Fluid for accommodating intraocular lenses

Information

  • Patent Grant
  • 8900298
  • Patent Number
    8,900,298
  • Date Filed
    Wednesday, February 23, 2011
    13 years ago
  • Date Issued
    Tuesday, December 2, 2014
    9 years ago
Abstract
Fluids incorporated into intraocular lenses and their methods of use. In some embodiments the fluids are silicone oils, and in some embodiments they are used in accommodating intraocular lenses.
Description
INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.


BACKGROUND

Intraocular lenses (“IOL”) may comprise one or more fluids disposed therein. For example, some accommodating IDLs use fluid movement within the IOL, or a change in fluid pressure within the IOL, to effect optical power change in the IOL. Exemplary accommodating IDLs that include a fluid can be found in U.S. Pat. App. Pub. Nos. 2008/0306588, filed Jul. 22, 2008, and 2008/0306587, filed Jul. 22, 2008, the disclosures of which are incorporated herein by reference. Exemplary methods of accommodation in response to natural ciliary muscle movement are also described therein. For example, in the embodiment shown in FIGS. 3-5 in U.S. Pat. App. Pub. No. 2008/0306588, a fluid pressure increase in the optic portion causes the shape of the anterior surface of the optic portion to change, thereby changing the power of the lens. Silicone oil is an example of a fluid that can be used in an IOL. In the embodiment shown, the peripheral portion is in fluid communication with the optic portion, allowing, for example, silicone oil to flow between the optic portion and the peripheral portion. The bulk material of the lens includes anterior lens element 16, intermediate layer 18, and posterior element 22. The bulk material can also be considered to include the haptic bulk material in the peripheral portion of the IOL.


When fluids such as silicone oil are used in an accommodating intraocular lens, the fluid, over time, may tend to swell into the bulk material. This can reduce the amount of silicone oil available to drive the optical power change in the IOL. It is therefore desirable to minimize the amount of swelling into the bulk material. It may also be important to provide silicone oil that does not reduce the response time of the accommodating IOL.


Some IOLs rely on, or can benefit from, a substantially uniform refractive index throughout the IOL. It may therefore also be beneficial to provide silicone oil that has a refractive index that is as close to the refractive index of the bulk material as possible.


Improved fluids (e.g., silicone oils), their methods of manufacture, and their methods of use in accommodating intraocular lenses are therefore needed.


SUMMARY

One aspect of the disclosure is a method of manufacturing silicone oil for use in an intraocular lens, comprising purifying silicone oil to be used in an intraocular lens, wherein the silicone oil has a polydispersity index of less than about 1.5, and in some embodiments less than about 1.3. The silicone oil can have a mean molecular weight of between about 5000 Daltons and about 6500 Daltons. In some embodiments there is no more than about 50 ppm of any low molecular weight component, such as components that have a molecular weight of about 1000 Daltons or less, in the silicone oil to be used in the intraocular lens. In some embodiments the method includes controlling the refractive index of the silicone oil to be between about 1.47 and about 1.49. In some embodiments purification step is a supercritical CO2 extraction, while in some embodiments it is a wiped-film extraction. The purification step substantially prevents the silicone oil from swelling in a bulk polymeric material of the intraocular lens. In some embodiments the silicone oil comprises diphenyl siloxane and dimethyl siloxane, and in some particular embodiments there is about 20% diphenyl siloxane and about 80% dimethyl siloxane.


One aspect of the disclosure is a method of manufacturing silicone oil for use in an intraocular lens, comprising synthesizing silicone oil to be used in an intraocular lens, wherein the silicone oil has a polydispersity index of less than about 1.5. The synthesis can be a living polymerization synthesis. The method also includes a purification step after the synthesis step, which can be, for example, a supercritical CO2 extraction or a wiped-film purification step. In some embodiments the silicone oil has a mean molecular weight of between about 5000 Daltons and about 6500 Daltons. In some embodiments there is no more than about 50 ppm of any low molecular weight component in the silicone oil. In some embodiments the viscosity of the silicone oil is less than about 1000 cSt at about 25° C.


One aspect of the disclosure is a method of manufacturing silicone oil for use in an intraocular lens, comprising purifying silicone oil to be used in an intraocular lens, wherein the silicone oil has a mean molecular weight between about 5000 Daltons and about 6500 Daltons. The silicone oil can have a polydispersity index of less than about 1.5. In some embodiments there is no more than about 50 ppm of any low molecular weight component in the silicone oil. The manufactured silicone oil is adapted to avoid swelling in a bulk polymeric material of the intraocular lens. The silicone oil can comprise diphenyl siloxane and dimethyl siloxane.


One aspect of the disclosure is a method of manufacturing an intraocular lens, comprising providing a silicone oil that has been purified to have a polydispersity index of less than about 1.5; and assembling a bulk polymer material and the silicone oil to form an intraocular lens. The assembling step can comprise advancing the silicone oil into a fluid chamber within the bulk material of the intraocular lens. The silicone oil can have been purified to have a mean molecular weight between about 5000 Daltons and about 6500 Daltons. The silicone oil can have been purified such that there is no more than 50 ppm of any component that has a molecular weight of about 1000 Daltons or less. In some embodiments the silicone oil has been substantially index-matched to at least a portion of the bulk material.


One aspect of the disclosure is a method of using an intraocular lens: comprising creating an opening in the eye; and implanting in a posterior chamber of an eye an intraocular lens comprising silicone oil purified to have a polydispersity index of less than about 1.5.


One aspect of the disclosure is silicone oil adapted to be used in an intraocular lens, wherein the silicone oil has been purified and has a polydispersity index less than about 1.5. The silicone oil can comprise diphenyl siloxane and dimethyl siloxane, and in some embodiments the silicone oil comprises about 20% diphenyl siloxane and about 80% dimethyl siloxane. The silicone oil can have a mean molecular weight between about 5000 Daltons and about 6500 Daltons, and there are no more than 50 ppm of any component that has a molecular weight of about 1000 Daltons or less. In some embodiments the silicone oil has a viscosity of less than about 1000 cSt at about 25° C. The refractive index can be between about 1.47 and about 1.49.


One aspect of the disclosure is silicone oil adapted to be used in an intraocular lens, wherein the silicone oil has been synthesized and has a polydispersity index less than about 1.5.


