The invention relates to a filling station for refillable fluid containers. In particular, a self-serve fluid refilling station with cylinder dispenser equipped with a pre-filled refillable fluid container exchange system.
The invention relates to a self-serve fluid filling station for portable fluid containers. Fluids serve a number of uses in today's world, in both industrial and residential settings. Be it the liquid nitrogen used in chemical laboratories, the gasoline used to power combustion engines, or the ammonium hydroxide used to treat lean finely textured beef, fluids have wide industrial applicability. Further, fluid's residential uses include propane for grills, oxygen for the infirm, and carbon dioxide for beverage dispensing devices. There exist other applications of fluids far too numerous to list here.
However, despite the variety in each of the uses for these fluids, one thing remains constant; all of these fluids must be stored in some sort of sealed container. While some of these containers have no mandated qualifications, many of these containers store the fluids at high pressures, which provides for a number of challenges. One such challenge is the need to retain the structural integrity of the container. Another challenge is refilling these pressurized containers without contaminating the contents of the container, as well as not damaging the seal of the pressurized container while engaging the refilling mechanism. Another challenge is filling these containers with a specific volume of liquid especially when that liquid is considered a cryogenic fluid such as liquid carbon dioxide. Due to these challenges, there exist few places where someone can refill a fluid container, and certainly no automated self-serve kiosks to do so in. Further, due to the aforementioned challenges, one must have some level of skill to refill the fluid containers that currently exist in the art. Further, due to legal restrictions on shipping and transporting pressurized containers, this problem is further compounded.
Given these problems, refillable pressurized fluid containers are typically limited to industrial use and refillable only at select refilling facilities. Therefore, there is a need in the art for a means for a non-industrial pressurized fluid container refilling machine that is capable of refilling these containers safely, quickly and with convenience to the customer. In particular, there is a need for an automated self-serve kiosk that is capable of safely, quickly, and efficiently refilling these fluid containers, especially if such a kiosk can automate this task. Further, if this kiosk were able to dispense empty and pre-filled cylinders, it would solve many of the aforementioned problems.
The present invention provides for a fluid filling station, comprising: a supply tank having a dip tube and a valve; a high pressure valve; a flow meter; a pressure relief valve; a first muffler; at least one filling head, wherein said supply tank, said high pressure valve, said flow meter, said pressure relief valve, said first muffler, and said at least one filling head are in fluid communication; a control module; a purge head; a lift and rotation mechanism comprising a refillable fluid container holder, comprising a scale and at least one tank gripper; a display, displaying a user interface; a payment processing module; a telemetry control unit; a power source; an RFID reader; a temperature sensor; a temperature control system; a battery backup, wherein said control module is in electronic communication with said at least one filling head, said purge head, said lift and rotation mechanism, said display, said payment processing module, said telemetry control unit, said power source, said RFID reader, said temperature sensor, said temperature control system, and said battery backup; a second muffler, wherein said second muffler is in fluid communication with said purge head. It should be noted that the phrase “control module” is synonymous with the phrase “CPU.”
In a preferred embodiment, this fluid filling station is suitable for use at retail establishments, comprising a supply tank capable of supplying a gas, the supply tank in fluid communication with a filling head; a holder, shaped to receive a refillable fluid container; a lift mechanism capable of bringing said refillable fluid container into fluid communication with the filling head in a manner where the refillable fluid container can receive gas from the supply tank; a power source connected to a memory, a processor, and a radio communications controller disposed on the filling station; a credit card processing module connected to at least one of said memory, said processor, and said radio communications controller; and at least one sensor.
In yet another preferred embodiment, the present invention comprises a method of refilling a refillable fluid container, comprising the steps of: placing, by a user, a refillable fluid container into a fluid refilling station, said fluid refilling station comprising: a supply tank; a high pressure valve; a flow meter; a pressure relief valve; a first muffler; at least one filling head, wherein said supply tank, said high pressure valve, said flow meter, said pressure relief valve, said first muffler, and said at least one filling head are in fluid communication; a control module; a purge head; a lift and rotation mechanism comprising a refillable fluid container holder having a scale and at least one tank gripper; a display, displaying a user interface; a payment processing module; a telemetry control unit; a power source; an RFID reader; a temperature sensor; a temperature control system; a battery backup, wherein said control module is in electronic communication with said at least one filling head, said purge head, said lift and rotation mechanism, said display, said payment processing module, said telemetry control unit, said power source, said RFID reader, said temperature sensor, said temperature control system, and said battery backup; a second muffler, wherein said second muffler is in fluid communication with said purge head; supplying, payment by the user; running a diagnostic evaluation on the refillable fluid container; exchange of data between a filling station, an external server, and said refillable fluid container; securing the refillable fluid container in said holder; engaging, by the refillable fluid container with the purge head; purging, fluid out of said refillable fluid container; disengaging, said refillable fluid container from said purge head; orienting said refillable fluid container to engage the refill head; and refilling, said refillable fluid container. In some embodiments this fluid filling station further comprising a high pressure air compressor while in other embodiment said refillable fluid container is a refillable fire extinguisher. In other embodiments, the fluid is air.
