The present application generally relates to medication delivery devices, and more particularly to systems and methods for regulating the flow of a liquid drug delivered by a drug delivery device.
Many conventional drug delivery systems are designed to be wearable and to deliver a drug slowly to the patient over time. Some conventional wearable drug delivery systems use spring arrangements to force a plunger to move within a liquid drug cartridge, expelling liquid drug from the cartridge into a needle that provides the drug to a patient. One issue with such spring-powered devices is that the force applied to the plunger generally decays as the spring expands. This spring force decay can cause variations in the flow rate at which the liquid drug is expelled from the liquid drug container, resulting in uneven delivery of drug to the user.
A need therefore exists for a drug delivery device that has improved flow control characteristics.
This disclosure presents various systems, components, and methods related to drug delivery devices. Each of the systems, components, and methods disclosed herein provides one or more advantages over conventional systems, components, and methods.
Various embodiments include a fluid flow regulator of a fluid delivery system that can adjust a flow rate of a liquid drug dispensed from a liquid drug container to a user. The fluid flow regulator can be coupled to an end of the liquid drug container. The fluid flow regulator can include a compliance plate and a flow channel selector plate having a fluid flow channel. The flow channel selector plate can be rotated relative to the compliance plate and the liquid drug container to expose a selected portion of the fluid flow channel to openings in the compliance plate that are in fluid communication with the liquid drug stored in the liquid drug container. The selected portion of the fluid flow channel can correspond to a corresponding flow resistance of the liquid drug through the fluid flow channel, thereby regulating the flow of the liquid drug to the user.
In a wearable drug delivery system, it may be beneficial to regulate a rate of delivery of a drug administered or provided to the user. Thus, a fluid flow regulator may be integrated into a custom drug container or attached to a standard primary container. The fluid flow regulator can use a tapered channel of varying length to change the outlet flow rate. According to various embodiments, flow calculations can be developed using Poiseuille's Law:
The disclosed fluid flow regulators can be used to regulate fluid exiting the drug delivery systems at finite and infinitely adjustable flow rates. According to various embodiments, laminar flow (e.g., Reynold's number sub 4000 for water) can be assumed. Disclosed arrangements can be advantageous because in some drug therapies it is desirous to meter out the drug to a patient at a steady rate (e.g., for basal flow or delivery). Steady basal rates become difficult to achieve when using a mechanical, stored energy drive source, like a spring. Springs are inexpensive drive sources that provide repeatable performance and can withstand long shelf life, large temperature variation, and abuse in drop scenarios, while still performing properly thereafter. Springs, however, will have a decaying force over extension (e.g., for a helical compression spring) spring constant or k. As force decays, drive pressure is reduced, and as a result the flow rate exiting the device is reduced. If outlet flow rate can be controlled, shorter and stiffer springs can be used to drive flow. Some of these springs may have a high k-value which means they lose drive force quickly and over a short stroke. The disclosed fluid regulators can accommodate the use of springs with relatively high k-value (and/or springs with any k-value including relatively low k-values).
The disclosed fluid flow regulators can be adjusted, so as the spring force reduces (e.g., over the length of its stroke), the flow path restriction is reduced to keep the flow of drug consistent. In some embodiments the configuration of the fluid flow regulator is fixed and not adjustable by a user. In some embodiments a plurality of discrete flow rate settings are provided. In one exemplary embodiment available settings are from a minimum value (e.g., off) to a maximum value (e.g., full flow). In some embodiments the configuration of the fluid flow regulator is adjustable by a user or can be automatically adjusted to provide a desired or set flow rate.
Referring to
As shown in
The fluid flow regulator 106 may include a compliance plate 116, a flow channel selector plate 118, a needle ball 120, a needle ball retainer 122, and a hard needle 124. The compliance plate 116 can be a flat elastomeric member or component that can seal the second end 110 of the drug container 102 from the flow channel selector plate 118. The compliance plate 116 can include first and second openings 126 and 128. The first and second openings 126 and 128 may fluidly couple to the first and second recesses 112 and 114, respectively (e.g., they may be in communication or fluid communication therewith, or coupled thereto). The arrangement of the first and second recesses 112 and 114 and the first and second openings 126 and 128 can direct fluid stored in the drug container 102 to flow to a fluid flow channel 130 disposed within (e.g., positioned on the flow channel selector plate 118 and/or coupled or attached thereto). The compliance plate 116 can also include a third opening 132 that can be coupled to the hard needle 124 (e.g., a central opening), described in more detail further herein. In various embodiments, the first and second openings 126 and 128 can be positioned a same distance from a center of the compliance plate 116 (e.g., a same radial distance from the third opening 132).