One aspect of the disclosure is an accommodating intraocular lens comprising a bulk polymeric material and silicone oil that has a polydispersity index less than about 1.5. The silicone oil can have an index of refraction between about 1.47 and about 1.49. The silicone oil can comprise diphenyl siloxane and dimethyl siloxane. The silicone oil can have a mean molecular weight number average of between about 5000 Daltons to about 6500 Daltons. The viscosity of the oil can be less than about 1000 cSt at about 25° C. In some embodiments there is no more than 50 ppm of any component that has a molecular weight of about 1000 Daltons or less.







DETAILED DESCRIPTION

The disclosure herein generally relates to fluid, such as silicone oil, that is used in an intraocular lens. In some embodiments the silicone oil is used in an accommodating intraocular lens that uses fluid movement to effect optical power change in the IOL. The silicone oil can, however, be used in non-accommodating intraocular lenses as well.


Accommodating IOLs can utilize the eye's natural ciliary muscle movements to provide accommodation in the IOL. For example, some accommodating IOLs are implanted within a patient's capsular bag (after the native lens has been removed) and respond to capsular bag reshaping to change the power of the lens. Some IOLs are designed to be implanted outside of the lens capsule and accommodate in other ways. Whatever the method of accommodation, silicone oil disposed within an accommodating IOL can be adapted to be moved within the IOL in response to the eye's natural movement in order to change the lens power. Properties of the silicone oil can therefore affect the accommodative response time of the IOL. The selected silicone oil therefore does not undesirably hinder the response time of the IOL.


When silicone oil is used in accommodating IOL with a bulk material such as a polymeric material, some of the oil components can pass into the bulk material, causing the bulk material to swell. The selected silicone oil or oils therefore avoids the undesirable swelling of the bulk polymer. Exemplary polymeric materials that can be used for the bulk material of the IOL can be found in U.S. application Ser. No. 12/177,720, filed Jul. 22, 2008, and in U.S. application Ser. No. 12/034,942, filed Feb. 21, 2008, the disclosures of which are incorporated herein by reference.


One characteristic of silicone oil that helps ensure an adequate response and avoids undesirable swelling is the polydispersity index (“PDI”) of the silicone oil to be used in the IOL. PDI is generally a measure of the distribution of molecular mass in a given sample. A relatively low PDI indicates a relatively narrow range of molecular weights. The silicone oils described herein have a PDI less than about 1.5, and more particularly less than or equal to about 1.3.


A second characteristic of the silicone oil that helps ensure an adequate response and avoids undesirable swelling is the mean molecular weight of the silicone oil. When high concentrations of relatively low molecular weight components are present in the silicone oil, a greater number of low molecular weight components pass into the bulk material of the IOL causing the swelling of the bulk material. To avoid undesirable swelling, the concentration of relatively low molecular weight components should be minimized. By reducing the concentration of relatively low molecular weight components and maintaining a high concentration of relatively high molecular weight components, fewer low molecular weight components will pass into the bulk polymer material, reducing the amount of swelling that occurs in the bulk material.


The PDI of the silicone oil and the mean molecular weight of the oil are related—by lowering the PDI of the silicone oil while providing silicone oil with high concentrations of relatively high molecular weight components and low concentrations of low molecular weight components, the response of the IOL is maintained (by providing a silicone oil with suitable viscosity) and undesirable swelling is avoided. Additionally, providing silicone oil with a low PDI and very low concentrations of small molecular weight components means that the silicone oil has a molecular weight just large enough to avoid swelling of the polymer.


In some embodiments silicone oil is provided that has a mean molecular weight between about 5000 and about 6500 Daltons, which is large enough to substantially avoid swelling of the bulk polymeric material. This is preferable to the alternative, which is using a higher molecular weight silicone oil which has inherently fewer small molecule components because almost all molecules comprising it are large. High molecular weight silicone oils can have a correspondingly high viscosity, which can reduce the response time of the accommodating IOL.


The silicone oils described herein have a very low concentration of relatively low molecular weight components. The very low molecular weight components are present in an amount less than about 200 ppm of each component, and in some embodiments less than about 100 ppm. In some particular embodiments the very low molecular weight components are present in an amount less than about 50 ppm.


The relatively low molecular weight components include those less than or equal to about 1000 Daltons. For example, in some embodiments the concentration of components less than or equal to about 1000 Daltons is not more than about 50 ppm.


In one particular embodiment, silicone oil is provided in which no more than 20% of the total silicone by weight is comprised of components below about 4000 Daltons; no more than 10% of the total polymer fluid by weight is comprised of components below 3000 Daltons; and no more than 50 ppm of any components below 1000 Daltons.


The estimated molecular weights and polydispersities described herein are relative to polystyrene molecular weights standards.


The silicone oil generally needs to be designed in such a way as to avoid adverse interactions with the surrounding bulk IOL material, such as swelling, fogging, dissolving or reacting with the material (e.g., poly acrylate) in some IOLs. The degree of solubility of the silicone oil in the bulk material is dependent on the chemical structure and molecular weight distribution of the silicone oil. Other parameters that influence this interaction are the composition and properties of the bulk material such as homogeneity, chemical structure, hydrophobicity, modulus, and crosslink density.


The viscosity of the silicone oil also generally needs to be defined and minimized because, in embodiments in which the fluid-driven accommodating IOL operates dynamically, the IOL must have an appropriate response time. In some embodiments the viscosity of the silicone oil is less than about 1000 cSt at 25° C.


In some embodiments the silicone oil is comprised of diphenyl siloxane and dimethyl siloxane. In some embodiments the oil is a diphenyl siloxane and dimethyl siloxane copolymer with about 20% diphenyl siloxane and about 80% dimethyl siloxane.


In some IOLs it may be desirable to avoid creating an optical interface between the bulk material of the IOL and the silicone oil within the IOL. This can be done by index-matching the silicone oil to the bulk material of the IOL, which in some embodiments is a polymeric material. “Index-matching” as used herein refers to minimizing the optical interface between first and second media. For example, index-matching silicone oil and a polymeric material refers to attempting to eliminate an optical interface therebetween, and “substantially the same” refers to indexes of refraction that, even though they may be slightly different, are intended to be as close as possible to minimize the difference in refractive indexes.


