegalovirus Retinitis, Use of an Intravitreal Device, Arch. Ophthalmol, vol. 110, 188-195 (Feb. 1992).
Sheardown and Saltzman, Novel Drug Delivery Systems for Posterior Segment Ocular Disease, Opthalmology: Ocular Angiogenesis: Diseases, Mechanisms and Therapeutics, 2007, pp. 393-408.
Smith et al., “Spectrophotometric determination of pKa values for fluorescein using activity coefficient corrections,” WaterSA 2002; 28(4):395-402.
Smith, T.J., et al., “Intravitreal Sustained-Release Ganciclovir”, Arch. Ophthamol 110 (1992) pp. 255-258.
Soheilian et al., “Pilot Study of Intravitreal Injection of Diclofenac for Treatment of Macular Edema of Various Etiologies,” Retina, Mar. 2010; 30(3): 509-515.
Stay et al. Computer Simulation of Convective and Diffusive Transport of Controlled-Release Drugs in the vitreous Humor, Pharm Res 2003,20(1), pp. 96-102.
Theodossiadis et al., “Intravitreal administration of the anti-tumor necrosis factor agent infliximab for neovascular age-related macular degeneration,” Am J Ophthalmol. May 2009;147(5):825-830.
Weiner, A.L., “Chapter 13: Polymeric Drug Delivery Systems for the Eye”, Polymeric Site-Specific Pharmacotherapy, pp. 315-346, Edited by A.J. Domb (1994) John Wiley & Sons Ltd.
Williams et al., “Treating Diabetic Macular Edema With Ocular NSAIDs,” Retinal Physician, Nov. 2007; retrieved from the Internet: http://www.retinalphysician.com/article.aspx?article=101096>, 5 pages total.
Wright, P., et al. “Slow-Release Artificial Tear Inserts in the Treatment of Dry Eyes Resulting from the Oculomucocutaneous Syndrome”, British Journal of Ophthalmology 67 (1983) pp. 393-397.
Yao et al. (Prevention of Laser Photocoagulation Induced Choroidal Neovascularization Lesions by Intravitreal Doses of Ranibizumab in Cynomolgus Monkeys, ARVO 2009 abstract D906).
Carbonaro, et al. “Nano-pore silicon membrane characterization by diffusion and electrical resistance.” Journal of Membrane Science. 241 (2004):249-255.
Jornitz et al. “Filter Integrity Testing in Liquid Applications, Revisited; Part 1.” Pharmaceutical Technology. Oct. 2001. pp: 34-50.
Millipore. “Filter Integrity Test Methods.” Millipore Corporation. 1999.
Related Publications (1)
Number Date Country
20130165860 A1 Jun 2013 US
Provisional Applications (2)
Number Date Country
61535900 Sep 2011 US
61595604 Feb 2012 US