As will be described in greater detail below, by adjusting the position of the flow channel selector plate 118, the size, length, and/or configuration of the fluid flow channel 130 can be adjusted to thereby adjust the flow resistance within the fluid flow channel 130 (and/or provided by the fluid flow channel 130). In various embodiments, the position of the flow channel selector plate 118 can be adjusted by rotating the flow channel selector plate 118 relative to a stationary compliance plate 116 (and liquid drug container 102). This adjustment, in turn, can be used to adjust the flow rate of a liquid drug travelling through the fluid flow channel 130 and, in turn, out to the user (e.g., through the needle 124). In various embodiments, the liquid drug passing through the fluid flow channel 130 can be provided to the user by coupling the hard needle 124 (or other fluid path or fluid path component) to the user.
As can be seen, the distance between the first and second openings 126 and 128 of the compliance plate 116 stays constant, regardless of the position of the flow channel selector plate 118 (e.g., since the compliance plate 116 remains stationary). However, the position of the flow channel selector plate 118 can determine the size of (e.g., the cross-sectional portion of) the fluid flow channel 130 positioned between the first and second openings 126 and 128. Flow between the first and second openings 126 and 128 can be increased as the size of the cross-sectional portion of the fluid flow channel 130 is increased (and correspondingly decreased as the size of the cross-sectional portion of the fluid flow channel 130 is decreased). Thus, flow through the fluid flow regulator 106 is adjusted by changing the characteristics of the fluid flow channel 130 that is disposed across the first and second openings 126 and 128. The adjusted flow can then be coupled to the patient or user through, for example, the hard needle 124.
In various embodiments, the fluid flow channel 130 is a circular tapered channel. For example, the fluid flow channel 130 tapers from an initial height to a final height, with either the initial or final height being a maximum height or minimum height. In other embodiments, the profile of the fluid flow channel 130 can take on any shape or profile or tapering provided a final height is reached from a starting height. Accordingly, as the flow channel selector plate 118 is rotated, a different portion of the circular tapered channel forming the fluid flow channel 130 is exposed to the first and second openings 126 and 128. Lower settings of the flow channel selector plate 118 correspond to the first and second openings 126 and 128 being exposed to smaller cross-sectional portions of the circular tapered channel. Higher settings of the flow channel selector plate 118 correspond to the first and second openings 126 and 128 being exposed to larger cross-sectional portions of the circular tapered channel. In some embodiments the fluid flow channel 130 comprises a circular tapered channel molded into the flow channel selector plate 118. Overall, the fluid flow channel 130 can be coupled to the flow channel selector plate 118 in any manner.
Aspects of the fluid flow passages through the liquid drug container 102 (e.g., the inlet and outlet manifolds 112 and 114), and the compliance plate 116 (e.g., the second and third openings 128 and 132), as well as their connections to the needle 124 are illustrated in
In some embodiments, the tapered channel(s) of the fluid flow channel 130 may have gradual/helical tapers or distinct steps where high resolution low flow performance can be achieved within some set amount of degrees or radians, while the more “wide open” end can provide a bolus.
In the illustrated embodiment shown in
As can be seen, when the flow channel selector plate 130 is rotated to position the fluid flow channel 130-1 in the orientation of
When the flow channel selector plate 130 is rotated to position the fluid flow channel 130-1 in the orientation of
As shown in
The features present in the second end 110 of the liquid drug container 102 of
An annular seal 1014 such as an O-ring may seal the cartridge adapter 1008 to the liquid drug container 1002. The compliance plate 116 and the flow channel selector plate 118 of the drug container system 1000 may have the same features and functionality as described in relation to the drug container system 100. The needle ball 120, needle ball retainer 122, and the hard needle 124 may also be the same as described in relation to the drug container system 100.