In some embodiments in which the silicone oil is index-matched to the bulk polymeric material, the refractive index of silicone oil is between about 1.47 and about 1.53, and in some embodiments is between about 1.47 and about 1.49.


In some embodiments the silicone oil must be able to be filtered through an about 0.7 micron filter. In some embodiments the percent volatiles are less than about 0.2%. In some embodiments the silicone oil has a chromatic dispersion less than or equal to about 0.035 refractive index units in the visible range of 400 nm to 750 nm at 35° C. In some embodiments the silicone oil components are fully miscible with each other without evidence of phase separation (i.e. cloudiness or suspensions). In some embodiments the silicone oil has greater than 85% transmittance in the range of 400 nm to 1100 nm for about a 1 cm thick fluid sample.


In addition, the silicone oil should be clear, colorless, have less than about 10 ppm heavy metals and other insoluble inorganics contaminants, and have substantially no silanols.


Synthesis


The molecular weight, polydispersity, and in some instances the refractive index of the silicone oil can be controlled by the way in which the silicone oil is synthesized and purified. The viscosity of the oil is related to the molecular weight of the oil, the polydispersity of the oil, and the architecture of the bulk polymer, all of which are influenced by the synthesis and purification of the polymer. However, a target viscosity can not be arbitrarily selected independent of the target molecular weight, polydispersity, composition, and architecture of the silicone oil. A general class of polymer synthesis reactions known as “living polymerization reactions” can offer the degree of control necessary to assist in meeting some of the design requirements for a silicone oil.


The term “living polymerization” implies a polymerization reaction that does not have a significant number of chain terminating or chain transferring side reactions. The absence of side reactions allows living polymerizations to be used to synthesize a variety of materials that would be otherwise difficult to prepare. This class of polymerization reactions can be used to prepare polymers with a variety of 1) architectures—including linear, “star”, and “comb” polymers; 2) compositions—homopolymers, random copolymers, block copolymers, and graft copolymers; and 3) functionalized polymers—one and two end functional polymers, and side functional polymers. This class of polymerization reactions can be used to prepare polymers that often have a narrow molecular weight distribution and at a variety of molecular weights. As a result, living polymerizations are often employed when polymers with specific structures and compositions are needed. For example, a polymer with a large molecular weight distribution can be considered to be a mixture of a large number of compounds, and the properties of the material are some function of that distribution. Polymers that have a small molecular weight distribution, however, as can result from a living polymerization, can be considered a “purer” sample, with properties that are better defined.


Anionic and cationic living polymerizations have been described in the art. More recently, radical living polymerizations may have been developed. In an example of an anionic synthetic route, the use of alkyl lithium compounds in the ring opening polymerization of cyclotrisiloxanes appears to be a “living” polymerization, allowing for the degree of control needed to make the silicone oils described above. By varying the ratio of phenyl containing cyclotrisiloxanes to methyl only containing cyclotrisiloxanes (that is, preparing a random block copolymer), the refractive index of the silicone oil can be varied between the refractive index of either pure homopolymer alone (i.e., between pure diphenyl polysiloxane and pure dimethyl polysiloxane).


As another example, the refractive index of the silicone oil can be varied by varying the ratio of a tetramethyl-diphenyl-cyclotrisiloxane to hexamethyl cyclotrisiloxanes. Varying this ratio can provide different refractive indexes between about 1.40 and about 1.54, including those between about 1.47 and 1.49.


As mentioned above, a living polymerization also offers the advantage of being able to prepare polymer products of a targeted molecular weight. This can be accomplished by varying the monomer to initiator ratio during the polymerization reaction, an application which can be applied to the preparation of silicone oils of a specified formula weight.


The feature of a narrow range of molecular weight products is also an advantage that can be realized in the preparation of silicone oils because fewer low molecular weight oligomers are made during the polymerization reaction. The smaller quantity of the low molecular weight materials prepared minimizes the amount of purification that needs to occur later to remove them from the higher molecular weight products. For example, when fewer low molecular weight oligomers are made during the polymerization reaction, it is easier to extract the low molecular weight materials when purifying the synthesized silicone oil using a supercritical CO2 extraction (described below), resulting in higher yields of the desired product.


While the viscosity of a polymer is not directly related to the way in which the polymer is prepared, a living polymerization can also be used to indirectly modify this feature of the product polymer. Living polymerizations can be used to make polymer architectures that would be difficult to accomplish using other synthetic strategies. For example, “comb” polymers, “star” polymers, and other branched structures can be prepared, which, even though they have a very similar chemical composition to a “linear” polymer, may have different physical properties (e.g., viscosity), because of the different physical geometries those structures have. Preparation of a highly branched silicone oil may yield a product which has a significantly lower viscosity than a silicone oil with the same molecular weight but a linear structure.


Silicone oils can also be prepared using other synthetic strategies such as the base catalyzed ring opening of cyclotrisiloxanes, and the condensation of dialkyldichloro silanes with water. These synthetic strategies can also prepare silicone oils with many of the characteristics described above, but can require more effort on purification.


Purification


Silicon oils can be purified in a variety of ways. Wiped film evaporation can be used to remove low molecular weight compounds that have a high boiling point. The silicone oil product may, however, be discolored on excessive heating when using wiped film evaporation.


Supercritical CO2 extraction is one exemplary purification method that can be used to selectively remove fractions of silicone oil based on molecular weight and based on chemical affinity. Supercritical CO2 extraction to purify silicone oils to produce silicone vitreoretinal tamponades is described in U.S. Pat. No. 7,276,619, the entire disclosure of which is incorporated by reference herein. These oils are not used for IOLs, are particularly not in fluid-drive accommodating IDLs. Pressure, temperature, rate of extraction conditions, and the use of co-eluting solvents such as, for example, acetone, can be varied to yield fractions that have a narrow molecular weight distribution (i.e., a low PDI). A mixture can be separated in such a way as to strip the very low and very high molecular fractions from a sample achieving the desired molecular weight. Because supercritical extraction conditions can be varied to get separation based on chemical affinity, this purification method can also be used to achieve a desired refractive index. Supercritical CO2 extraction can therefore be used to produce a silicone oil with, for example, an index of refraction substantially the same as a bulk polymer to be used in an intraocular lens (e.g., in a fluid-driven accommodating intraocular lens).


