The present disclosure relates to the determination of fluid flow rates using velocity vector maps, for example in living tissue (human, animal, and plant) and fluid vessels such as blood, lymphatic, digestive tract and plant circulation vessels.
Non-invasive medical imaging techniques permit some degree of visualization of internal fluid flows such as that of blood vessels and other biological conduits. For example, laser light creates a speckle response on human, animal, and plant tissue. A speckle response can include complex interference patterns, resulting from refraction, diffraction and reflection phenomena. A dynamic speckle response is related to the blood and other fluid flow activity in tissue, vessels, or plant circulation. Several algorithms are available within the scientific community to interpret light speckle response images; however, none has ever been used to determine calibrated fluid flow rates (FFR), and particularly blood flow rates in human tissue.
Current technologies focus on relative fluid flow or blood flow derived from contrast imaging techniques; however, none of these techniques is currently quantifiable and thus cannot be used to determine actual fluid flow rate (FFR).
This summary is provided to introduce in a simplified form, concepts that are subsequently described in detail. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it to be construed as limiting the scope of the claimed subject matter.
In at least one embodiment, a method of determining volume flow rate, e.g., ml/min, of a bodily fluid in a biological conduit includes: determining a cross-sectional area of a biological conduit using a velocity vector map representing moving entities or moving fluid portions in a bodily fluid flowing within and outside the biological conduit; calculating an average speed of the moving entities or moving fluid portions in the bodily fluid flowing across the determined cross-sectional area of the biological conduit; and calculating volume flow rate of the bodily fluid in and around the biological conduit from the determined cross-sectional area and the calculated average speed.
In at least one example, determining the cross-sectional area of the biological conduit includes determining edges of the biological conduit.
In at least one example, determining edges of the biological conduit includes identifying edges in the velocity vector map.
In at least one example, determining edges of the biological conduit includes determining gradients.
In at least one example, determining edges of the biological conduit includes a user determining the edges viewing a display of the velocity vector map.
In at least one example, determining the cross-sectional area of the biological conduit includes generating a contour map.
In at least one example, determining the cross-sectional area of the biological conduit includes identifying parallel line segments in the contour map.
In at least one example, determining the cross-sectional area of the biological conduit includes determining a width of the biological conduit and assuming the width represents a diameter.
In at least one example, determining the cross-sectional area of the biological conduit includes mathematically identifying borders of the biological conduit and performing orthogonal vector analysis to retrieve a diameter.
In at least one example, the method further includes receiving indication of a user choice of vessel category according to fluid vessel volume.
In at least one example, the method further includes receiving indication of a user choice of vessel category according to biological tissue type.
In at least one example, the method further includes receiving indication of a user choice of vessel category according to anatomical classification.
In at least one example, calculating volume flow rate includes calculating a theoretical fluid flow rate (TFFR) value, and correcting the TFFR value with calibration data from a database, e.g., average human adult male blood flow in a coronary artery branch.
In at least one embodiment, a method of determining volume flow rate of a bodily fluid in a biological conduit in which the flow of the bodily fluid is continuously variable includes: collecting, at a frequency of collection, a series of velocity vector maps over time, the velocity vector maps representing moving entities or moving fluid portions in a bodily fluid flowing within a biological conduit; determining a cross-sectional area of the biological conduit using at least one of the velocity vector maps; calculating an average speed of the moving entities or moving fluid portions in the bodily fluid flowing across the determined cross-sectional area of the biological conduit; and calculating volume flow rate of the bodily fluid in the biological conduit from the determined cross-sectional area and the calculated average speed.
In at least one example, the frequency of collection satisfies a Nyquist criterion for a flow rate profile of the bodily fluid, i.e., imaging sampling rate of movement is at least 2× the acceleration of movement.
In at least one example, the frequency of collection is greater than a Nyquist criterion for a flow rate profile of the bodily fluid.
In at least one example, the method further includes calculating a volume flow rate profile.
In at least one example, calculating an average speed includes calculating an average speed from multiple velocity vector maps of the series of velocity vector maps.