In another embodiment, the present invention contemplates a fluid filling station, comprising: a supply tank; a filter; a transfer pump; a high pressure valve; a flow meter; a pressure relief valve; a first muffler; at least one filling head, wherein said supply tank, said filter, said transfer pump, said high pressure valve, said flow meter, said pressure relief valve, said first muffler, and said at least one filling head are in fluid communication; a control module; a purge head; a lift and rotation mechanism comprising a refillable fluid container holder having a scale and at least one tank gripper; a display, displaying a user interface; a payment processing module; a telemetry control unit; a power source; an RFID reader; a temperature sensor; a pressure sensor; a temperature control system; a battery backup, wherein said control module is in electronic communication with said at least one filling head, said purge head, said lift and rotation mechanism, said display, said payment processing module, said telemetry control unit, said power source, said RFID reader, said temperature sensor, said temperature control system, and said battery backup; a second muffler, wherein said second muffler is in fluid communication with said purge head. Preferably, said high pressure valve and/or said pressure relief valves are solenoids, said temperature control system comprising a thermostatic-controlled cylinder electric heater jacket, heating and cooling system comprising a compressor based refrigerated cooling unit and heating coil, and wherein said pressure sensor is selected from the group consisting essentially of: pressure sensors, pressure transducers, vacuum transmitters, vacuum transducers, low pressure transducers, electronic pressure sensors, and electronic pressure transducers. In alternative embodiments, this flow meter is selected from the group consisting essentially of: Coriolis Mass meters, vane/piston meters, float-style meters, positive displacement meters, thermal meters, laminar flow elements, paddle wheel meters, magnetic meters, ultrasonic meters, turbine meters, differential pressure meters, and vortex shredding meters. Further, the present invention may be equipped with a valve heater disposed on said supply tank. Alternatively, at least one filling head is comprised of a plunger, a plunger lift mechanism, a fluid inlet, a fluid outlet, and a gasket, wherein said plunger lift mechanism is capable of moving said plunger such that said plunger depresses a pin valve proximate to said plunger, wherein said supply tank is a bulk storage tank, and further comprises a fill port, and wherein said supply tank is in fluid communication with said high pressure valve via a tank connector. In other embodiments the supply tank of the present invention has a dip tube and a valve.
Preferably, the present invention further comprises a housing having a front face, a left face, a right face, a back face, and a top face, wherein said left face or said right face comprises an access panel. In alternative embodiments, said front face further comprises a credit card swipe mechanism; a display showing a user interface; at least one video camera; at least one speaker; at least one microphone; an external bar code scanner; and a cylinder filling area and said top face further comprises an antenna; and an electronic advertising medium.
In another embodiment the invention relates to a fluid filling station, comprising: a supply tank, equipped with a dip tube and a CGA-320 valve; a filling head; at least one tube connected to said supply tank and said filling head, wherein said at least one tube is equipped with a regulator, a solenoid valve, and a pressure relief valve; a connector affixed to said filling head; a holder, shaped to receive a refillable pressurized fluid container; a scale; and a lift mechanism capable of moving said filling head and said connector, or capable of moving said holder, wherein said lift mechanism is equipped with a piston lift; a power source connected to a memory, a processor, and a radio communications controller; a credit card processing module connected to said memory, said processor, and said radio communications controller; at least one sensor.
In a preferred embodiment, the present invention comprises a self-serve CO2 filling station that provides a means for users to fill and re-fill small CO2 refillable cylinders of various sizes. These refillable cylinders may be, for example, a 1 lb (16 oz) or 1.5 lb (24 oz) cylinder. These CO2 cylinders are commonly used for at home beverage carbonation machines but can also be used for other purposes. Preferably, the CO2 cylinders intended to be used with the present invention are made primarily from aluminum. However, it should be contemplated that these cylinders can be made of other materials such as steel, fiberglass, plastic or a combination of said materials. This device can also be adapted to fill other gases including but not limited to argon, nitrogen, propane, oxygen, etc.