Tables 1-3 provide data from exemplary supercritical CO2 extractions of sample silicone oils.











TABLE 1





Silicone Oil Sample
Time at 85 C. (Hrs)
% Weight Change

















1
404
43.15


2
404
24.48


3
404
11.11


4
404
6.15


6
404
1.67


7
404
13.25



















TABLE 2







Silicone Oil Sample
Mean RI



















1
1.477792



2
1.48604



3
1.487633



4
1.49067



5
1.494362



6
1.498737



7
1.492858



















TABLE 3





Silicone Oil Sample
Viscosity (cP) at 25.0 C.
stdev

















1
38.40
1.20


2
87.12
1.37


3
175.68
2.01









Similarly, preparative scale size exclusion chromatography is an alternative method to fractionate a polymer sample into molecular weight components. Fractional precipitation of the silicone oil may also be used to separate components of the product polymer.


Removal of silicone oil components that dissolve into the bulk IOL material over time (e.g., during storage) may also be accomplished by exposing the silicone oil to bulk quantities of the IOL material, or other materials that have been selected for that purpose. On storage with an appropriate material, the components of the silicone oil that dissolve into the bulk IOL polymeric material may be removed by adjusting the ratio of silicone oil to polymer adsorbent so that sufficiently low levels of those materials remain in the oil.


While silicone oils used in accommodating IOLs are primary described herein, it is possible to use any of the silicone oils in a non-accommodating IOL. For example, a non-accommodating IOL can have a relatively rigid outer polymeric shell surrounding a silicone oil core. Swelling of the bulk polymeric material would still need to be taken into consideration, and hence the methods of manufacturing desired silicone oil described herein could be utilized.

Claims
  • 1. An accommodating intraocular lens, comprising: an optic portion adapted to refract light onto a retina, the optic portion comprising a bulk polymeric material; anda silicone oil disposed within the optic portion, wherein the silicone oil has a polydispersity index less than about 1.5.
  • 2. The accommodating intraocular lens of claim 1, wherein the silicone oil has an index of refraction between about 1.47 and about 1.49.
  • 3. The silicone oil of claim 1 wherein the silicone oil comprises diphenyl siloxane and dimethyl siloxane.
  • 4. The silicone oil of claim 3 wherein the silicone oil comprises about 20% diphenyl siloxane and about 80% dimethyl siloxane.
  • 5. The silicone oil of claim 1 wherein the silicone oil was purified using supercritical CO2 extraction.
  • 6. The silicone oil of claim 1 wherein the silicone oil has a mean molecular weight number average of between about 5000 Daltons to about 6500 Daltons.
  • 7. The silicone oil of claim 1 wherein the viscosity of the oil is less than about 1000 cSt at about 25° C.
  • 8. The silicone oil of claim 1 wherein the silicone oil has been purified such that there are no more than 50 ppm of any component that has a molecular weight of about 1000 Daltons or less.
  • 9. An accommodating intraocular lens, comprising: a peripheral portion adapted to engage a portion of a patient's eye, wherein the peripheral portion comprises a bulk polymeric material; anda silicone oil disposed within the peripheral portion, wherein the silicone oil has a polydispersity index less than about 1.5.
  • 10. The accommodating intraocular lens of claim 9, wherein the silicone oil has an index of refraction between about 1.47 and about 1.49.
  • 11. The silicone oil of claim 9 wherein the silicone oil comprises diphenyl siloxane and dimethyl siloxane.
  • 12. The silicone oil of claim 11 wherein the silicone oil comprises about 20% diphenyl siloxane and about 80% dimethyl siloxane.
  • 13. The silicone oil of claim 9 wherein the silicone oil was purified using supercritical CO2 extraction.
  • 14. The silicone oil of claim 9 wherein the silicone oil has a mean molecular weight number average of between about 5000 Daltons to about 6500 Daltons.
  • 15. The silicone oil of claim 9 wherein the viscosity of the oil is less than about 1000 cSt at about 25° C.
  • 16. The silicone oil of claim 9 wherein the silicone oil has been purified such that there are no more than 50 ppm of any component that has a molecular weight of about 1000 Daltons or less.
  • 17. An accommodating intraocular lens, comprising: a bulk polymeric material; anda silicone oil that has a polydispersity index less than about 1.5, wherein the silicone oil has a mean molecular weight number average of between about 5000 Daltons to about 6500 Daltons.
  • 18. The accommodating intraocular lens of claim 17 further comprising an optic portion adapted to refract light onto a patient's retina, wherein the optic portion comprises the bulk polymeric material, and wherein the silicone oil is disposed within the optic portion.
  • 19. The accommodating intraocular lens of claim 17 further comprising a peripheral portion adapted to engage a portion of a patient's eye, wherein the peripheral portion comprises the bulk polymeric material, and wherein the silicone oil is disposed within the peripheral portion.
CROSS-REFERENCE

This application claims the benefit of U.S. Provisional Patent Application No. 61/307,354, filed Feb. 23, 2010, the disclosure of which is incorporated herein by reference.

