None.
Not applicable.
Not applicable.
This invention relates wellbore servicing tools.
Some wellbore servicing tools provide a plurality of fluid flow paths between the interior of the wellbore servicing tool and the wellbore. However, fluid transfer through such a plurality of fluid flow paths may occur in an undesirable and/or non-homogeneous manner. The variation in fluid transfer through the plurality of fluid flow paths may be attributable to variances in the fluid conditions of an associated hydrocarbon formation and/or may be attributable to operational conditions of the wellbore servicing tool, such as a fluid flow path being unintentionally restricted by particulate matter.
Disclosed herein is a method of servicing a wellbore, comprising providing a fluid diode in fluid communication with the wellbore, and transferring a fluid through the fluid diode.
Also disclosed herein is a fluid flow control tool, comprising a tubular diode sleeve comprising a diode aperture, a tubular inner ported sleeve received concentrically within the diode sleeve, the inner ported sleeve comprising an inner port in fluid communication with the diode aperture, and a tubular outer ported sleeved within which the diode sleeve is received concentrically, the outer ported sleeve comprising an outer port in fluid communication with the diode aperture, wherein a shape of the diode aperture, a location of the inner port relative to the diode aperture, and a location of the outer port relative to the diode aperture provide a fluid flow resistance to fluid transferred to the inner port from the outer port and a different fluid flow resistance to fluid transferred to the outer port from the inner port.
Further disclosed herein is a method of recovering hydrocarbons from a subterranean formation, comprising injecting steam into a wellbore that penetrates the subterranean formation, the steam promoting a flow of hydrocarbons of the subterranean formation, and receiving at least a portion of the flow of hydrocarbons, wherein at least one of the injecting steam and the receiving the flow of hydrocarbons is controlled by a fluid diode.
Further disclosed herein is a fluid flow control tool for servicing a wellbore, comprising a fluid diode comprising a low resistance entry and a high resistance entry, the fluid diode being configured to provide a greater resistance to fluid transferred to the low resistance entry from the high resistance entry at a fluid mass flow rate as compared to the fluid being transferred to the high resistance entry from the low resistance entry at the fluid mass flow rate. The fluid flow control tool may further comprise a tubular diode sleeve comprising a diode aperture, an inner ported sleeve received substantially concentrically within the diode sleeve, the inner ported sleeve comprising an inner port, and an outer ported sleeve disposed substantially concentrically around the diode sleeve, the outer ported sleeve comprising an outer port. The inner port may be associated with the low resistance entry and the outer port may be associated with the high resistance entry. The inner port may be associated with the high resistance entry and the outer port may be associated with the low resistance entry. The diode sleeve may be movable relative to the inner ported sleeve so that the inner port may be movable into association with the low resistance entry and the diode sleeve may be moveable relative to the outer ported sleeve and so that the outer port may be moveable into association with the high resistance entry. The fluid diode may be configured to generate a fluid vortex when fluid is transferred from the high resistance entry to the low resistance entry. The fluid flow control tool may be configured to transfer fluid between an inner bore of the fluid flow control tool and the wellbore.
In the drawings and description that follow, like parts are typically marked throughout the specification and drawings with the same reference numerals, respectively. The drawing figures are not necessarily to scale. Certain features of the invention may be shown exaggerated in scale or in somewhat schematic form and some details of conventional elements may not be shown in the interest of clarity and conciseness.
Unless otherwise specified, any use of any form of the terms “connect,” “engage,” “couple,” “attach,” or any other term describing an interaction between elements is not meant to limit the interaction to direct interaction between the elements and may also include indirect interaction between the elements described. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . ”. Reference to up or down will be made for purposes of description with “up,” “upper,” “upward,” or “upstream” meaning toward the surface of the wellbore and with “down,” “lower,” “downward,” or “downstream” meaning toward the terminal end of the well, regardless of the wellbore orientation. The term “zone” or “pay zone” as used herein refers to separate parts of the wellbore designated for treatment or production and may refer to an entire hydrocarbon formation or separate portions of a single formation such as horizontally and/or vertically spaced portions of the same formation.
As used herein, the term “zonal isolation tool” will be used to identify any type of actuatable device operable to control the flow of fluids or isolate pressure zones within a wellbore, including but not limited to a bridge plug, a fracture plug, and a packer. The term zonal isolation tool may be used to refer to a permanent device or a retrievable device.