Referring to
Referring now to
In various embodiments one or more of these surface profiling arrangements can be employed along the entire length of the fluid flow channel 130 or a portion thereof or according to any pattern (e.g., applied to distinct non-overlapping regions of the fluid flow channel 130). In various embodiments the surface profiling arrangements can be applied over a limited length of the fluid flow channel 130 to generate turbulent flow over a limited length followed by an area that converts flow back to the laminar regime. The surface profiling arrangements may be molded or textured interior features of the fluid flow channel 130 (e.g., any of the exemplary fluid flow channels described herein).
Any of the fluid flow regulation arrangements, including any of the drug delivery systems and/or any of the fluid flow regulators disclosed herein, can be part of a wearable or on-body drug delivery device or pump, such as an OmniPod® (Insulet Corporation, Billerica, Mass., USA) device and/or any of the drug delivery devices described in U.S. Pat. Nos. 7,303,549; 7,144,384; 7,137,964; 6,960,192; 6,740,059; 6,699,218; 9,402,950; 7,771,412; 7,029,455; 6,740,05; and 6,656,159, each of which is incorporated herein by reference in its entirety.
Certain embodiments of the present invention were described above. It is, however, expressly noted that the present invention is not limited to those embodiments, but rather the intention is that additions and modifications to what was expressly described herein are also included within the scope of the invention. Moreover, it is to be understood that the features of the various embodiments described herein were not mutually exclusive and can exist in various combinations and permutations, even if such combinations or permutations were not made express herein, without departing from the spirit and scope of the invention. In fact, variations, modifications, and other implementations of what was described herein will occur to those of ordinary skill in the art without departing from the spirit and the scope of the invention. As such, the invention is not to be defined only by the preceding illustrative description.
This application claims the benefit of U.S. Provisional Application No. 62/540,947, filed Aug. 3, 2017, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1441508 | Marius et al. | Jan 1923 | A |
2198666 | Gruskin | Apr 1940 | A |
3176712 | Ramsden | Apr 1965 | A |
3297260 | Barlow | Jan 1967 | A |
3464359 | King | Sep 1969 | A |
3885662 | Schaefer | May 1975 | A |
3946732 | Hurscham | Mar 1976 | A |
3947692 | Payne | Mar 1976 | A |
3993061 | OLeary | Nov 1976 | A |
4108177 | Pistor | Aug 1978 | A |
4152098 | Moody et al. | May 1979 | A |
4210173 | Choksi et al. | Jul 1980 | A |
4221219 | Tucker | Sep 1980 | A |
4257324 | Stefansson et al. | Mar 1981 | A |
4268150 | Chen | May 1981 | A |
4313439 | Babb et al. | Feb 1982 | A |
4371790 | Manning et al. | Feb 1983 | A |
4417889 | Choi | Nov 1983 | A |
4424720 | Bucchianeri | Jan 1984 | A |
4435173 | Siposs et al. | Mar 1984 | A |
4498843 | Schneider et al. | Feb 1985 | A |
4507115 | Kambara et al. | Mar 1985 | A |
4551134 | Slavik et al. | Nov 1985 | A |
4562751 | Nason et al. | Jan 1986 | A |
4567549 | Lemme | Jan 1986 | A |