US Referenced Citations (351)
Number Name Date Kind
4111995 Nelson Sep 1978 A
4253199 Banko Mar 1981 A
4254509 Tennant Mar 1981 A
4304895 Loshaek Dec 1981 A
4373218 Schachar Feb 1983 A
4409691 Levy Oct 1983 A
4423809 Mazzocco Jan 1984 A
4435856 L'Esperance Mar 1984 A
4466705 Michelson Aug 1984 A
4490860 Rainin Jan 1985 A
4494254 Lopez Jan 1985 A
4512040 McClure Apr 1985 A
4528311 Beard et al. Jul 1985 A
4575373 Johnson Mar 1986 A
4585457 Kalb Apr 1986 A
4604295 Humphreys Aug 1986 A
4615701 Woods Oct 1986 A
4620954 Singer et al. Nov 1986 A
4685921 Peyman Aug 1987 A
4685922 Peyman Aug 1987 A
4693717 Michelson Sep 1987 A
4720286 Bailey et al. Jan 1988 A
4731078 Stoy et al. Mar 1988 A
4731079 Stoy Mar 1988 A
4731080 Galin Mar 1988 A
4764423 Yamaguchi et al. Aug 1988 A
4784485 Ho Nov 1988 A
4787903 Grendahl Nov 1988 A
4790847 Woods Dec 1988 A
4813956 Gupta Mar 1989 A
4816031 Pfoff Mar 1989 A
4836201 Patton et al. Jun 1989 A
4842601 Smith Jun 1989 A
4848343 Wallsten et al. Jul 1989 A
4888012 Horn et al. Dec 1989 A
4892543 Turley Jan 1990 A
4902293 Feaster Feb 1990 A
4919151 Grubbs et al. Apr 1990 A
4932966 Christie et al. Jun 1990 A
4946469 Sarfarazi Aug 1990 A
4950289 Krasner Aug 1990 A
4963148 Sulc et al. Oct 1990 A
4994082 Richards et al. Feb 1991 A
4995879 Dougherty Feb 1991 A
4995880 Galib Feb 1991 A
5015254 Greite May 1991 A
5035710 Nakada et al. Jul 1991 A
5047051 Cumming Sep 1991 A
5061914 Busch et al. Oct 1991 A
5066301 Wiley Nov 1991 A
5078740 Walman Jan 1992 A
5145884 Yamamoto et al. Sep 1992 A
5145935 Hayashi Sep 1992 A
5152789 Willis Oct 1992 A
5171266 Wiley et al. Dec 1992 A
5200430 Federman Apr 1993 A
5201763 Brady et al. Apr 1993 A
5213579 Yamada et al. May 1993 A
5224957 Gasser et al. Jul 1993 A
5235003 Ward et al. Aug 1993 A
5251993 Sigourney Oct 1993 A
5275623 Sarfarazi Jan 1994 A
5275624 Hara et al. Jan 1994 A
5288293 O'Donnell, Jr. Feb 1994 A
5290892 Namdaran et al. Mar 1994 A
5326347 Cumming Jul 1994 A
5391590 Gerace et al. Feb 1995 A
5405386 Rheinish et al. Apr 1995 A
5443506 Garabet Aug 1995 A
5444106 Zhou et al. Aug 1995 A
5444135 Cheradame et al. Aug 1995 A
5476514 Cumming Dec 1995 A
5489302 Skottun Feb 1996 A
5496366 Cumming Mar 1996 A
5506300 Ward et al. Apr 1996 A
5512609 Yang Apr 1996 A
5578081 McDonald Nov 1996 A
5585049 Grisoni et al. Dec 1996 A
5593436 Langerman Jan 1997 A
5607472 Thompson Mar 1997 A
5628795 Langerman May 1997 A
5633504 Collins et al. May 1997 A
5665822 Bitler et al. Sep 1997 A
5674282 Cumming Oct 1997 A
5697973 Peyman et al. Dec 1997 A
5702441 Zhou Dec 1997 A
5774273 Bornhorst Jun 1998 A
5776191 Mazzocco Jul 1998 A
5776192 McDonald Jul 1998 A
5843188 McDonald Dec 1998 A
5891931 Leboeuf et al. Apr 1999 A
5928282 Nigam Jul 1999 A
5964802 Anello et al. Oct 1999 A
5984962 Anello et al. Nov 1999 A
6013101 Israel Jan 2000 A
6015842 Leboeuf et al. Jan 2000 A
6102539 Tucker Aug 2000 A
6117171 Skottun Sep 2000 A
6124980 Cerbell Sep 2000 A
6139576 Doyle et al. Oct 2000 A
6160084 Langer et al. Dec 2000 A
6176878 Gwon et al. Jan 2001 B1
6180687 Hammer et al. Jan 2001 B1
6188526 Sasaya et al. Feb 2001 B1
6190410 Lamielle et al. Feb 2001 B1
6195807 Chou Mar 2001 B1
6197059 Cumming Mar 2001 B1
6217612 Woods Apr 2001 B1
6225367 Chaouk et al. May 2001 B1
6229641 Kosaka May 2001 B1
6299641 Woods Oct 2001 B1
6302911 Hanna Oct 2001 B1
6322589 Cumming Nov 2001 B1
6342073 Cumming et al. Jan 2002 B1
6348437 Avery et al. Feb 2002 B1
6387126 Cumming May 2002 B1
6388043 Langer et al. May 2002 B1
6406494 Laguette et al. Jun 2002 B1
6413262 Saishin et al. Jul 2002 B2
6423094 Sarfarazi Jul 2002 B1
6436092 Peyman Aug 2002 B1
6443985 Woods Sep 2002 B1
6450642 Jethmalani et al. Sep 2002 B1
6464725 Skotton Oct 2002 B2
6488708 Sarfarazi Dec 2002 B2
6493151 Schachar Dec 2002 B2
6503276 Lang et al. Jan 2003 B2
6517577 Callahan et al. Feb 2003 B1
6551354 Ghazizadeh et al. Apr 2003 B1
6552860 Alden Apr 2003 B1
6554859 Lang et al. Apr 2003 B1
6585768 Hamano et al. Jul 2003 B2
6589550 Hodd et al. Jul 2003 B1
6592621 Domino Jul 2003 B1
6599317 Weinschenk, III et al. Jul 2003 B1
6601956 Jean et al. Aug 2003 B1
6610350 Suzuki et al. Aug 2003 B2
6616691 Tran Sep 2003 B1
6616692 Glick et al. Sep 2003 B1
6638304 Azar Oct 2003 B2
6638305 Laguette Oct 2003 B2
6638306 Cumming Oct 2003 B2
6645245 Preussner Nov 2003 B1
6645246 Weinschenk, III et al. Nov 2003 B1
6656223 Brady Dec 2003 B2
6660035 Lang et al. Dec 2003 B1
6692525 Brady et al. Feb 2004 B2
6695881 Peng et al. Feb 2004 B2
6709108 Levine et al. Mar 2004 B2
6712848 Wolf et al. Mar 2004 B1
6730123 Klopotek May 2004 B1
6743388 Sridharan et al. Jun 2004 B2
6749632 Sandstedt et al. Jun 2004 B2