In at least one example, collecting a series of velocity vector maps over time includes collecting a series of velocity vector maps representing blood flow in a bodily organ over a period of time encompassing at least one heartbeat.
In at least one example, the method further includes calculating a volume flow rate time profile in the bodily organ over the period of time encompassing at least one heartbeat.
The previous summary and the following detailed descriptions are to be read in view of the drawings, which illustrate particular exemplary embodiments and features as briefly described below. The summary and detailed descriptions, however, are not limited to only those embodiments and features explicitly illustrated.
These descriptions are presented with sufficient details to provide an understanding of one or more particular embodiments of broader inventive subject matters. These descriptions expound upon and exemplify particular features of those particular embodiments without limiting the inventive subject matters to the explicitly described embodiments and features. Considerations in view of these descriptions will likely give rise to additional and similar embodiments and features without departing from the scope of the inventive subject matters. Although the term “step” may be expressly used or implied relating to features of processes or methods, no implication is made of any particular order or sequence among such expressed or implied steps unless an order or sequence is explicitly stated.
The following glossary of terms and acronyms may facilitate a better understanding of the descriptions that follow and of the drawings.
Biological conduits of interest and subject to analysis according to these descriptions include, but are not limited to: blood vessels such as arteries, capillaries, and veins; digestive tract vessels including those that carry waste fluids such are urine; and other vessels that are walled or otherwise defined flow channels for bodily fluids.
In
In step 104, the laser(s) pulses illuminate a target area of a test subject, for example upon tissue in the vicinity of a biological conduit in which a bodily fluid flows. In at least one example, a laser(s) is used to produce a speckle response on the exposed tissue. Speckles are thereby created on the subject tissue by the impinging laser(s).
The speckle density may be within a predefined range to provide executable analytical information. Some considerations toward producing a relevant speckle response include: distance from patient; optics for laser beam expansion; and imaging parameters such as lens type, aperture, camera resolution and depth of field. In order to turn a speckle response into relevant images at high-speed, camera wavelength-tuned optical system (illumination and imaging) may be used. To get optimal speckle density, both illumination system parameters and imaging system parameter are optimized and a coded aperture may be applied.
In step 106 (
As represented by step 108, image processing can start in parallel even as raw data images are stored, for example on a hard-disk. Processing in at least one example consists of several advantageous steps including noise reduction (referring to spurious data signals in data acquisition), background normalization, and contrast improvement. Further image processing, in at least one example, includes identifying area of interest on images, performing fast Fourier transformations to receive 3D spectra on investigated areas, correlating spectra mathematically and reverse Fourier transforming results, and using Gaussian algorithms to identify velocity vectors. In step 110 (
In step 112, one of several ways of determining a region of interest in the produced velocity vector map(s) is chosen. Regions of interest represent fluid channels within biological conduits such as vessels in which flow rates can be determined. In these descriptions, three ways of determining a region of interest are detailed, as represented in the flowchart of
According to at least one embodiment, determining a region of interest in the produced velocity vector map(s), as represented in step 114, includes automatically finding a vessel in one or more VVM, for example by mathematically identifying gradients in the map(s) that represent the walls or boundaries (in two dimensions or 2D) of biological conduits such as vessels in a region of interest, and performing orthogonal vector analysis to retrieve vessel diameter. Assuming that a corresponding (three dimensional or 3D) vessel has a circularly shaped cross section, the total vessel cross-sectional area and/or volume can be calculated as a circular cylindrical tube shaped object. Assuming that a corresponding (three dimensional or 3D) vessel has a rectangular shaped cross section, the total vessel cross-sectional area and/or volume can calculated as a rectangular tube shaped object.
Alternatively, according to at least one other embodiment, determining a region of interest in the produced velocity vector map(s), as represented in step 116, includes an operator identifying vessel borders by drawing lines onto a color map, a vector map image or other image type, for example with a semitransparent overlay of an optical image. Assuming that a vessel shows a circular shaped cross section, the total blood vessel volume is calculated as a tubular shaped object.