As used herein, the term “bridge plug” will be used to identify a downhole tool that may be located and set to isolate a lower part of the wellbore below the downhole tool from an upper part of the wellbore above the downhole tool. The term bridge plug may be used to refer to a permanent device or a retrievable device.
As used herein, the terms “seal”, “sealing”, “sealing engagement” or “hydraulic seal” are intended to include a “perfect seal”, and an “imperfect seal. A “perfect seal” may refer to a flow restriction (seal) that prevents all fluid flow across or through the flow restriction and forces all fluid to be redirected or stopped. An “imperfect seal” may refer to a flow restriction (seal) that substantially prevents fluid flow across or through the flow restriction and forces a substantial portion of the fluid to be redirected or stopped.
The various characteristics mentioned above, as well as other features and characteristics described in more detail below, will be readily apparent to those skilled in the art with the aid of this disclosure upon reading the following detailed description of the embodiments, and by referring to the accompanying drawings.
Further, each diode aperture 122 comprises a high resistance entry 124 and a low resistance entry 126. However, the terms high resistance entry 124 and low resistance entry 126 should not be interpreted as meaning that fluid may only enter into the diode aperture 122 through the entries 124, 126. Instead, the term high resistance entry 124 shall be interpreted as indicating that the diode aperture 122 comprises geometry that contributes to a higher resistance to fluid transfer through fluid diode 112 when fluid enters through the high resistance entry 124 and exits through the low resistance entry 126 as compared to a resistance to fluid transfer through fluid diode 112 when fluid enters through the low resistance entry 126 and exits through the high resistance entry 124. Tool 100 is shown in
Referring now to
Referring now to
Referring now to
Referring now to
System 200 further comprises an extraction service rig 216 (e.g., a drilling rig, completion rig, or workover rig) that is positioned on the earth's surface 204 and extends over and around an extraction wellbore 218 that penetrates the subterranean formation 208. While an extraction service rig 216 is shown in
System 200 further comprises an injection work string 226 (e.g., production string/tubing) comprising a plurality of tools 100′ each configured in an outflow control configuration. Similarly, system 200 comprises an extraction work string 228 (e.g., production string/tubing) comprising a plurality of tools 100 each configured in an inflow control configuration. It will be appreciated that annular zonal isolation devices 230 may be used to isolate annular spaces of the injection wellbore 206 associated with tools 100′ from each other within the injection wellbore 206. Similarly, annular zonal isolation devices 230 may be used to isolate annular spaces of the extraction wellbore 218 associated with tools 100 from each other within the extraction wellbore 218.
While system 200 is described above as comprising two separate wellbores 206, 218, alternative embodiments may be configured differently. For example, in some embodiments work strings 226, 228 may both be located in a single wellbore. Alternatively, vertical portions of the work strings 226, 228 may both be located in a common wellbore but may each extend into different deviated and/or horizontal wellbore portions from the common vertical portion. Alternatively, vertical portions of the work strings 226, 228 may be located in separate vertical wellbore portions but may both be located in a shared horizontal wellbore portion. In each of the above described embodiments, tools 100 and 100′ may be used in combination and/or separately to deliver fluids to the wellbore with an outflow control configuration and/or to recover fluids from the wellbore with an inflow control configuration. Still further, in alternative embodiments, any combination of tools 100 and 100′ may be located within a shared wellbore and/or amongst a plurality of wellbores and the tools 100 and 100′ may be associated with different and/or shared isolated annular spaces of the wellbores, the annular spaces, in some embodiments, being at least partially defined by one or more zonal isolation devices 230.
In operation, steam may be forced into the injection work string 226 and passed from the tools 100′ into the formation 208. Introducing steam into the formation 208 may reduce the viscosity of some hydrocarbons affected by the injected steam, thereby allowing gravity to draw the affected hydrocarbons downward and into the extraction wellbore 218. The extraction work string 228 may be caused to maintain an internal bore pressure (e.g., a pressure differential) that tends to draw the affected hydrocarbons into the extraction work string 228 through the tools 100. The hydrocarbons may thereafter be pumped out of the extraction wellbore 218 and into a hydrocarbon storage device and/or into a hydrocarbon delivery system (i.e., a pipeline). It will be appreciated that the bores 114 of tools 100, 100′ may form portions of internal bores of extraction work string 228 and injection work string 226, respectively. Further, it will be appreciated that fluid transferring into and/or out of tools 100, 100′ may be considered to have been passed into and/or out of extraction wellbore 218 and injection wellbore 206, respectively. Accordingly, the present disclosure contemplates transferring fluids between a wellbore and a work string associated with the wellbore through a fluid diode. In some embodiments, the fluid diodes form a portion of the work string and/or a tool of the work string.