In another preferred embodiment, each refillable fluid container will be equipped with a unique identifier printed and/or embedded on it. This unique identifier can be in the form of optical identifiers and electronic identifies, such as, for example, a QR Code, Bar code, Binary Code, or RFID Tag, which will contain information about the cylinder upon which it is attached. Such information may be included, but should not be limited to, the most recent hydrostatic testing date, the cylinder's type, the cylinder's size, as well as the cylinder's maximum and recommended fill pressure and volume. This unique identifier provides a means to track cylinder and user data. For example, by tracking the cylinder with a unique identifier a manufacturer or distributor of these refillable cylinders can tell how many times the cylinder was filled and in what time period, the health of the cylinder, track user consumption habits, and for safety purposes determine if the cylinder is past its hydrostatic testing date, disabling the filling of the cylinder until it is hydrostatically tested. Alternatively, this unique identifier could be used to screen refillable fluid containers that are not proprietary to the present invention.
For example, the present invention is suitable to fill the refillable CO2 containers disclosed in U.S. Pat. No. 8,985,395, the contents of which are hereby incorporated by reference.
In yet another preferred embodiment, the present invention is comprised of an automated self-serve CO2 filling station, which is capable of operating similarly to a standard vending machine or kiosk. There, a user places their CO2 cylinder into the present invention's tank safety holder. Then the present invention reads an identifier, such as a QR Code or RFID tag, on the cylinder and validates the cylinder is able to be refilled. The user interface (preferably displayed on an equipped LCD Touch Screen) on the present invention is capable of indicating to a user that the cylinder is optimized for the present invention and is capable of being refilled by the present invention. The user may then swipe their credit card through the credit card authorization slide/slot which connects through the machine's radio communications controller of the present invention to a secure credit card processing facility, and once approved the present invention begins refilling the fluid container (cylinder), or performing some other desired functionality. In a preferred embodiment, the present invention is equipped with a safety door. This door will block access to the cylinder to prevent a user from touching or moving the cylinder during filling.
In a preferred embodiment, once the safety door is closed the holder raises the cylinder upward until the top of the cylinder engages into the filling head. In a preferred embodiment, this is achieved by a lifting mechanism. This lifting mechanism can be configured to provide for a top lower or a bottom lift. When the lifting mechanism is configured to provide for a top lower, the lifting mechanism will lower and raise a filling head with a sleeve actuated connector assembly. When the lifting mechanism is configured to provide for a bottom lift, the lifting mechanism is capable of raising the safety holder such that the refillable cylinder will engage with a sleeve actuated connector to create fluid communication between the filling head and refillable fluid container. The lifting mechanism may employ, for example, hydraulic pistons, scissor lifts, and/or a series of gears and pulleys. The filling head contains a sleeve-actuated connector, or similar type quick connector that engages with the refillable cylinder's pin valve assembly, locking the two objects together. Once engaged, these two pieces become fluidly connected and the machine can start refilling. The CPU of the present invention will then run a diagnostic on the cylinder to obtain data needed for refilling. Once complete the CPU opens the solenoid valve, preferably a high-pressure solenoid valve, allowing liquid fluid to flow from the supply tank (donor tank) into the refill tank (refillable cylinder). The flow of liquid fluid can be measured by weight in the refill tank using a scale, by volumetric displacement, by special flow meter, or by other standard measuring methods.
Once the specified pressure/weight/quantity has been reached, the CPU closes the solenoid valve stopping the flow of liquid fluid from the supply tank into the fluid refill tank. The CPU communicates with the pressure relief valve opening it to relieve the excess pressure in the line. The sleeve-actuated connector disengages from the cylinder pin valve assembly releasing it, allowing the cylinder to disengage from the filling head. Once this is complete the tank safety holder lowers the cylinder downward until the cylinder is back to its original position. At this point the safety door opens allowing access to the cylinder. The process is complete and the user takes their cylinder. It should be considered that the present invention will be able to alert a company, for example, when the supply tank is empty, is getting low, or needs to be changed or serviced. Preferably, this fluid is CO2.
The present invention also contemplates a method of refilling a refillable fluid container, comprising the steps of placing, by a user, a refillable fluid container into a holder; supplying, payment by the user; securing the refillable fluid container in said holder; engaging, by the refillable fluid container with the purge head; purging, gas out of said refillable fluid container; disengaging, said refillable fluid container from said purge head; orienting said refillable fluid container to engage the refill head; weighing and zeroing out the container; refilling, said refillable fluid container.