In yet another embodiment of determining a region of interest in the produced velocity vector map(s), as represented in step 118, a number of vessels representing a broad range of vessel diameters are shown on a color map image with or without optical image overlays, to let the operator choose the vessel category for vessel total volume identification. For example, assuming that a vessel has a tubular shaped cross section, the total vessel volume is calculated as a cylindrically shaped object.
Other grid-based approaches that may also be used in determining a region of interest in the produced velocity vector map(s), including an example in which a fiducial or pattern of fiducials is projected via a secondary laser illumination system onto the tissue target area, wherein image scaling information may be accomplished by analysis of interfiducial distances. A pattern of multiple fiducials may be used to allow for correction of curvature or non-planarity of the tissue target. When analyzing a vector map, which may be represented in color, against the fiducials, vessel diameters can be estimated by identifying velocity ranges within the areas between fiducials. In another example of a fiducial based approach, a fiducials are displayed as an overlay on a color map or a vector map image to allow the operator to identify areas of interest within vessel regions. Assuming that a vessel shows a circular shaped cross section, the total vessel volume is calculated as a tubular shaped object.
As represented in step 120 in
A theoretical fluid or blood flow rate (TBFR) is calculated as represented in step 122 in
One or more display methods can be used to display results. Plain BFR images can be displayed. As a non-exclusive example, plain BFR images can be represented as optical images with BFR labels pointing towards regions of interest. Comparative images can be displayed. Multiple images of the same region of interest but with different timestamps are displayed in one example. In that example, an earlier image and a later image can be separately displayed. Alternatively, such images can be displayed in overlay format, for example with one or more earlier images displayed overlaying or underlying a later image. Difference images can be displayed. As a non-exclusive example, difference images can be represented as optical images with BFR labels showing BFR values at different timestamps or directly as ΔBFR images.
Fluid flow rate calibrations can be conducted verifying or calibrating BFR values against engineered fluid flow solutions, with a range of vessel diameters and different transportation solutions. Various simulated vessel sizes can be used to facilitate calibration for any type and size of vessel, including vessels with small diameters, such as capillaries (5-10 micrometer), and major vessels, such as the aorta (˜3.0 cm). Measurements can be performed until the TBFR is reached and calibrations can be conducted against actual BFR values, with repeated calibrations for a wide range of flow rates. The generated calibration curves can be stored in a database. Calibration against BFR truth data can be derived by in vivo measurement using alternative means such as Doppler ultrasound, Doppler MRI or via radiographic means.
In
In step 204, the laser(s) pulses illuminate a target area of a test subject, for example upon tissue in the vicinity of a biological conduit in which a bodily fluid flows. In at least one example, a laser(s) is used to produce a speckle response on the exposed tissue. Speckles are thereby created on the subject tissue similarly as described with reference to
In step 206 (
Thus, the method 200 includes collecting, at a frequency of collection, a series of velocity vector maps over time, the velocity vector maps representing moving entities or moving fluid portions in a bodily fluid flowing within a biological conduit. The frequency of collection refers to the inverse of the time increment between the captured time-incremented VVMs.
In step 212, one of several ways of determining a region of interest in the produced velocity vector maps is chosen. As in
According to at least one embodiment, determining a region of interest in the produced velocity vector map(s), as represented in step 214 (
Alternatively, according to at least one other embodiment, determining a region of interest in the produced velocity vector maps, as represented in step 216 (
In yet another embodiment of determining a region of interest in the produced velocity vector maps, as represented in step 218 (
As represented in step 220 in
A theoretical fluid or blood flow rate (TBFR) at each time increment is calculated as represented in step 222 in
In step 226, a flow rate profile is calculated representing the fluid or blood flow rate (BFR) values calculated in step 224 over time. The flow rate profile tracks volume flow rate values in the time domain of the collected series of velocity vector maps. For example, the flow rate profile 226 of the bodily fluid can characterize the fluid flow rate as a function of time. The velocity vector maps may be collected in step 210 representing blood flow in a bodily organ over a period of time encompassing heartbeat(s) or other time span of interest. In that example, the flow rate profile is calculated in step 226 over a period of time encompassing a heartbeat or other time span of interest.