It will be appreciated that in some embodiments, a fluid diode may selectively provide fluid flow control so that resistance to fluid flow increases as a maximum fluid mass flow rate of the fluid diode is approached. The fluid diodes disclosed herein may provide linear and/or non-linear resistance curves relative to fluid mass flow rates therethrough. For example, a fluid flow resistance may increase exponentially in response to a substantially linear increase in fluid mass flow rate through a fluid diode. It will be appreciated that such fluid flow resistance may encourage a more homogeneous mass flow rate distribution amongst various fluid diodes of a single fluid flow control tool 100, 100′. For example, as a fluid mass flow rate through a first fluid diode of a tool increases, resistance to further increases in the fluid mass flow rate through the first fluid diode of the tool may increase, thereby promoting flow through a second fluid diode of the tool that may otherwise have continued to experience a lower fluid mass flow rate therethrough.
It will be appreciated that any one of the inner ports 118, outer ports 120, diode apertures 122, and slits 128 may be laser cut into metal tubes to form the features disclosed herein. Further, a relatively tight fitting relationship between the diode sleeve 106 and each of the inner ported sleeve 104 and outer ported sleeve 108 may be accomplished through close control of tube diameter tolerances, resin and/or epoxy coatings applied to the components, and/or any other suitable methods. In some embodiments, assembly of the diode sleeve 106 to the inner ported sleeve 104 may be accomplished by heating the diode sleeve 106 and cooling the inner ported sleeve 104. Heating the diode sleeve 106 may uniformly enlarge the diode sleeve 106 while cooling the inner ported sleeve 104 may uniformly shrink the inner ported sleeve 104. In these enlarged and shrunken states, an assembly tolerance may be provided that is greater than the assembled tolerance, thereby making insertion of the inner ported sleeve 104 into the diode sleeve 106 easier. A similar process may be used to assemble the diode sleeve 106 within the outer ported sleeve 108, but with the diode sleeve 106 being cooled and the outer ported sleeve being heated.
In alternative embodiments, the diode sleeve 106 may be movable relative to the inner ported sleeve 104 and the outer ported sleeve 108 to allow selective reconfiguration of a fluid flow control tool 100 to an inflow control configuration from an outflow control configuration and/or from an outflow control configuration to an inflow control configuration. For example, tools 100, 100′ may be configured for such reconfiguration in response to longitudinal movement of the diode sleeve 106 relative to the inner ported sleeve 104 and the outer ported sleeve 108, rotation of the diode sleeve 106 relative to the inner ported sleeve 104 and the outer ported sleeve 108, or a combination thereof. In further alternative embodiments, a fluid flow control tool may comprise more or fewer fluid diodes, the fluid diodes may be closer to each other or further apart from each other, the various fluid diodes of a single tool may provide a variety of maximum fluid flow rates, and/or a single tool may comprise a combination of diodes configured for inflow control and other fluid diodes configured for outflow control.