In a preferred embodiment, while the present invention is filling a refillable fluid container, the CPU of the present invention will collect a user's data from the current filling session. This data is then transferred via Wi-Fi, or a similar radio communications protocol, across the internet to the company's backend database servers into the user's account. This account may serve as a sharing portal for all user data. This information may be shared with a wide variety of internet-enabled electronic devices as well as various software applications.
Preferably, the CO2 supply tank will be a siphon type CO2 tank. However, any type of CO2 holding tank or CO2 generating system capable of supplying liquid CO2 through the tank valve will be suitable for use with the present invention. This provides the benefit that liquid CO2 may be dispensed as opposed to solely gaseous CO2. Preferably, this tank valve will be a CGA-320 valve. In a preferred embodiment, this liquid CO2 is needed to fill/re-fill the small CO2 refillable cylinder. It should be considered that throughout the application the terms cylinder and tank may be used interchangeably as in CO2 cylinder or CO2 tank.
It should also be considered that in the various embodiments of the present invention the connection method between the filling head and the CO2 refill tank can be performed, for example, by a sleeve-actuated connecter, screw connection, pressure clamping mechanism, quick lock snap connection or similar found in the compressed gas industry. It should also be noted that this CO2 refill tank valve connection can have male or female threads, no treads, or some type of proprietary connection means.
In another preferred embodiment, the present invention will be equipped with a container that a user will be allowed to deposit damaged cylinders into. In yet another preferred embodiment, the present invention is capable of exchanging, housing, selling, and dispensing new cylinders to a user. These cylinders may be pre-filled, may be filled by the machine, or may be distributed without being filled.
In one embodiment, the present invention will be equipped with a mechanism that allows the present invention to hydrostatically test the cylinder to be refilled. This mechanism will allow the cylinder to be pressurized at, for example, 166.66%, 143%, or 150% of the recommended fill pressure while assessing the existence of any leaks.
It should be noted that the present invention may be enclosed in a housing. In one embodiment, this housing is primarily cosmetic and therefore may be shaped in a way that is pleasing to a user. Further, in an alternative embodiment, this housing may have a lip, a small ledge, or a table at the front or side of the housing.
The present invention may be interfaced via a software application. Preferably, this software application will be optimized to run on a smartphone, tablet, or other internet-enabled electronic device. The telemetry control module in the filling station may broadcast signals at frequencies associated with, for example, Wi-Fi or 4G. Further, the telemetry control module transmits and receives user specific data, a data exchange, to a company's backend servers via the users account. This data is captured through the filling stations various sensors including but not limited to its QR Code/Bar Code/RFID reader, camera, microphone, and used to build a usage profile for every customer. This data is used to benefit the customer as well as a given company to make the user's experience simple, as well as track the user's statistics. The operation and transmittal of data between the filling station and the company's backend servers can use, for example MDB protocol and a DEX accountability system which can be assumed to be protected under secure Wi-Fi standards, firewalls and standard internet security procedures that would already be in place. This data will also be optionally encrypted with a standard or proprietary hashing algorithm.
For example, some of a user's data that may be collected will include, but not be limited to, a user's name, address, phone, email, password, frequency of usage, special coupons, reminders emails, demographic identifiers and CO2 usage.
The software application will communicate with the company's servers via internet connectivity to provide inventory updates and sync details between the filling station and users' online account. For example when a user purchases a new refillable fluid cylinder, that user may simply use their internet-enabled electronic device to scan the QR Code/Bar Code on the cylinder and add that item to their online user account for tracking.
In addition, the software application preferably provides a dashboard to a user to view their filling statistics. This can include, for example, CO2 consumption as it relates to the number and type of drinks consumed per day/week/month. This information may in turn be integrated into the user's diet program or other various popular other software application such as My Fitness PAL and iFit®. This will allow the present invention to be a component of a total dietary health program.
Therefore, the present invention succeeds in conferring the following, and others not mentioned, desirable and useful benefits and objectives.
The preferred embodiments of the present invention will now be described with reference to the drawings. Identical elements in the various figures are identified with the same reference numerals.
Reference will now be made in detail to each embodiment of the present invention. Such embodiments are provided by way of explanation of the present invention, which is not intended to be limited thereto. In fact, those of ordinary skill in the art may appreciate upon reading the present specification and viewing the present drawings that various modifications and variations can be made thereto.