4585439 | Michel | Apr 1986 | A |
4601707 | Albisser et al. | Jul 1986 | A |
4634427 | Hannula et al. | Jan 1987 | A |
4671429 | Spaanderman et al. | Jun 1987 | A |
4678408 | Nason et al. | Jul 1987 | A |
4684368 | Kenyon | Aug 1987 | A |
4685903 | Cable et al. | Aug 1987 | A |
4755169 | Samoff et al. | Jul 1988 | A |
4766889 | Trick et al. | Aug 1988 | A |
4808161 | Kamen | Feb 1989 | A |
4846797 | Howson et al. | Jul 1989 | A |
4858619 | Toth | Aug 1989 | A |
4898579 | Groshong et al. | Feb 1990 | A |
4908017 | Howson et al. | Mar 1990 | A |
4944659 | Labbe et al. | Jul 1990 | A |
4969874 | Michel et al. | Nov 1990 | A |
5007458 | Marcus et al. | Apr 1991 | A |
5020325 | Henault | Jun 1991 | A |
5062841 | Siegel | Nov 1991 | A |
5147311 | Pickhard | Sep 1992 | A |
5178609 | Ishikawa | Jan 1993 | A |
5205819 | Ross et al. | Apr 1993 | A |
5213483 | Flaherty et al. | May 1993 | A |
5222362 | Maus et al. | Jun 1993 | A |
5236416 | McDaniel et al. | Aug 1993 | A |
5261882 | Sealfon | Nov 1993 | A |
5261884 | Stern et al. | Nov 1993 | A |
5277338 | Divall | Jan 1994 | A |
5281202 | Weber et al. | Jan 1994 | A |
5346476 | Elson | Sep 1994 | A |
5364342 | Beuchat et al. | Nov 1994 | A |
5388615 | Edlund et al. | Feb 1995 | A |
5433710 | VanAntwerp et al. | Jul 1995 | A |
5503628 | Fetters et al. | Apr 1996 | A |
5520661 | Lal et al. | May 1996 | A |
5533389 | Kamen et al. | Jul 1996 | A |
5582593 | Hultman | Dec 1996 | A |
5618269 | Jacobsen et al. | Apr 1997 | A |
5637095 | Nason et al. | Jun 1997 | A |
5665070 | McPhee | Sep 1997 | A |
5713875 | Tanner, II | Feb 1998 | A |
5747350 | Sattler | May 1998 | A |
5748827 | Holl et al. | May 1998 | A |
5776103 | Kriesel et al. | Jul 1998 | A |
5779676 | Kriesel et al. | Jul 1998 | A |
5785688 | Joshi et al. | Jul 1998 | A |
5797881 | Gadot | Aug 1998 | A |
5800397 | Wilson et al. | Sep 1998 | A |
5807075 | Jacobsen et al. | Sep 1998 | A |
5839467 | Saaski et al. | Nov 1998 | A |
5891097 | Saito et al. | Apr 1999 | A |
5897530 | Jackson | Apr 1999 | A |
5906597 | McPhee | May 1999 | A |
5911716 | Rake et al. | Jun 1999 | A |
5919167 | Mulhauser et al. | Jul 1999 | A |
5957890 | Mann et al. | Sep 1999 | A |
5961492 | Kriesel et al. | Oct 1999 | A |
5971963 | Choi | Oct 1999 | A |
6019747 | McPhee | Feb 2000 | A |
6050457 | Arnold et al. | Apr 2000 | A |
6068615 | Brown et al. | May 2000 | A |
6086615 | Wood et al. | Jul 2000 | A |
6159188 | Laibovitz et al. | Dec 2000 | A |
6174300 | Kriesel et al. | Jan 2001 | B1 |
6190359 | Heruth | Feb 2001 | B1 |
6200293 | Kriesel et al. | Mar 2001 | B1 |
6352522 | Kim | Mar 2002 | B1 |
6363609 | Pickren | Apr 2002 | B1 |
6375638 | Nason et al. | Apr 2002 | B2 |
6474219 | Klitmose et al. | Nov 2002 | B2 |
6485461 | Mason et al. | Nov 2002 | B1 |
6485462 | Kriesel | Nov 2002 | B1 |
6488652 | Weijand et al. | Dec 2002 | B1 |
6520936 | Mann | Feb 2003 | B1 |
6527744 | Kriesel et al. | Mar 2003 | B1 |
6537249 | Kriesel et al. | Mar 2003 | B2 |
6539286 | Jiang | Mar 2003 | B1 |
6569115 | Barker et al. | May 2003 | B1 |
6595956 | Gross et al. | Jul 2003 | B1 |
6656158 | Mahoney et al. | Dec 2003 | B2 |
6699218 | Flaherty et al. | Mar 2004 | B2 |
6723072 | Flaherty et al. | Apr 2004 | B2 |
6749407 | Xie et al. | Jun 2004 | B2 |
6851260 | Merno | Feb 2005 | B2 |