6749634 Hanna Jun 2004 B2
6786934 Zadno-Azizi et al. Sep 2004 B2
6818158 Pham et al. Nov 2004 B2
6827738 Willis et al. Dec 2004 B2
6836374 Esch et al. Dec 2004 B2
6860601 Shadduck Mar 2005 B2
6878320 Alderson et al. Apr 2005 B1
6884261 Zadno-Azizi et al. Apr 2005 B2
6899732 Zadno-Azizi et al. May 2005 B2
6899850 Haywood et al. May 2005 B2
6914247 Duggan et al. Jul 2005 B2
6926736 Peng et al. Aug 2005 B2
6935743 Shadduck Aug 2005 B2
6949093 Peyman Sep 2005 B1
6966649 Shadduck Nov 2005 B2
6969403 Peng et al. Nov 2005 B2
7001374 Peyman Feb 2006 B2
7060094 Shahinpoor et al. Jun 2006 B2
7068439 Esch Jun 2006 B2
7070276 Koretz Jul 2006 B2
7074227 Portney Jul 2006 B2
7122053 Esch Oct 2006 B2
7144423 McDonald Dec 2006 B2
7217288 Esch et al. May 2007 B2
7241312 Lai et al. Jul 2007 B2
7247168 Esch et al. Jul 2007 B2
7247689 Makker et al. Jul 2007 B2
7261737 Esch et al. Aug 2007 B2
7264351 Shadduck Sep 2007 B2
7276619 Kunzler et al. Oct 2007 B2
7278739 Shadduck Oct 2007 B2
7311194 Jin et al. Dec 2007 B2
7416300 Wei et al. Aug 2008 B2
7438723 Esch Oct 2008 B2
7453646 Lo Nov 2008 B2
7485144 Esch Feb 2009 B2
7494505 Kappelhof et al. Feb 2009 B2
7675686 Lo et al. Mar 2010 B2
7753953 Yee Jul 2010 B1
7759408 Schorzman et al. Jul 2010 B2
7763069 Brady et al. Jul 2010 B2
7776088 Shadduck Aug 2010 B2
7878655 Salvati et al. Feb 2011 B2
7971997 Hiramatsu et al. Jul 2011 B2
7988290 Campbell et al. Aug 2011 B2
7988292 Neal et al. Aug 2011 B2
7988293 Raymond et al. Aug 2011 B2
8162927 Peyman Apr 2012 B2
8241355 Brady et al. Aug 2012 B2
20010001836 Cumming May 2001 A1
20010016771 Cumming Aug 2001 A1
20010039449 Johnson et al. Nov 2001 A1
20020046783 Johnson et al. Apr 2002 A1
20020055777 Cumming et al. May 2002 A1
20020072795 Green Jun 2002 A1
20020095212 Boehm Jul 2002 A1
20020107568 Zadno-Azizi et al. Aug 2002 A1
20020111678 Zadno-Azizi et al. Aug 2002 A1
20020116057 Ting et al. Aug 2002 A1
20020116058 Zadno-Azizi et al. Aug 2002 A1
20020116059 Zadno-Azizi et al. Aug 2002 A1
20020116060 Nguyen et al. Aug 2002 A1
20020116061 Zadno-Azizi et al. Aug 2002 A1
20020133228 Sarver Sep 2002 A1
20020161434 Laguette et al. Oct 2002 A1
20020161435 Portney Oct 2002 A1
20020177896 Israel Nov 2002 A1
20020193876 Lang et al. Dec 2002 A1
20030003295 Dreher et al. Jan 2003 A1
20030004569 Haefliger Jan 2003 A1
20030018384 Valyunin et al. Jan 2003 A1
20030042176 Alderson et al. Mar 2003 A1
20030050695 Lin et al. Mar 2003 A1
20030050696 Cumming Mar 2003 A1
20030060878 Shadduck Mar 2003 A1
20030060881 Glick et al. Mar 2003 A1
20030078656 Nguyen Apr 2003 A1
20030078657 Zadno-Azizi et al. Apr 2003 A1
20030078658 Zadno-Azizi Apr 2003 A1
20030083744 Khoury May 2003 A1
20030109925 Ghazizadeh et al. Jun 2003 A1
20030109926 Portney Jun 2003 A1
20030130732 Sarfarazi Jul 2003 A1
20030135272 Brady et al. Jul 2003 A1
20030149480 Shadduck Aug 2003 A1
20030158599 Brady et al. Aug 2003 A1
20030171808 Phillips Sep 2003 A1
20030183960 Buazza et al. Oct 2003 A1
20030187505 Liao Oct 2003 A1
20030199977 Cumming Oct 2003 A1
20030236376 Kindt-Larsen et al. Dec 2003 A1
20040001180 Epstein Jan 2004 A1
20040006386 Valint et al. Jan 2004 A1
20040006387 Kelman Jan 2004 A1
20040008419 Schachar Jan 2004 A1
20040015236 Sarfarazi Jan 2004 A1
20040039446 McNicholas Feb 2004 A1
20040054408 Glick et al. Mar 2004 A1
20040059343 Shearer et al. Mar 2004 A1
20040082993 Woods Apr 2004 A1
20040082994 Woods et al. Apr 2004 A1
20040085511 Uno et al. May 2004 A1
20040085515 Roffman et al. May 2004 A1
20040088050 Norrby et al. May 2004 A1
20040111151 Paul et al. Jun 2004 A1
20040111152 Kelman Jun 2004 A1
20040111153 Woods et al. Jun 2004 A1
20040127984 Paul et al. Jul 2004 A1
20040162612 Portney et al. Aug 2004 A1
20040181279 Nun Sep 2004 A1
20040230203 Yaguchi Nov 2004 A1
20050021139 Shadduck Jan 2005 A1
20050113911 Peyman May 2005 A1
20050125000 Tourrette et al. Jun 2005 A1
20050131535 Woods Jun 2005 A1
20050165410 Zadno-Azizi et al. Jul 2005 A1
20050251253 Gross Nov 2005 A1
20050264756 Esch Dec 2005 A1
20060069433 Nun Mar 2006 A1
20060100703 Evans et al. May 2006 A1
20060116763 Simpson Jun 2006 A1
20060134173 Liu et al. Jun 2006 A1
20060158611 Piers et al. Jul 2006 A1
20060183041 Erk et al. Aug 2006 A1
20060184181 Cole et al. Aug 2006 A1
20060200167 Peterson et al. Sep 2006 A1
20060253196 Woods Nov 2006 A1
20070004886 Schorzman et al. Jan 2007 A1
20070005136 Richardson Jan 2007 A1
20070021831 Clarke Jan 2007 A1
20070050023 Bessiere et al. Mar 2007 A1
20070078515 Brady Apr 2007 A1
20070088433 Esch et al. Apr 2007 A1
20070100445 Shadduck May 2007 A1
20070106377 Smith et al. May 2007 A1
20070129801 Cumming Jun 2007 A1
