1. Field of the Invention
The present invention relates to a hydraulic flow regulator, and, more particularly, to a regulator that controls a fluid flow as the pressure of the fluid fluctuates, for instance in a jack.
2. Description of the Related Art
Hydraulic cylinders are common devices used in industry and for the jacking of loads using a jacking mechanism having an input cylinder and an output cylinder. The output cylinder is used to lift the load to a predetermined height with a considerably small force utilized on the mechanical portion that moves the input cylinder. The working principal of the hydraulic jack system provides for an applied small force that moves the input piston of a small cross-sectional area and pushes the hydraulic fluid or oil into an output cylinder, which then forces an output piston of large cross-sectional area to jack up a load.
When an operator of a hydraulic jack needs to lower the load that has been jacked up, the operator typically operates a release valve to allow the fluid to escape the load cylinder. Generally the release valve is a screw that has very little resolution and the fluid will rapidly escape to the fluid reservoir when the output cylinder is under a full load, then as the load comes into contact with a support, thus lowering the load supported by the jack, the pressure in the load cylinder fluid changes and the fluid flow decreases. This disadvantageously then reduces the rate of lowering of the load.
From another perspective the initial lowering speed is generally too high. For example, with a vehicle in a raised position, as the screw valve is moved the vehicle will often lurch downwardly. This can be potentially hazardous to the operator, a condition which it is desirous to avoid.
What is needed in the art is an easy to operate, and inexpensive to manufacture, flow regulator that can be easily incorporated into a jack.
The present invention provides a hydraulic flow regulator that controls the rate of flow in a hydraulic system such as a jack over a large dynamic range by altering flow pathways of the fluid.
The invention in one form is directed to a hydraulic jack including a load cylinder, a pump, a release valve and a flow regulator. The pump is configured to provide pressurized fluid to the load cylinder. The release valve is in fluid communication with the pressurized fluid. The flow regulator is configured to alter a flow path of the fluid therethrough as an inverse function of a pressure drop of the fluid across the flow regulator. The fluid regulator being in fluid communication with the release valve.
The invention in another form is directed to a hydraulic pump supplying pressurized fluid to a load cylinder including a release valve and a flow regulator. The release valve is in fluid communication with the pressurized fluid. The flow regulator is configured to alter a flow path of the fluid therethrough as an inverse function of a pressure drop of the fluid across the flow regulator. The fluid regulator being in fluid communication with the release valve.
The invention in yet another form is directed to a method of method of retracting a hydraulic cylinder under a load. The method includes the steps of releasing a valve and altering a flow path of fluid. The releasing a valve step allows a valve in fluid communication with pressurized fluid in the cylinder to flow. The altering a flow path of the fluid alters a flow of the fluid in a flow regulator as a pressure drop of the fluid across the flow regulator changes. The fluid regulator being in fluid communication with the valve.
An advantage of the present invention is that the flow regulator works over a large dynamic range.
Another advantage of the present invention is that it is involves few moving parts.
Yet another advantage of the present invention is that the apparatus is inexpensive to manufacture and can be readily adapted into systems currently using prior art designs.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrate one embodiment of the invention and such exemplification is not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
Now, additionally referring to
During a lifting operation release valve 4 is tightened as shown in
When it is time to lower the load, release valve 4 is loosened as shown in
The sequence of movement of plunger 9 and spring 8, in reaction to a movement of a high pressure level of the fluid in cavity 5a, can be seen as progressing from
As lifting ram 5 retracts under the load, as the load decreases, the pressure on the fluid in cavity 5a will decrease, and hence the pressure drop across flow regulator 7 will decrease. This will allow the bias of spring 8 to cause plunger 9 to descend, as in going from the position depicted in
In a like manner, as lifting ram 5 continues to retract under the load, and as the load further decreases, the pressure on the fluid in cavity 5a will also further decrease, and hence the pressure drop across flow regulator 7 will further decrease. This allows the bias of spring 8 to further move plunger 9, as in going from the position depicted in
As can now be understood, as the pressure drop of the fluid continues to decline across flow regulator 7, plunger 9 will reach a low position as shown in
As plunger 9 passes each O-ring 11 it substantially seals or opens the path to the corresponding port 12-14, depending on the direction in which plunger 9 is traveling. This can be thought of as opening each level of the arrangement. It is also contemplated to have more than one port at each level, so that multiple ports are opened at each level.
Plunger 9, which is effectively a sliding cylinder, may have a surface feature, as can be seen in great detail in
As discussed above, ports 12-15 can vary in size from each other. In one embodiment of this invention, port 15 has a diameter of 0.006 inches, port 14 has a diameter of 0.006 inches, port 13 has a diameter of 0.013 inches, and port 12 has a diameter of 0.094 inches. Additionally, as plunger 9 slides, and as each seal 11 is passed, to allow some fluid flow through the corresponding hole, there is a transition as the edge of plunger 9 clears each seal so that for a short distance of travel the fluid passing through the hole corresponding to the new flow path is somewhat reduced by the gap between the seal 11 and plunger 9. This effect is transitional, but adds to the overall function of flow regulator 7.