Referring to
Supply tank 114 is preferably equipped with dip (siphon) tube 115 as the invention operates best when supply tank 114 is filled with the liquid phase of a fluid. This is preferable because a larger volume of fluid may be dispensed to a user if dispensed in the liquid phase. In this particular embodiment lift mechanism 106 is in the form of a bottom-mounted lift with scale 108 located below lifting mechanism 106. CPU 116 opens high pressure solenoid valve 110 allowing the liquid phase of the fluid in supply tank 114 to flow from supply/donor tank 114 into refillable fluid container 101. The flow of this fluid can be measured by weight in the refill tank using scale 108, by special flow meter (See
In a preferred embodiment, CPU 116 communicates with pressure relief valve 109, opening it to relieve the excess pressure in tubing 112. Preferably, tubing 112 is high pressure flexible tubing commonly used in the beverage industry. Here sleeve actuated connector 104 disengages from pin valve assembly 105, releasing it, allowing refillable fluid container 101 to disengage from at least one filling head 103. The terms “cylinder,” “tank,” and “container” can be used interchangeably as in refillable fluid or refillable fluid tank.
It is important to note that in many preferred embodiments, refillable fluid container 101 requires that the container be cold in order to fill it to its full capacity. This is especially true when carbon dioxide is the fluid being filled by the instant invention. This is because if refillable fluid container 101 is filled at room temperature, it will only fill to roughly 50% capacity because, while in refillable fluid container 101, during the process of being filled, the liquid phase of the fluid is going to evaporate into its gaseous phase, preventing refillable fluid container 101 from being filled to its designated fill capacity. In yet another preferred embodiment, filling refillable fluid container 101 to capacity involves filing refillable fluid container 101 to half capacity. Upon reaching half capacity, pressure relief valve 109 will be engaged to reduce some of the pressure inside refillable fluid container 101, forcing it to reduce its internal temperature via a thermogenic evaporative reaction. This reduction in temperature provide the necessary temperature to allow fluid filling station 100 to fill refillable fluid container 101 to its designated maximum capacity. This effect can also be achieved by filling refillable fluid container 101 for a predetermined time interval before reducing pressure to create a chilling thermogenic reaction.
Of note here is the insertion of refillable fluid container 101 into holder 102. Also of note is the construction of the interface of at least one filling head 103 and refillable fluid container 101. Pin valve 105 is connected to at least one filling head 103 via sleeve actuated connector 104. It should be noted that similar quick-connectors may be substituted in lieu of sleeve actuated connector 104. Fluid filling station 100 retains this position until refillable fluid container 101 is filled to a predetermined level, volume, and/or weight.
Referring to
Referring to
Referring to
In a preferred embodiment, when a user places refillable container 101 into fluid filling station 100, CPU 116 runs a diagnostic on the cylinder via the RFID Reader 128 to obtain data needed for filling/refilling. RFID reader 128 communicates with refillable fluid containers' 101 electronic identifier 145 to create a two-way communication to exchange data. User interface 117 on fluid filling station 100 indicates to the user that refillable fluid container is valid and can be filled/refilled. The user supplies payment with, but not limited to cash, credit, debit, gift card, Apple Pay, Android Pay, Google Wallet, or digital cryptocurrency through payment processing module 119 which connects to the internet via telemetry control unit 133 to a secure processing facility, and upon receiving approval from said processing facility, begin to go into action. At this point tank gripper 135 locks refillable fluid container 101 into holder 102, and then, via lift and rotation mechanism 107, rotates 180-degrees inverting refillable fluid container 101. Holder 102 then lowers refillable fluid container 101 until pin valve 105 engages purge head 148. Preferably, purge head 148 contains a sleeve actuated connector or similar type quick connector that engages with pin valve 105, locking them together or simply holding them together via pressure from the lift mechanism. Once pin valve 105 and purge head 148 are engaged, plunger lift mechanism 142 (See
In a preferred embodiment, the present invention is equipped with a plurality of filling heads 103, which are rotatably connected. In one embodiment, each filling head 103 is configured to receive a different type of refillable fluid container.
In another preferred embodiment, control module 116 collects user data from the current filling session and sends it through the internet to an external server, which stores information about a user's activity and account. By way of non-limiting example, a user that uses the present invention would have created an online account on this external website when they purchased the present invention. This account serves as a portal for all user data and is shared among several methods and devices including but not limed to the present invention and other internet-enabled devices.