6883778 | Newton et al. | Apr 2005 | B1 |
7018360 | Flaherty et al. | Mar 2006 | B2 |
7104275 | Dille | Sep 2006 | B2 |
7128727 | Flaherty et al. | Oct 2006 | B2 |
7144384 | Gorman et al. | Dec 2006 | B2 |
7160272 | Eyal et al. | Jan 2007 | B1 |
7771392 | De Polo et al. | Aug 2010 | B2 |
7914499 | Gonnelli et al. | Mar 2011 | B2 |
8382703 | Abdelaal | Feb 2013 | B1 |
8499913 | Gunter | Aug 2013 | B2 |
8939935 | O'Connor et al. | Jan 2015 | B2 |
9180244 | Anderson et al. | Nov 2015 | B2 |
9192716 | Jugl et al. | Nov 2015 | B2 |
9402950 | Dilanni et al. | Aug 2016 | B2 |
9539596 | Ikushima | Jan 2017 | B2 |
20010016710 | Nason et al. | Aug 2001 | A1 |
20010056258 | Evans | Dec 2001 | A1 |
20020029018 | Jeffrey | Mar 2002 | A1 |
20020032374 | Holker | Mar 2002 | A1 |
20020037221 | Mastrangelo | Mar 2002 | A1 |
20020173769 | Gray et al. | Nov 2002 | A1 |
20020173830 | Starkweather | Nov 2002 | A1 |
20030040715 | D'Antonio et al. | Feb 2003 | A1 |
20030097092 | Flaherty | May 2003 | A1 |
20030163097 | Fleury | Aug 2003 | A1 |
20030199825 | Flaherty | Oct 2003 | A1 |
20040010207 | Flaherty | Jan 2004 | A1 |
20040064088 | Gorman et al. | Apr 2004 | A1 |
20040068224 | Couvillon et al. | Apr 2004 | A1 |
20040069044 | Lavi et al. | Apr 2004 | A1 |
20040092865 | Flaherty | May 2004 | A1 |
20040094733 | Hower | May 2004 | A1 |
20040153032 | Garribotto | Aug 2004 | A1 |
20050020980 | Inoue et al. | Jan 2005 | A1 |
20050165363 | Judson et al. | Jul 2005 | A1 |
20050203461 | Flaherty et al. | Sep 2005 | A1 |
20050238507 | Dilanni et al. | Oct 2005 | A1 |
20050273059 | Mernoe et al. | Dec 2005 | A1 |
20050277882 | Kriesel | Dec 2005 | A1 |
20060041229 | Garibotto et al. | Feb 2006 | A1 |
20060079765 | Neer et al. | Apr 2006 | A1 |
20060155210 | Beckman et al. | Jul 2006 | A1 |
20060173439 | Thorne et al. | Aug 2006 | A1 |
20060178633 | Garibotto et al. | Aug 2006 | A1 |
20060253085 | Geismar et al. | Nov 2006 | A1 |
20060282290 | Flaherty et al. | Dec 2006 | A1 |
20070005018 | Tekbuchava | Jan 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070282269 | Carter et al. | Dec 2007 | A1 |
20080004515 | Jennewine | Jan 2008 | A1 |
20080051738 | Griffin | Feb 2008 | A1 |
20080114304 | Nalesso et al. | May 2008 | A1 |
20080172028 | Blomquist | Jul 2008 | A1 |
20080294040 | Mohiuddin et al. | Nov 2008 | A1 |
20090024083 | Kriesel et al. | Jan 2009 | A1 |
20090062767 | Van Antwerp et al. | Mar 2009 | A1 |
20090198215 | Chong et al. | Aug 2009 | A1 |
20090278875 | Holm et al. | Nov 2009 | A1 |
20100036326 | Matusch | Feb 2010 | A1 |
20100152658 | Hanson et al. | Jun 2010 | A1 |
20100241066 | Hansen et al. | Sep 2010 | A1 |
20110054399 | Chong et al. | Mar 2011 | A1 |
20110144586 | Michaud et al. | Jun 2011 | A1 |
20110230833 | Landman et al. | Sep 2011 | A1 |
20120078161 | Masterson et al. | Mar 2012 | A1 |
20130006213 | Arnitz et al. | Jan 2013 | A1 |
20130017099 | Genoud et al. | Jan 2013 | A1 |
20130177455 | Kamen et al. | Jul 2013 | A1 |
20130178803 | Raab | Jul 2013 | A1 |
20130245545 | Arnold et al. | Sep 2013 | A1 |
20130267932 | Franke et al. | Oct 2013 | A1 |
20140018730 | Muller-Pathle | Jan 2014 | A1 |
20140127048 | Dilanni et al. | May 2014 | A1 |
20140128839 | Dilanni et al. | May 2014 | A1 |
20140142508 | Dilanni et al. | May 2014 | A1 |
