The difficulties with prior art filters include limited filter area, too much support material which is flow-restrictive as well as the nature of the materials used in such filter assembles. Such prior art filters are typically cylindrical perfluoroalkoxy (PFA) cores around which polymeric membrane is bonded. Such configurations lead to a capillary effect whereby multiple fluid paths leading to a single core and this configuration require support structures that constrict flow.
The present invention is a fluid filter, which can be used within a container, such as a gas bottle, to filter the fluid within before releasing it. The present invention solves the problems of the prior art by using a novel combination of housing, metallic support structure and polymeric membrane to allow for higher volumetric flow. This results in a filter assembly with a smaller footprint, thereby providing the gas bottle with more capacity.
The particular features of the present invention include a flat membrane sheet sandwiched between two metal lattice supports or screens having apertures of specific dimensions. It is atypical to support a flat membrane with stainless steel screen as such materials would typically cut the membrane. As such, the supports of the present invention must be flat and include surfaces free of burrs.
Currently available materials such as wire meshes are inadequate. Porous polytetrafluoroethylene (PRFE) supports are not desirable due to the cost and difficulty of sealing the PTFE supports with the membrane and housing.
It is a further advantage of the present invention that the metallic supports provide sealing surfaces that facilitate sealing the membrane to the housing. Preferably, such sealing is facilitated by o-rings, preferably polytetrafluoroethylene TeflonĀ® o-rings.
In a preferred embodiment of the present invention, the metal used for such screens is stainless steel, and in particular 316L.
Aperture shape can be round, oval or can be a sided figure such as a hexagon, but in the preferred embodiment, it is round.
The present invention includes a fluid filter configured for use in a gas bottle. More specifically, the present invention is directed for use in a vacuum actuated gas bottle. It is a common problem in the gas bottle business to deliver gas that is substantially free of particulate contaminants that shed from the bottle and the matrix materials typically found in such gas bottles.
Within the gas cylinder 100 is a two stage regulator 120 which regulates the pressure of the exiting fluid. The first stage 121 accepts pressurized gas from within the cylinder and converts it to an intermediate pressure. The gas at this intermediate pressure then flows to the second stage of the regulator 125, which adjusts the intermediate pressure to the desired output pressure. This regulator configuration allows the output pressure of the exiting fluid to remain relatively constant as the fluid within the cylinder 100 is depleted. Alternatively, the gas cylinder may not be under pressure, but rather at atmospheric pressure, requiring an external vacuum to draw out fluid. While a two stage regulator is preferred, the present invention can also be utilized with a single stage regulator.
The stored, pressurized fluid enters the first stage 121 of the regulator 120 via the filter 110. Filter 110 is used to remove contaminants and other particulates from the fluid before passing it through conduit 180 to the first stage 121 of the regulator 120. The conduit can be any suitable material, but is preferably 316L.
In some applications, a PTFE membrane and stainless steel filter housing are necessary, as the application requires a non-contaminating flow path. However, for less demanding applications, those of ordinary skill in the art could substitute other membranes, including but not limited to PVDF, UHMWPE and PES. Similarly, other metals, such as stainless steel alloys, may be substituted for the metallic supports.
A perspective cross-sectional view of a suitable filter 110 is shown in
In one embodiment, one or more small dimples can be made between two adjacent threads, such as by using a sharp pointed instrument, preferably a center punch. Such dimples cause the adjacent screws to move slightly closer to one another, thereby creating the tighter fit. Preferably, dimples would be placed on opposite sides of the housing 10, most preferably 1800 apart. In another embodiment, the filter housing and retainer nut are attached together (such as by screwing) and then welded or melted together to prevent inadvertent separation between the pieces.
Membrane 50 is positioned with the filter housing 10 and the retainer nut 20. In one embodiment, the diameter of the membrane is about 0.95 inches, although the invention is not so limited. The membrane functions to remove contaminants and other particulates from the outgoing fluid. In a preferred embodiment of the present invention, the membrane is a polytetrafluoroethylene (PTFE) membrane commercially available from W. L. Gore & Associates, Inc. of Elkton, Md., such as part number S30016. Other membranes deemed suitable by those skilled in the art are within the scope of the invention.