This particular embodiment shows two separate supply tanks 114. This is preferable as the present invention would have to be serviced less frequently as a greater supply of the fluid is available. In addition to the dual-supply tanks, the embodiment depicted here further comprises a manifold 138, and a slide mechanism 137 to support multiple filling heads 103. The manifold allows each of the filling heads 103 to be in fluid connection with supply tank 114.
The connection between at least one filling head 103 and refillable fluid container 101 can be executed by, but should not be limited to, sleeve actuated connecter 104, a screw connection, a clamping mechanism, a pressure-sealing mechanism, or another, not explicitly mentioned mechanism. In another embodiment, refillable fluid container 101 can have male or female threads, no treads, or a proprietary connection.
In a preferred embodiment, once pin valve 105 and purge head 148 (See
Similarly, once pin valve 105 and at least one filling head 103 are engaged, the two pieces become fluidly connected and plunger lift mechanism 142 operates to lower plunger 141 to depress pin valve 105 to allow the present invention to start refilling refillable fluid container 101. Preferably, at least one filling head 103 and purge head 148 will be equipped with a fluid inlet/outlet to allow fluid to flow to/from said component, and each will preferably be connected with a gasket 140 to assist in forming a tight seal.
Referring to
In a preferred embodiment, optical identifier 144 can be a Bar Code printed on the curved surface of refillable fluid container 101. In yet another preferred embodiment, optical identifier 144 is a QR Code. In one embodiment, electronic identifier 145 is an RFID chip. Preferably, this chip is embedded in recessed area 146, which is preferably located at the bottom of refillable fluid container 101.
In one embodiment, optical identifier 144 is for a user to scan. This can be done with a plurality of devices, but is preferably performed with an internet-enabled electronic device such as a smartphone. Scanning this code registers refillable fluid container 101 in the user's personal inventory. This activity is preferably logged and stored by an external server.
Referring to
In addition to the above-disclosed features, the embodiment depicted by
Referring to
Referring to
Also,
The cylinder is automatically taken from the inside of the machine and mechanically moved by an automated process to a certain dispensing location compartment (similar to a soda vending machine) like cylinder pickup 164. Once the customer has the new cylinder they can fill it in the Filling Station by placing the empty cylinder in the Cylinder Filling Area and follow the filling instructions. When a repeat consumer comes to the present invention they can purchase a fluid refill. They may swipe their credit card to pay for the gas refill, place their empty cylinder into the present invention's cylinder filling area and follow the filling instructions.
Referring to
Repeat customers have two options available to them. The first option is they can purchase a fluid refill using their existing cylinder. They swipe their credit card to pay for the gas refill, place their empty cylinder into the cylinder filling area and follow the filling instructions. The second option is they can purchase a refillable fluid container exchange. They swipe their credit card to pay for the cylinder exchange, scan their empty cylinder with the external bar code reader, place their empty cylinder into one of the empty cylinder locker compartments, the RFID tag on the cylinder communicates with the RFID reader in the filling station and confirms it is in the locker compartment and then the customer closes the locker door. The Filling Station then opens one of the filled cylinder locker 160 doors to release a filled cylinder to the customer. The exchange is now complete.
Referring to
In one preferred embodiment, the high pressure valve and/or said pressure relief valves of the present invention are solenoids. In other embodiments, the pressure sensor of the present invention is selected from the group consisting essentially of: pressure sensors, pressure transducers, vacuum transmitters, vacuum transducers, low pressure transducers, electronic pressure sensors, and electronic pressure transducers. Further, in alternative embodiments, the flow meter of the present invention is selected from the group consisting essentially of: Coriolis Mass meters, vane/piston meters, float-style meters, positive displacement meters, thermal meters, laminar flow elements, paddle wheel meters, magnetic meters, ultrasonic meters, turbine meters, differential pressure meters, and vortex shredding meters.
In various embodiments, the present invention may be optimized to operate with a specific fluid. For example, the present invention may further comprise a high pressure air compressor such that ambient air may be dispensed into the refillable fluid container of the present invention. As another non-limiting example, the refillable fluid container of the present invention may be equipped with an exhaust port such that the present invention may be used to refill fire extinguishers.
Electronic identifier 146 functions as an electronic identifier for the present invention to identify all information about the cylinder and prevent/allow refilling of refillable fluid container 101. In one embodiment, electronic identifier 146 also functions as a safety measure to prevent filling of unauthorized third-party refillable fluid containers 101. If a user places a non-authorized refillable fluid container into the fluid filling station 100, the station will not operate. In one embodiment, the present invention will only operate upon sensing an electronic identifier that has the appropriate proprietary algorithm stored on it.
