This application claims priority to Chinese Patent Application No. CN201920524170.8, filed Apr. 17, 2019, the disclosure of which is hereby expressly incorporated by reference herein in its entirety.
The present disclosure relates to water treatment devices for use in pools, in particular to a pool water treatment device having a water flow monitoring system.
Water treatment devices used for treating pool water may be installed at an upstream end of the water inlet to disinfect the water before it enters the pool. In jetted pools, the water inlets are typically the water jets, and adding chemicals to pool water at the water jet ensures that the chemical will be dispersed efficiently into moving water.
A common pool disinfectant is chlorine. Existing water treatment devices usually have a chlorine electrode set along the fluid flow path. In order to put a pool water treatment chemical into the water, the electrodes need to be connected to a power supply and turned on. Once the chlorine electrode is energized, it chemically reacts with the salt solute in the water, thus creating chlorine to treat the water.
However, these electrodes are energy inefficient because they cannot operate unless they are in flowing water, they cannot operate unless they receive a flow of electricity, and they cannot determine whether there is water flow. The result is that the electrodes are always on. This wastes energy and also increases the risk of damaging expensive water treatment equipment.
The present disclosure provides a water treatment system which protects chlorine generator electrodes from running dry. The system includes a water detection electrode disposed above the chlorine generator electrode, and an outlet at a height similar to the water detection electrode. If enough water is displaced from the housing of the water treatment system by bubbles generated by the energized chlorine generator, the water detection electrode will cease to be bathed in water and will emit a signal indicative of this “dry” condition. The signal can be used to interrupt electrical power to the chlorine generator, thereby ensuring that the chlorine generator will not displace the water bathing it and therefore will not run dry.
In one form thereof, the present disclosure provides a water treatment device including: a housing defining a chamber, the chamber having an inlet and an outlet disposed below the inlet; a fluid flow monitor disposed within the housing below the inlet; and a treatment chemical electrode disposed below the fluid flow monitor.
In another form thereof, the present disclosure provides a water treatment device including: a housing including a chamber; an inlet; an outlet; wherein the inlet and the outlet define a flow path through the housing; a treatment chemical electrode configured to be activated to provide a water treatment chemical into the flow path; and a fluid flow monitor configured to monitor a flow of liquid along the flow path, and to activate the treatment chemical electrode in a presence of fluid flow and to deactivate the treatment chemical electrode in an absence of fluid flow and when a fluid level within the housing drops below the outlet.
The above-mentioned and other features and advantages of this disclosure, and the manner of attaining them, will become more apparent and will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate exemplary embodiments of the invention and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
For the purpose of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates. One embodiment of the invention is shown in great detail, although it will be apparent to those skilled in the relevant art that some features that are not relevant to the present invention may not be shown for the sake of clarity.
As shown in
The device body 1 also includes water inlet 11 formed in the lid of body 1, and water outlet 12 formed in the bottom portion of body 1. Thus, as shown in
As shown in
Composite electrode plug 21 of composite electrolytic assembly 2 removably connects composite electrolytic assembly 2 to a source of electricity (not pictured) and optionally to a controller or other external electronic control device (not pictured). Composite electrode plug 21 is removably connected to composite electrolytic assembly 2 through electrical connector 221. Electrical connector 221 includes positive connector 2211 and negative connector 2212.
As mentioned above, composite electrolytic assembly 2 includes electrical connector 221 at a top potion, water flow detection electrode 222 at a middle portion, and chlorine electrode group 223 at a bottom portion. Water flow detection electrode 222 and chlorine electrode group 223 are both mounted upon and electrically connected to the electrical connector 221. Water flow detection electrode 222 is located vertically above chlorine electrode group 223. Chlorine electrode group 223 includes at least two titanium plates 2231A, 2231B (
Electrical connector 221 is provided with positive connector 2211 and negative connector 2212. Positive connector 2211 and negative connector 2212 are both connected to water flow detection electrode 222. Electrical connector 221 is configured to apply a low voltage to water flow detection electrode 222 through positive connector 2211 and negative connector 2212. Water flow detection electrode 222 is configured to react to an increase in water flow by increasing this voltage. Electrical connector 221 is configured to detect this voltage change to determine whether there is water flow in the vicinity of water flow detecting electrode 222. Chlorine electrode group 223 is electrically connected to the composite electrode plug 21.
Turning again to
Referring to
When the water in the vicinity of the water flow detecting electrode 222 drops below a predetermined threshold level, electrode 222 produces a signal indicative of the lack of water. This signal may be a change in voltage or amperage, such as a drop to zero, or another predetermined minimum, or another signal. This signal is carried by the electrical connector 221 to a controller. The controller may be programmed to energize or otherwise activate electrodes 222 and 223 upon receipt of a signal that water treatment is desired, such as by an operator input or an automated indication of a need for water treatment. The controller is also programmed to de-energize or otherwise deactivate electrodes 222 and 223 by disconnecting the electrical connection between the power source and the composite electrolytic assembly 2 upon receipt of a signal that indicates water treatment is no longer needed, or that indicates water flow has stopped as further described herein. The controller may also activate and deactivate electrode 32 in a similar manner. This ceases the disinfection operation of the water treatment device 100.
Because water flow detection electrode 222 is disposed physically above the chlorine electrode group 223, and because electrical connector 221 detects and monitors the voltage of the water flow detection electrode 222 in real time, water treatment device 100 itself can monitor the state of the water flow in real-time with low cost. If electrode 222 registers a “dry” or low-water condition, it can de-energize electrode 223 (either directly or via the controller) before it would ever have a chance to be partially or entirely dry. In an exemplary embodiment, the controller may be programmed to allow activation of chlorine electrode group 223 when water flow detection electrode 222 signals the presence of water, subject to other conditions (e.g., a call for water treatment from a user or an automated controller logic function). The controller may also be programmed to prevent activation of chlorine electrode group 223 when water flow detection electrode 222 signals the absence of water, regardless of whether a call for water treatment is being issued.
This, in turn ensures that electrode 223 will always be fully submerged at any time that it is receiving electrical energy. This extends the life of pool water treatment device 100 by not allowing the composite electrolytic assembly 2 to continually run without water flow through housing 1.
While this invention has been described as having exemplary designs, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201920524170.8 | Apr 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/053573 | 4/15/2020 | WO | 00 |