20140148784 | Anderson et al. | May 2014 | A1 |
20140171901 | Langsdorf et al. | Jun 2014 | A1 |
20150041498 | Kakiuchi et al. | Feb 2015 | A1 |
20150064036 | Eberhard | Mar 2015 | A1 |
20150137017 | Ambrosina | May 2015 | A1 |
20150202386 | Brady et al. | Jul 2015 | A1 |
20150290389 | Nessel | Oct 2015 | A1 |
20150297825 | Focht et al. | Oct 2015 | A1 |
20160008549 | Plumptre et al. | Jan 2016 | A1 |
20160025544 | Kamen et al. | Jan 2016 | A1 |
20160082242 | Burton | Mar 2016 | A1 |
20160193423 | Bilton | Jul 2016 | A1 |
20170021096 | Cole et al. | Jan 2017 | A1 |
20170021137 | Cole | Jan 2017 | A1 |
20170100541 | Constantineau | Apr 2017 | A1 |
20170216516 | Dale et al. | Aug 2017 | A1 |
20170239415 | Hwang et al. | Aug 2017 | A1 |
20180021521 | Sanchez | Jan 2018 | A1 |
20180313346 | Oakes et al. | Nov 2018 | A1 |
20190192782 | Pedersen et al. | Jun 2019 | A1 |
20190365993 | Staub et al. | Dec 2019 | A1 |
Number | Date | Country |
---|---|---|
606281 | Oct 1960 | CA |
1375338 | Oct 2002 | CN |
4200595 | Jul 1993 | DE |
19723648 | Aug 1998 | DE |
0454331 | Oct 1991 | EP |
0789146 | Aug 1997 | EP |
0867196 | Sep 1998 | EP |
1065378 | Jan 2001 | EP |
1177802 | Feb 2002 | EP |
1403519 | Mar 2004 | EP |
2397181 | Dec 2011 | EP |
2468338 | Jun 2012 | EP |
2703024 | Mar 2014 | EP |
2830499 | Feb 2015 | EP |
2096275 | Feb 1972 | FR |
2455269 | Nov 1980 | FR |
2507637 | Dec 1982 | FR |
2731475 | Sep 1996 | FR |
357139 | Sep 1931 | GB |
810488 | Mar 1959 | GB |
875034 | Aug 1961 | GB |
1204836 | Sep 1970 | GB |
2008806 | Jun 1979 | GB |
2077367 | Dec 1981 | GB |
2456681 | Jul 2009 | GB |
2549750 | Nov 2017 | GB |
46017 | Nov 1977 | IL |
06063133 | Mar 1994 | JP |
6098988 | Apr 1994 | JP |
H06296690 | Oct 1994 | JP |
H08238324 | Sep 1996 | JP |
2004247271 | Sep 2004 | JP |
2004274719 | Sep 2004 | JP |
2005188355 | Jul 2005 | JP |
2006159228 | Jun 2006 | JP |
2006249130 | Sep 2006 | JP |
1019126 | Apr 2003 | NL |
8101658 | Jun 1981 | WO |
8606796 | Nov 1986 | WO |
9415660 | Jul 1994 | WO |
9855073 | Dec 1998 | WO |
9856293 | Dec 1998 | WO |
9910040 | Mar 1999 | WO |
9910049 | Mar 1999 | WO |
9962576 | Dec 1999 | WO |
0029047 | May 2000 | WO |
0178812 | Oct 2001 | WO |
0220073 | Mar 2002 | WO |
2002026282 | Apr 2002 | WO |
02068823 | Sep 2002 | WO |
2002076535 | Oct 2002 | WO |
2003097133 | Nov 2003 | WO |
2004056412 | Jul 2004 | WO |
2004110526 | Dec 2004 | WO |
2007066152 | Jun 2007 | WO |
2008133702 | Nov 2008 | WO |
2009039203 | Mar 2009 | WO |
2009141005 | Nov 2009 | WO |
2010139793 | Dec 2010 | WO |
2011010198 | Jan 2011 | WO |
2011075042 | Jun 2011 | WO |
2011133823 | Oct 2011 | WO |
2012073032 | Jun 2012 | WO |
2013050535 | Apr 2013 | WO |
2013137893 | Sep 2013 | WO |
2014149357 | Sep 2014 | WO |
2015032772 | Mar 2015 | WO |
2015081337 | Jun 2015 | WO |
2015117854 | Aug 2015 | WO |
2015167201 | Nov 2015 | WO |
2015177082 | Nov 2015 | WO |
2017148855 | Sep 2017 | WO |
2017187177 | Nov 2017 | WO |
Entry |
---|
European Search Report and Written Opinion for the European Patent Application No. EP19177571, dated Oct. 30, 2019, 8 pages. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2019/035756, dated Jul. 31, 2019, 11 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US18/14351, dated Jul. 23, 2019, 6 pages. |