Likewise should refillable fluid container 101 be placed in a device such as the one taught by U.S. Pat. No. 8,985,395, electronic identifier 145 will identify refillable fluid container 101 to allow operation of the beverage machine with refillable fluid container 101. The device described by U.S. patent application Ser. No. 14/641,013 is also suitable for this purpose.
In a preferred embodiment these refillable fluid containers comprise 16 oz food grade aluminum Type DOT3AL-1800 cylinders equipped with a proprietary connection fitting. In another embodiment the filling mechanism and refillable fluid container can be enclosed in a high pressure containment enclosure to create an environment of 5 atmospheres or higher. By creating a 5 atmosphere environment or higher the fluid will stay in a liquid state while performing the fluid transfer from the supply tank to the refill tank. When using this method, a cylinder cooling system will not be needed.
In another preferred embodiment, the radio communications controller of the present invention transmits user specific data to an external server to be associated with a user's account. This data is captured through the present invention's QR Code/Bar Code/RFID Reader/Video Camera/Microphone/User Interface and can be used to build a usage profile for every customer. This data is used to benefit the customer as well as the Company to make the users' experience simple and track user statistics. The transmittal of data between the filling station and Company's backend servers can be assumed to be protected under secure Wi-Fi standards, firewalls and standard internet security procedures that would already be in place.
Examples of data collection include, but are not limited to a user's name, address, phone, email, password, frequency of usage, special coupons, reminders emails, demographic identifiers and CO2 usage.
Further, the present disclosure contemplates a software application companion to the present invention. This software application will work with, for example Windows Phone, iPhone, Android type phones, and iPads, among many other devices. The software application “talks” to the present invention and an external server via the internet using a data exchange to provide inventory updates and sync details between the filling station and users' online account. For example when the user purchases a new refillable fluid container they can simply use this software application to scan the QR Code/Bar Code on the refillable fluid container and add that item to their online user account for tracking.
Further, the software application provides a dashboard to the user to show them their filling stats which can include but not limited to number of drinks per day/week/month and this can in turn be integrated into the users' diet program or data can be shared with various popular other software applications like My Fitness PAL®, iFit®, etc. to be part of a total dietary health program. In addition, the software application will interface with a device such as the one taught by U.S. Pat. No. 8,985,395 as well as the device described by U.S. patent application Ser. No. 14/641,013.
In another preferred embodiment, the present invention can also incorporate a liquid/gas dosing system to control and meter the flow of liquid fluid from the supply tank into the refill cylinder. This can be in the form of a Digital Mass Flow Meter with Controller. Further, the present invention may incorporate external lights to illuminate the outside of the vending machine to make it easier to see at night. It should be noted that fluid used in the present invention, particularly when the fluid is CO2 may come from any suitable means such as a cylinder, bulk tank, CO2 generation based system, zeolite system, etc. In another preferred embodiment, the present invention can also incorporate a cylinder dispensing sidecar. This is an attachment that connects to the main Filling Station that adds additional functionality to be able to allow customers to purchase CO2 cylinders or any other relevant product from the main unit. Further, fluids are intended to not be limited to a particular phase state, and can refer to the gas phase, liquid phase, or some combination thereof.
When introducing elements of the present disclosure or the embodiment(s) thereof, the articles “a,” “an,” and “the” are intended to mean that there are one or more of the elements. Similarly, the adjective “another,” when used to introduce an element, is intended to mean one or more elements. The terms “including” and “having” are intended to be inclusive such that there may be additional elements other than the listed elements.
While the disclosure refers to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the disclosure. In addition, many modifications will be appreciated by those skilled in the art to adapt a particular instrument, situation or material to the teachings of the disclosure without departing from the spirit thereof. Therefore, it is intended that the disclosure not be limited to the particular embodiments disclosed.