Upper support 30 and lower support 40 are positioned above and below filter membrane 50. In the preferred embodiment, the supports 30,40 each have the same diameter as the membrane. The supports give rigidity and stability to the porous membrane. The supports can be any suitable material, and are typically made from materials that are non-corrosive and chemically compatible with the stored fluid. In a preferred embodiment, the supports are metal, and in a particularly preferred embodiment, they are made from 316L stainless steel.
The membrane 50 is sealed in the filter housing 10 in order to prevent fluid from passing into the filter housing 10 without passing through the filter membrane 50. In the embodiment shown in
The membrane 50 is positioned between two metallic supports 30 and 40. Previously, metallic supports were unsuitable for such an application, due to their propensity to puncture or tear the delicate membrane. However, these problems have been overcome by the present invention. To achieve this result, the metallic supports must be substantially smooth and burr-free. This result can be achieved in a variety of ways.
In one embodiment, the metal support is stamped. The stamping process typically results in the metal piece having one surface that is smooth, while the opposite side contains burrs. In one instantiation, the metallic supports 30 and 40 are assembled such that the smooth sides face the membrane. In another instantiation, the burrs are polished off the opposite side before assembly.
In another embodiment, the metal supports are created via laser cutting. Again, this process typically creates a metal piece having one surface that is smooth, while the opposite side contains burrs. As above, in one instantiation, the metallic supports 30 and 40 are assembled such that the smooth sides face the membrane. In another instantiation, the burrs are polished off the other side before assembly. In another instantiation, chemical etching is used to remove the burrs prior to assembly.
In a third embodiment, the metallic supports are created via photochemical machining. The process of photochemical machining involves several distinct steps. First, a multiple-image phototool is produced on film. The metal sheet to be etched is then coated with photoresist. After the photographic image on the phototool has been transferred to the coated metal surface, the metal sheet is developed, removing the resist in areas that are to be etched. Then a controlled acid etch is sprayed onto the metal surface to selectively dissolve the metal away. Once the etching process is complete, the photoresist is stripped. Finally, finishing and forming operations can be performed. This process is well known to those of ordinary skill in the art. Various entities, such as Photofabrication Engineering, Inc. of Milford, Mass., can provide such services. This process yields an article with two smooth sides.
In operation, the lower metallic support 40 is inserted into the retainer nut 20 such that it rests on the Teflon o-ring and its protrusion(s) align with the notch(es) on the retainer nut. Next, the membrane 50 is placed atop the lower metallic support. Finally, the upper metallic support 30 is placed on the membrane 50 with its protrusions aligned with the notches in the retainer nut 20. The retainer nut 20 is then attached to the filter housing 10, which already has another Teflon o-ring installed. Two important purposes are served by this indexing system. First, the two metallic supports have a fixed relationship to one another, thereby allowing their respective apertures to be aligned in a predetermined configuration. Secondly, the indexing forces the metallic supports to remain stationary, even while the retainer nut and the filter housing are being screwed together and the Teflon o-rings are being compressed. Without this indexing, the metallic supports may turn as the filter housing and retainer nut are twisted together, potentially twisting or tearing the membrane. In this way, the membrane remains stationary and thus remains integral.
The above configuration has additional advantages. For example, the membrane can be easily replaced. By simply unscrewing the retainer nut 20 from the filter housing 10, the metallic supports and membrane are exposed. These components can be easily removed from the retainer nut and replaced as part of ordinary maintenance or in the event of damage.
This applications claims priority of U.S. Provisional Patent Application Ser. No. 60/901,876, filed Feb. 16, 2007, the disclosure of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/001541 | 2/6/2008 | WO | 00 | 8/8/2009 |
Number | Date | Country | |
---|---|---|---|
60901876 | Feb 2007 | US |