International Preliminary Report on Patentability for International application No. PCT/US2017/034811 dated Nov. 27, 2018 10 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/046508 dated Feb. 12, 2019 10 pp. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/046777, dated Feb. 19, 2019, 8 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/046737, dated Feb. 19, 2019, 8 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2017/055054, dated Apr. 9, 2019, 8 pages. |
International Search Report and Written Opinion for International application No. PCT/GB2007/004073, dated Jan. 31, 2008. |
PCT International Search Report and Written Opinion dated Aug. 6, 2013, received in corresponding PCT Application No. PCT/US13/34674,pp. 1-19. |
EPO Search Report dated Nov. 11, 2015, received in corresponding Application No. 13768938.6, 7 pgs. |
International Search Report and Written Opinion for the International Patent Application No. PCT/US2019/063615, dated May 3, 2020, 16 pages. |
International Preliminary Report on Patentability for the International Patent Application No. PCT/US2018/045155, dated Feb. 13, 2020, 10 pages. |
Lind, et al.,“Linear Motion Miniature Actuators.” Paper presented at the 2nd Tampere International Conference on Machine Automation, Tampere, Finland (Sep. 1998), 2 pages. |
Author unknown, “The Animas R-1000 Insulin Pump—Animas Corporation intends to exit the insulin pump business and discontinue the manufacturing and sale of Animas® Vibe® and One Touch Ping® insulin pumps.” [online], Dec. 1999 [retrieved on Jan. 8, 2019]. Retrieved from the Internet URL: http://www.animaspatientsupport.com/, 2 pages. |
Author unknown, CeramTec “Discover the Electro Ceramic Products CeramTec acquired from Morgan Advanced Materials” [online], Mar. 1, 2001 [retrieved on Jan. 8, 2019. Retrieved from the Internet URL: http://www.morgantechnicalceramics.com/, 2 pages. |
Vaughan, M.E., “The Design, Fabrication, and Modeling of a Piezoelectric Linear Motor.” Master's thesis, Virginia Polytechnic Institute and State University, VA. (2001), 93 pages. |
Galante, et al., “Design, Modeling, and Performance of a High Force Piezoelectric Inchworm Motor,” Journal of Intelligent Material Systems and Structures, vol. 10, 962-972 (1999), 11 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2018/014351, dated Jun. 4, 2018, 9 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/055054, dated Jan. 25, 2018, 13 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2018/045155, dated Oct. 15, 2018, 15 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/034811, dated Oct. 18, 2017, 17 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/046508, dated Jan. 17, 2018, 14 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/034814, dated Oct. 11, 2017, 18 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/046777, dated Dec. 13, 2017, 14 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2017/046737, dated Dec. 14, 2017, 11 pages. |
International Search Report and Written Opinion for Application No. PCT/US2019/059854, dated Aug. 26, 2020, 15 pages. |
European Search Report for the European Patent Application No. EP20174878, dated Sep. 29, 2020, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20190038835 A1 | Feb 2019 | US |
Number | Date | Country | |
---|---|---|---|
62540947 | Aug 2017 | US |