This application claims priority to U.S. Provisional Patent Application No. 62/136,933, entitled “FLUID FILLING STATION,” filed on Mar. 23, 2015, U.S. Provisional Patent Application No. 62/186,686, entitled “FLUID FILLING STATION,” filed on Jun. 30, 2015, and U.S. Provisional Patent Application No. 62/261,616, entitled “FLUID FILLING STATION,” filed on Dec. 1, 2015, the contents of all of these applications are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1151185 | Jamieson | Aug 1915 | A |
1524042 | Lemoine | Jan 1925 | A |
1644338 | Jones | Oct 1927 | A |
2112519 | Clo | Mar 1938 | A |
2661885 | McBean | Dec 1953 | A |
2792920 | Sutphen | May 1957 | A |
2989092 | Whitecar | Jun 1961 | A |
3195585 | Fechheimer | Jul 1965 | A |
3438790 | Barnby | Apr 1969 | A |
3680659 | Kasten | Aug 1972 | A |
3875980 | Getz | Apr 1975 | A |
3964515 | May | Jun 1976 | A |
4146065 | Borstelmann | Mar 1979 | A |
4305437 | Greene | Dec 1981 | A |
4573505 | Lee | Mar 1986 | A |
4582100 | Poulsen | Apr 1986 | A |
4637439 | Jeans | Jan 1987 | A |
4667708 | Jernberg | May 1987 | A |
4705082 | Fanshawe | Nov 1987 | A |
4903741 | Ibanez | Feb 1990 | A |
4911212 | Burton | Mar 1990 | A |
4945955 | Murphy | Aug 1990 | A |
5320144 | Ahlers | Jun 1994 | A |
5587089 | Vogel | Dec 1996 | A |
5651477 | Takahashi | Jul 1997 | A |
5797436 | Phallen | Aug 1998 | A |
5827050 | Price | Oct 1998 | A |
5913344 | Wronski et al. | Jun 1999 | A |
5916246 | Viegas | Jun 1999 | A |
5934081 | Notaro et al. | Aug 1999 | A |
6044647 | Drube et al. | Apr 2000 | A |
6060691 | Minami | May 2000 | A |
6158482 | Rubin | Dec 2000 | A |
6197189 | Schwartz | Mar 2001 | B1 |
6354088 | Emmer et al. | Mar 2002 | B1 |
6612346 | Allen | Sep 2003 | B1 |
6655422 | Shock | Dec 2003 | B2 |
6695017 | Liedtke | Feb 2004 | B1 |
6761194 | Blong | Jul 2004 | B1 |
6923007 | Markham et al. | Aug 2005 | B1 |
7456374 | Gerver | Nov 2008 | B2 |
7571586 | Morales | Aug 2009 | B1 |
8967208 | Bridges | Mar 2015 | B2 |
20030051767 | Coccaro | Mar 2003 | A1 |
20030167203 | Thorne | Sep 2003 | A1 |
20040023087 | Redmond | Feb 2004 | A1 |
20050023075 | Schmaeman | Feb 2005 | A1 |
20050034777 | Nicodem | Feb 2005 | A1 |
20080249838 | Angell | Oct 2008 | A1 |
20090277531 | Pongraz et al. | Nov 2009 | A1 |
20100071802 | Clüsserath et al. | Mar 2010 | A1 |
20110147194 | Kamen | Jun 2011 | A1 |
20110225106 | Levenstein | Sep 2011 | A1 |
20120156337 | Studor | Jun 2012 | A1 |
20120199571 | Brown | Aug 2012 | A1 |
20130240079 | Petrini | Sep 2013 | A1 |
20140090745 | Plummer | Apr 2014 | A1 |
20140210203 | Lorkowsi | Jul 2014 | A1 |
20140216603 | Brown | Aug 2014 | A1 |
20140251459 | MacNeal et al. | Sep 2014 | A1 |
20150053091 | Wilder | Feb 2015 | A1 |
20170224140 | Vertegaal | Aug 2017 | A1 |
20170314733 | Tilhof | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
101988622 | Jul 2012 | CN |
0535478 | Apr 1993 | EP |
0660026 | Jun 1995 | EP |
1139307 | Apr 2001 | EP |
2293764 | Oct 1996 | GB |
63231098 | Sep 1988 | JP |
2332612 | Aug 2008 | RU |
9209867 | Jun 1992 | WO |
2012071593 | May 2012 | WO |
WO-2012071593 | May 2012 | WO |
WO-2015089096 | Jun 2015 | WO |
Entry |
---|
Machine translation of Abstract for CN101988622 corresponding to CN101988622. |
Machine translation of Abstract for RU2332612. |
Machine translation of Abstract for JPH02149540 corresponding to JPS63231098. |
International Search Report and Written Opinion for PCT Application No. PCT/US/2016/023713. dated Aug. 11, 2016. 9 pages. |
Schuck, Application Serial No. 856,831 filed on Dec. 2, 1977, laid open to public inspection on Nov. 7, 1978 as noted at OG 976,001. |
Number | Date | Country | |
---|---|---|---|
20160284153 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
62261616 | Dec 2015 | US | |
62186686 | Jun 2015 | US | |
62136933 | Mar 2015 | US |