Now, additionally referring to
Now, additionally referring to
Advantageously flow regulator 7 serves to keep a flow moderated over a range of input pressures. The combination of plunger 9, spring 8 and holes 12-15 compensate for pressure changes by altering the cross sectional flow area as the pressure drop varies across flow regulator 7.
Flow regulator 7 will allow a nearly constant flow of oil independent of the pressure. For reference, the oil pressure in the jack varies from approximately 12,000 psi loaded to less than 60 psi unloaded for a ratio of 200:1 or 23 dB. No available pressure regulator in the prior art could be found which would operate anywhere close to this huge dynamic range.
Note that the area of the largest hole is 245 times the area of the smallest hole thereby approximating the pressure ratio discussed above. In this manner, the flow is moderated as the load is lowered, and the flow can even be considered to be nearly constant and independent of the pressure drop causing the flow.
The purpose of the present invention is to maintain an average constant flow rate under a wide range of fluid pressure in a closed system. Specifically, but not limited to, providing a constant descent rate of a hydraulic jack regardless of the load within the jack's rated capacity. This device is also a safety device that eliminates the possible operator error of opening the release valve too quickly allowing an uncontrolled rapid descent of the jack. This device is an economical inline pressure compensating flow control valve that uses a plunger, spring, and a rod with a series of ports to maintain an average flow rate under a wide range of pressures. The flow rate of hydraulic fluid is a relationship between the pressure drop of the fluid across the orifice and the orifice size through which the fluid is flowing. As the pressure drop increases with a given orifice size, the flow rate will also increase. Therefore it is possible to maintain a constant flow rate under changing pressure drops by changing the orifice size to match the given pressure. The pressure in the system is determined by the amount of weight being supported by the jack. The greater the weight being lifted, the greater the pressure of the fluid in the lifting ram chamber 5a.
The present invention advantageously uses a plunger that is controlled by a spring to open or close a series of orifices depending on the pressure in the system. The areas of the multiple orifices combine as a single orifice area size to determine the flow rate. As the orifices are closed off it reduces the area through which the fluid can flow thereby reducing the flow rate.
When the jack is suspending a load, it creates a pressure in the Lifting Ram Cavity 5a. In order to lower the weight, the Release Valve 4 is turned to open a path for the fluid to travel from the Lifting Ram Cavity 5a to the Tank Cavity 6a. The greater the weight being suspended, the greater the pressure in the Lifting Ram Cavity 5a. Due to the pressure, when Release Valve 4 is opened, the fluid will then travel into Plunger Cavity 17. The fluid will then travel around the Plunger 9 toward the Ports 12-15. The higher the pressure the faster the fluid will flow. The faster the fluid flows the more it forces the Plunger 9 up compressing Spring 8. Spring 8 is sized according to the desired flow rate. As Plunger 9 travels up it closes off ports to reduce the amount of fluid than can pass onto Tank Cavity 6a. When Plunger 9 has closed off enough ports to establish equilibrium with the bias of Spring 8, the fluid can then flow freely through the remaining ports. Once the weight is no longer adding pressure to the system, then Plunger 9 will travel downward opening more ports to allow the fluid to flow to Tank Cavity 6a at the same rate under lower pressure.
Prior art pressure compensating flow regulators use a needle valve that is manipulated by the use of a spring and a pressure bypass. As the pressure in the fluid increases the valve closes to allow less fluid to pass through. The downside of these existing devices is that they only work over a narrow pressure range.
Previous hydraulic jacks control the descent rate by manually controlling the opening of the release valve by unscrewing the valve. The problem with this is that this system relies on the operator to be careful when opening the valve not to open it too far and allow the weight to be dropped at an unsafe rate. The present invention serves to eliminate this problem. No matter how fast or far the operator opens the valve it will only descend at a safe rate no matter how much weight is being lowered.
While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2381553 | Mott | Aug 1945 | A |
3740952 | Fujii | Jun 1973 | A |
4754692 | Yoshida | Jul 1988 | A |
5065983 | Slay | Nov 1991 | A |
5675982 | Kirol et al. | Oct 1997 | A |
6199379 | Hung | Mar 2001 | B1 |
6742334 | Fan | Jun 2004 | B2 |
6742767 | Bruzek | Jun 2004 | B1 |
7040091 | Fan | May 2006 | B2 |
20090218835 | Sipila | Sep 2009 | A1 |
20140158962 | Lautzenhiser et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
8300542 | Feb 1983 | WO |
Entry |
---|
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration dated Mar. 23, 2016 for International Application No. PCT/US2015/067305 (12 pages). |
Number | Date | Country | |
---|---|---|---|
20160208829 A1 | Jul 2016 | US |