20070156236 Stenger Jul 2007 A1
20070162112 Burriesci et al. Jul 2007 A1
20070203578 Scholl et al. Aug 2007 A1
20070213817 Esch et al. Sep 2007 A1
20070244561 Ben Nun Oct 2007 A1
20070299487 Shadduck Dec 2007 A1
20080004699 Ben Nun Jan 2008 A1
20080015689 Esch et al. Jan 2008 A1
20080027537 Gerlach et al. Jan 2008 A1
20080033449 Cole et al. Feb 2008 A1
20080035243 Breitenkamp et al. Feb 2008 A1
20080046074 Smith et al. Feb 2008 A1
20080046075 Esch et al. Feb 2008 A1
20080097460 Boukhny et al. Apr 2008 A1
20080139769 Iwamoto et al. Jun 2008 A1
20080179770 Rooney et al. Jul 2008 A1
20080188930 Mentak et al. Aug 2008 A1
20080200982 Your Aug 2008 A1
20080243247 Poley et al. Oct 2008 A1
20080269887 Cumming Oct 2008 A1
20080300680 Joshua Dec 2008 A1
20080306587 Your Dec 2008 A1
20080306588 Smiley et al. Dec 2008 A1
20090005865 Smiley et al. Jan 2009 A1
20090027661 Choi et al. Jan 2009 A1
20090030425 Smiley et al. Jan 2009 A1
20090076602 Ho et al. Mar 2009 A1
20090124773 Zhou et al. May 2009 A1
20090149952 Shadduck Jun 2009 A1
20090228101 Zadno-Azizi Sep 2009 A1
20090234449 DeJuan, Jr. et al. Sep 2009 A1
20090248154 Dell Oct 2009 A1
20090264998 Mentak et al. Oct 2009 A1
20090281620 Sacharoff et al. Nov 2009 A1
20090292293 Bogaert et al. Nov 2009 A1
20090312836 Pinchuk et al. Dec 2009 A1
20090319040 Khoury Dec 2009 A1
20100039709 Lo Feb 2010 A1
20100063588 Park Mar 2010 A1
20100094412 Wensrich Apr 2010 A1
20100131058 Shadduck May 2010 A1
20100161049 Inoue Jun 2010 A1
20100179653 Argento et al. Jul 2010 A1
20100228344 Shadduck Sep 2010 A1
20100228346 Esch Sep 2010 A1
20100324671 Shadduck Dec 2010 A1
20100324672 Esch et al. Dec 2010 A1
20110052020 Hildebrand et al. Mar 2011 A1
20110118834 Lo et al. May 2011 A1
20110153015 Simonov et al. Jun 2011 A1
20120078363 Lu Mar 2012 A1
20120078364 Stenger Mar 2012 A1
20120116506 Compertore May 2012 A1
20120179249 Coleman Jul 2012 A1
20120226351 Peyman Sep 2012 A1
20120253458 Geraghty et al. Oct 2012 A1
20120253459 Reich et al. Oct 2012 A1
20130060331 Shadduck Mar 2013 A1
20130103146 Smiley et al. Apr 2013 A1
20130131794 Smiley et al. May 2013 A1
20130250239 Hildebrand et al. Sep 2013 A1
20130268070 Esch et al. Oct 2013 A1
Foreign Referenced Citations (36)
Number Date Country
101277659 Oct 2008 CN
102010010430 Sep 2011 DE
0898972 Mar 1999 EP
2060243 May 2009 EP
2784575 Apr 2000 FR
07-044938 May 1995 JP
9294754 Nov 1997 JP
10-206609 Aug 1998 JP
11276509 Oct 1999 JP
2008307394 Dec 2008 JP
1810052 Apr 1993 RU
WO 9706751 Feb 1997 WO
WO 0041650 Jul 2000 WO
WO 0064655 Nov 2000 WO
WO 0160286 Aug 2001 WO
WO 0189435 Nov 2001 WO
WO 0197742 Dec 2001 WO
WO 02051338 Jul 2002 WO
WO 2004010895 Feb 2004 WO
WO 2004046768 Jun 2004 WO
WO 2004072689 Aug 2004 WO
WO 2005018504 Mar 2005 WO
WO 2005084588 Sep 2005 WO
WO 2006004707 Jan 2006 WO
WO 2006047383 May 2006 WO
WO 2006088440 Aug 2006 WO
WO 2007005529 Jan 2007 WO
WO 2007005692 Jan 2007 WO
WO 2007030095 Mar 2007 WO
WO 2007061688 May 2007 WO
WO 2007128423 Nov 2007 WO
WO2007138564 Dec 2007 WO
WO 2009100322 Aug 2009 WO
WO 2009154455 Dec 2009 WO
WO 2011119334 Sep 2011 WO
WO2012006186 Jan 2012 WO
Non-Patent Literature Citations (43)
Entry
Scholl et al.; U.S. Appl. No. 13/193,487 entitled “Accommodating Intraocular Lenses,” filed Jul. 28, 2011.
Smiley et al.; U.S. Appl. No. 13/193,983 entitled “Accommodating Intraocular Lenses,” filed Jul. 29, 2011.
Smiley et al.; U.S. Appl. No. 13/194,004 entitled “Accommodating Intraocular Lenses,” filed Jul. 29, 2011.
Hildebrand et al.; U.S. Appl. No. 13/180,427 entitled “Intraocular lens delivery devices and methods of use,” filed Jul. 11, 2011.
Shadduck, John H.; U.S. Appl. No. 13/300,245 entitled “Accommodating Intraocular Lenses and Methods of Use,” filed Nov. 18, 2011.
Matthews, Gregory V.; U.S. Appl. No. 13/427,617 entitled “Intraocular Lens Loading Systems and Methods of Use,” filed Mar. 22, 2012.
Baughman et al., “Negative poisson's ratios for extreme states fo matter,” Science, vol. 288, pp. 2018-2022, Jun. 16, 2000.
Baughman, “Avoiding the shrink,” Nature, vol. 425, pp. 667, Oct. 16, 2003.
Dubbelman et al.; The Thickness of the Aging Human Lens Obtained from Corrected Scheimpflug Images; Optometry & Vison Science; vo. 78; iss. 6; pp. 411-416; Jun. 2001.
Gorder, P. F.; Electricity can pump medicine in implanted medical devices; Ohio State Research News; 3 pgs.; May 2, 2002 (printed from internet Aug. 19, 2010).
Gruber et al.; Exhaustive soxhlet extraction for the complete removal of residual compounds . . . ; Journal of Biomedical Materials Research; vol. 53; No. 5; pp. 445-448; Mar. 2000.