It will further be appreciated that the fluid flow paths associated with the fluid diodes may be configured to maintain a maximum cross-sectional area to prevent clogging due to particulate matter. Accordingly, the fluid diodes may provide flow control functionality without unduly increasing a likelihood of flow path clogging. In this disclosure, it will be appreciated that the term “fluid diode” may be distinguished from a simple check valve. Particularly, the fluid diodes 112 of the present disclosure may not absolutely prevent fluid flow in a particular direction, but rather, may be configured to provide variable resistance to fluid flow through the fluid diodes, dependent on a direction of fluid flow. Fluid diodes 112 may be configured to allow fluid flow from a high resistance entry 124 to a low resistance entry 126 while also being configured to allow fluid flow from a low resistance entry 126 to a high resistance entry 124. Of course, the direction of fluid flow through a fluid diode 112 may depend on operating conditions associated with the use of the fluid diode 112.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
At least one embodiment is disclosed and variations, combinations, and/or modifications of the embodiment(s) and/or features of the embodiment(s) made by a person having ordinary skill in the art are within the scope of the disclosure. Alternative embodiments that result from combining, integrating, and/or omitting features of the embodiment(s) are also within the scope of the disclosure. Where numerical ranges or limitations are expressly stated, such express ranges or limitations should be understood to include iterative ranges or limitations of like magnitude falling within the expressly stated ranges or limitations (e.g., from about 1 to about 10 includes, 2, 3, 4, etc.; greater than 0.10 includes 0.11, 0.12, 0.13, etc.). For example, whenever a numerical range with a lower limit, R1, and an upper limit, Ru, is disclosed, any number falling within the range is specifically disclosed. In particular, the following numbers within the range are specifically disclosed: R=R1+k*(Ru−R1), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, . . . 50 percent, 51 percent, 52 percent, . . . , 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent. Moreover, any numerical range defined by two R numbers as defined in the above is also specifically disclosed. Use of the term “optionally” with respect to any element of a claim means that the element is required, or alternatively, the element is not required, both alternatives being within the scope of the claim. Use of broader terms such as comprises, includes, and having should be understood to provide support for narrower terms such as consisting of, consisting essentially of, and comprised substantially of. Accordingly, the scope of protection is not limited by the description set out above but is defined by the claims that follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated as further disclosure into the specification and the claims are embodiment(s) of the present invention. The discussion of a reference in the disclosure is not an admission that it is prior art, especially any reference that has a publication date after the priority date of this application. The disclosure of all patents, patent applications, and publications cited in the disclosure are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1329559 | Telsa | Feb 1920 | A |
2762437 | Egan et al. | Sep 1956 | A |
2849070 | Maly | Aug 1958 | A |
2945541 | Maly et al. | Jul 1960 | A |
2981332 | Miller et al. | Apr 1961 | A |
2981333 | Miller et al. | Apr 1961 | A |
3186484 | Waterman | Jun 1965 | A |
3233622 | Boothe | Feb 1966 | A |
3375842 | Reader | Apr 1968 | A |
3461897 | Kwok | Aug 1969 | A |
3477506 | Malone | Nov 1969 | A |
3730673 | Straitz, III | May 1973 | A |
4268245 | Straitz, III | May 1981 | A |
4276943 | Holmes | Jul 1981 | A |
4287952 | Erbstoesser | Sep 1981 | A |
4307204 | Vidal | Dec 1981 | A |
4393928 | Warnock, Sr. | Jul 1983 | A |
4491186 | Alder | Jan 1985 | A |
4808084 | Tsubouchi et al. | Feb 1989 | A |
4974674 | Wells | Dec 1990 | A |