To meaningfully characterize the flow of a bodily fluid over a period of time, the frequency of collection of the series of velocity vector maps over time can be chosen to at least satisfy a Nyquist criterion for the flow rate profile of the bodily fluid. The frequency may be selected to be greater than that needed to satisfy a Nyquist criterion for the flow rate profile. For example, to characterize the flow of blood in a bodily organ over a period of time encompassing a heartbeat, a shorter time increment (between the captured time-incremented VVMs) than a time increment needed to satisfy the Nyquist criterion can be selected.
Visual data analytics can be conducted. For example, flow rates across an area of tissue before and after procedures, along with patient outcomes and related metadata (for example based on conventional medical DICOM format) can be normalized across different patients. Normalized images can be data mined to find correlations between patient metadata, specific interventions, and quantified flow pattern changes. Predictive analytics can be performed to help physicians and nurses improve techniques and assumptions and thus improve patient health outcomes.
Furthermore, statistical evaluations of surgery and therapy outcome data (based on patient condition, age, sex, ethnic groups, and other considerations) can help the decision making process during a surgical procedure. For example, the flow rate sufficient for a certain artery in a patient belonging to a certain size or age group can be determined. For patient information privacy and security, raw data may not be publicly accessible, and data may be cleaned of patient information. Gesture controlled processing may be implementing, for example to permit surgeons to navigate and control images and data processing without cross contaminating other hardware interfaces and surgical gloves during procedures.
A vector diagram 314 represents a U axis 316 and a V axis 318 corresponding to respective directions in the velocity vector map 302 illustrated as down and to the right in
An exemplary U and V component map 320 is generated by conversion of the velocity vector map 302 into a grid format in which each pixel has U and V velocity components, illustrated with negative sign values in parentheses. Grid locations of pixels of any size can be selected. For example, in the U and V component map 320 the flow zone 306 appears as a single pixel column.
Edge finding analysis is applied to the U and V component map 320 to generate the gradient map 402 of
The determination of edges of flow zones, using the gradient map 402, so as to determine dimensions such as spans, diameters, and cross-sectional areas of the flow zones is represented in
As represented in
In the illustrated example, the optimized vector 434 is used to determine the diameter of a vessel represented by the flow path 306. The diameters of the vessels represented by the flow paths 310 and 312 are similarly determined using respective optimized vectors.
As represented in
As represented in
Area=π×(Diameter/2)2
Assuming a tubular three dimensional geometry, the correspondence among small volume flow rate and area and speed (Length/Time) is expressed as:
Volume Flow Rate=Area×Length/Time
Speed (Length/Time) is taken from the velocity vector map 302 of
Particular embodiments and features have been described with reference to the drawings. It is to be understood that these descriptions are not limited to any single embodiment or any particular set of features, and that similar embodiments and features may arise or modifications and additions may be made without departing from the scope of these descriptions and the spirit of the appended claims.
This application is a continuation of U.S. Non-Provisional patent application Ser. No. 15/401,572, filed Jan. 9, 2017, titled “FLUID FLOW RATE DETERMINATIONS USING VELOCITY VECTOR MAPS”, which is a continuation of International Patent Application Serial No. PCT/US15/39589, filed Jul. 8, 2015, titled “FLUID FLOW RATE DETERMINATIONS USING VELOCITY VECTOR MAPS, which claims the benefit of priority of U.S. Provisional Patent Application No. 62/022,189, titled “IN TISSUE AND VESSEL, FLUID FLOW RATE MEASUREMENTS,” filed on Jul. 8, 2014, which are all incorporated herein in their entirety by this reference.
Number | Date | Country | |
---|---|---|---|
62022189 | Jul 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15401572 | Jan 2017 | US |
Child | 17245779 | US | |
Parent | PCT/US15/39589 | Jul 2015 | US |
Child | 15401572 | US |