Lakes et al., “Extreme damping in composite materials with negative-stiffness inclusions,” Nature, vol. 410, pp. 565-567, Mar. 29, 2001.
Lakes, “A broader view of membranes,” Nature, vol. 414, pp. 503-504, Nov. 29, 2001.
Lakes, “Extreme damping in composite materials with a negative stiffness phase,” Physical Review Letters, vol. 86, No. 13, pp. 2897-2900, Mar. 26, 2001.
Lakes, “Lateral deformations in extreme matter,” Science, vol. 288, pp. 1976, Jun. 2000; 3 pgs.
Lakes, “Negative poisson's ratio materials,” Science, vol. 238, pp. 551, Oct. 23, 1987.
Lendlein et al., “Biodegradable, elastic shape-memory polymers for potential biomedical applications”, Science; vol. 296; pp. 1673-1676; May 31, 2002.
Qiao et al.; Bio-inspired accommodating fluidic intraocular lens; Optics Letters; vol. 34; No. 20; pp. 3214-3216; Oct. 15, 2009.
Rosales et al.; Pentacam Scheimpflug QuantitativeImaging of the Crystalline Lens andIntraocular Lens; J. Refractive Surgery; vol. 25; pp. 421-428; May 2009.
Tehrani et al.; Capsule measuring ring to predict capsular bag diameter and follow its course after foldable intraocular lens implantation; J Cataract Refract Surg.; vol. 29; No. 11; pp. 2127-2134; Nov. 2003.
Wang et al., “Extreme stiffness systems due to negative stiffness elements,” American Journal of Physics, vol. 72, No. 1, pp. 40-50, Jan. 2004.
Wang et al., “Stable extremely-high-damping discrete viscoelastic systems due to native stiffness elements,” Applied Physics Letters, vol. 84, No. 22, pp. 4451-4453, May 31, 2004.
Conlisk, A. T. et al; Mass Transfer and Flow in Electrically Charged Micro- and Nano-channels; Analytical Chemistry, vol. 74; iss. 9; pp. 2139-2150; May 2002.
Gordon, “Applications of shape memory polyurethanes,” Proceedings of the First Intl Conf. on Shape Memory and Superelastic Tech., Asilomar Conference Center, Pacific Grove, CA, USA, pp. 115-120, Mar. 1994.
Jeon et al., “Shape memory and nanostructure in poly(norbornyl-POSS) copolymers,” Polymer International, vol. 49, pp. 453-457, May 2000.
Kim et al., “Polyurethanes having shape memory effects,” Polymer, vol. 37, No. 26, pp. 5781-5793, Dec. 1996.
Lakes et al., “Dramatically stiffer elastic composite materials due to negative stiffness phase?,” Journal of the Mechanics and Physics of Solids, vol. 50, pp. 979-1009, May 2002.
Lakes et al., “Microbuckling instability in elastomeric cellular sollids,” J. Materials Science, vol. 28, pp. 4667-4672, Jan. 1993.
Lakes, “Extreme damping in compliant composites with a negative-stiffness phase,” Philosophical Magazine Letters, vol. 81, No. 2, pp. 95-100, Feb. 2001.
Lakes, “No contractile obligations,” Nature, vol. 358, pp. 713-714, Dec. 31, 1992.
Lendlein et al., “Shape-memory polymers,” Angew. Chem. Int. Ed.; vol. 41; pp. 2034-2057; Jun. 2002.
Li et al., “Crystallinity and morphology of segmented polyurethanes with different soft-segment length,” Journal of Applied Polymer Science, vol. 62, pp. 631-638, Oct. 1996.
Liu et al., “Thermomechanical characterization of a tailored series of shape memory polymers,” Journal of Applied Medical Polymers, vol. 6, No. 2, Dec. 2002.
Mather et al., “Strain recovery in POSS hybrid thermoplastics,” Polymer Preprints, vol. 41, No. 1, pp. 528-529, Feb. 2000.
Metcalfe et al., “Cold hibernated elastic memory foams for endovascular interventions,” Biomaterials, vol. 24, pp. 491-497, Feb. 2003.
Takahashi et al., “Structure and properties of shape-memory polyurethane block copolymers,” Journal of Applied Polymer Science, vol. 60, pp. 1061-1069, May 1996.
Vass et al.; Prediction of pseudophakic capsular bag diameter based on biometric variables; J Cataract Refract Surg.; vol. 25; pp. 1376-1381; Oct. 1999.
Wang et al., “Deformation of extreme viscoelastic metals and composites,” Materials Science and Enginerring A, vol. 370, pp. 41-49, Apr. 2004.
Wyant et al; “Basic Wavefront Aberration Theory for Optical Metrology,” Applied Optics and Optical Engineering, vol. XI, Aug. 10, 1992: pp. 1, 28-39.
Xu et al., “Making negative poisson's ratio microstructures by soft lithography,” Advanced Materials, vol. 11, No. 14, 1999, pp. 1186-1189, Jun. 1999.
Langenbucher et al., “Computerized calculation scheme for toric intraocular lenses,” Acta Ophthalmologica Scandinavica, vol. 82, No. 3, pp. 270-276, Jun 2004.
Lakes; Deformations in extreme matter; Science; perspectives; vol. 288; No. 5473; pp. 1976-1977; Jun. 16, 2000.
Matthews et al.; U.S. Appl. No.13/835,876 entitled “Intraocular Lens Delivery Systems and Methods of Use,” filed Mar. 15, 2013.
Related Publications (1)
Number Date Country
20110208301 A1 Aug 2011 US
Provisional Applications (1)
Number Date Country
61307354 Feb 2010 US