4998585 | Newcomer et al. | Mar 1991 | A |
5333684 | Walter et al. | Aug 1994 | A |
5337808 | Graham | Aug 1994 | A |
5337821 | Peterson | Aug 1994 | A |
5435393 | Brekke et al. | Jul 1995 | A |
5673751 | Head et al. | Oct 1997 | A |
5730223 | Restarick | Mar 1998 | A |
5803179 | Echols et al. | Sep 1998 | A |
5896928 | Coon | Apr 1999 | A |
6009951 | Coronado et al. | Jan 2000 | A |
6015011 | Hunter | Jan 2000 | A |
6112815 | Bøe et al. | Sep 2000 | A |
6112817 | Voll et al. | Sep 2000 | A |
6253861 | Carmichael et al. | Jul 2001 | B1 |
6305470 | Woie | Oct 2001 | B1 |
6367547 | Towers et al. | Apr 2002 | B1 |
6371210 | Bode et al. | Apr 2002 | B1 |
6431282 | Bosma et al. | Aug 2002 | B1 |
6478091 | Gano | Nov 2002 | B1 |
6505682 | Brockman | Jan 2003 | B2 |
6516888 | Gunnarson et al. | Feb 2003 | B1 |
6622794 | Zisk, Jr. | Sep 2003 | B2 |
6627081 | Hilditch et al. | Sep 2003 | B1 |
6644412 | Bode et al. | Nov 2003 | B2 |
6679324 | Den Boer et al. | Jan 2004 | B2 |
6691781 | Grant et al. | Feb 2004 | B2 |
6695067 | Johnson et al. | Feb 2004 | B2 |
6719048 | Ramos et al. | Apr 2004 | B1 |
6719051 | Hailey, Jr. et al. | Apr 2004 | B2 |
6786285 | Johnson et al. | Sep 2004 | B2 |
6817416 | Wilson et al. | Nov 2004 | B2 |
6834725 | Whanger et al. | Dec 2004 | B2 |
6840325 | Stephenson | Jan 2005 | B2 |
6851560 | Reig et al. | Feb 2005 | B2 |
6857475 | Johnson | Feb 2005 | B2 |
6857476 | Richards | Feb 2005 | B2 |
6886634 | Richards | May 2005 | B2 |
6907937 | Whanger et al. | Jun 2005 | B2 |
6935432 | Nguyen | Aug 2005 | B2 |
6957703 | Trott et al. | Oct 2005 | B2 |
7013979 | Richard | Mar 2006 | B2 |
7059401 | Bode et al. | Jun 2006 | B2 |
7063162 | Daling et al. | Jun 2006 | B2 |
7096945 | Richards et al. | Aug 2006 | B2 |
7100686 | Wittrisch | Sep 2006 | B2 |
7108083 | Simonds et al. | Sep 2006 | B2 |
7143832 | Freyer | Dec 2006 | B2 |
7185706 | Freyer | Mar 2007 | B2 |
7207386 | Brannon et al. | Apr 2007 | B2 |
7290606 | Coronado et al. | Nov 2007 | B2 |
7409999 | Henriksen et al. | Aug 2008 | B2 |
7419002 | Dybevik et al. | Sep 2008 | B2 |
7426962 | Moen et al. | Sep 2008 | B2 |
7455104 | Duhon et al. | Nov 2008 | B2 |
7469743 | Richards | Dec 2008 | B2 |
7537056 | MacDougall | May 2009 | B2 |
7644773 | Richard | Jan 2010 | B2 |
7708068 | Hailey, Jr. | May 2010 | B2 |
7918272 | Gaudette et al. | Apr 2011 | B2 |
20050110217 | Wood et al. | May 2005 | A1 |
20060185849 | Edwards et al. | Aug 2006 | A1 |
20070012454 | Ross et al. | Jan 2007 | A1 |
20070246225 | Hailey, Jr. et al. | Oct 2007 | A1 |
20070246407 | Richards et al. | Oct 2007 | A1 |
20080035330 | Richards | Feb 2008 | A1 |
20080041580 | Freyer et al. | Feb 2008 | A1 |
20080041581 | Richards | Feb 2008 | A1 |
20080041582 | Saetre et al. | Feb 2008 | A1 |
20080041588 | Richards et al. | Feb 2008 | A1 |
20080149323 | O'Malley et al. | Jun 2008 | A1 |
20080283238 | Richards et al. | Nov 2008 | A1 |
20090020292 | Loretz et al. | Jan 2009 | A1 |
20090078427 | Patel | Mar 2009 | A1 |
20090078428 | Ali | Mar 2009 | A1 |
20090101354 | Holmes et al. | Apr 2009 | A1 |
20090133869 | Clem | May 2009 | A1 |
20090151925 | Richards et al. | Jun 2009 | A1 |
20090188661 | Bizon | Jul 2009 | A1 |
20090205834 | Garcia et al. | Aug 2009 | A1 |
20110042092 | Fripp et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
0834342 | Feb 2003 | EP |
1857633 | Nov 2007 | EP |
2314866 | Jan 1998 | GB |
2341405 | Mar 2000 | GB |
2356879 | Jun 2001 | GB |
2371578 | Jul 2002 | GB |
0214647 | Feb 2002 | WO |
02059452 | Aug 2002 | WO |
02075110 | Sep 2002 | WO |
02090714 | Nov 2002 | WO |
03062597 | Jul 2003 | WO |
2004057715 | Jul 2004 | WO |
2005090741 | Sep 2005 | WO |
2005116394 | Dec 2005 | WO |
2006003112 | Jan 2006 | WO |
2006003113 | Jan 2006 | WO |
2008024645 | Feb 2008 | WO |
2008024645 | Feb 2008 | WO |
2008053364 | May 2008 | WO |
2008053364 | May 2008 | WO |
2009048822 | Apr 2009 | WO |
2009048823 | Apr 2009 | WO |
2009052076 | Apr 2009 | WO |
2009052103 | Apr 2009 | WO |
2009052149 | Apr 2009 | WO |
2009067021 | May 2009 | WO |
2009088292 | Jul 2009 | WO |
2009088293 | Jul 2009 | WO |
2009088624 | Jul 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20110139453 A1 | Jun 2011 | US |