This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
In certain fluid-handling systems, such as mineral extraction systems, a variety of components are used to control a flow of fluid. For example, in mineral extraction systems, various valves and conduits may be used to regulate the flow of production fluids (e.g., oil, gas, or water) from a well. Such valves and conduits may contact the production fluids during mineral extraction (i.e., drilling and production) operations. Unfortunately, surfaces of these components may be subject to corrosion, erosion, and general wear (e.g., due to the production fluids).
Various features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying figures in which like characters represent like parts throughout the figures, wherein:
One or more specific embodiments of the present invention will be described below. These described embodiments are only exemplary of the present invention. Additionally, in an effort to provide a concise description of these exemplary embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
Mineral extraction systems (i.e., drilling and production systems) generally include a wide variety of pressure-containing components and/or fluid-handling components, such as various valves and conduits, which may contact fluids (e.g., production fluids) during drilling and/or production operations. In existing systems, certain surfaces (e.g., fluid-contacting surfaces) of these components may be clad with a corrosion resistant material via a welding process. Such welding processes may include a series of welding, machining, finishing, and thermal treatments, and intermittent testing and inspection steps. For example, in some cases, a forged body (e.g., valve body) having a bore may be provided. A weld inlay (e.g., a layer of corrosion-resistant material) may be applied and welded within the bore, the weld bonds may be tested for integrity, and the component may be finished and inspected (e.g., for liquid penetration). These steps are generally inefficient, complex, and/or costly, and the components produced via such welding processes may be frequently identified as noncompliant with regulatory standards during testing and final inspections.
Accordingly, the present disclosure provides embodiments of fluid-handling components, such as valves and conduits for use in a mineral extraction system, which are manufactured via additive manufacturing techniques and/or powder compacting techniques. For example, in some embodiments, the disclosed fluid-handling components may include a liner (e.g., a corrosion-resistant liner or fluid-contacting liner) constructed via an additive manufacturing technique (e.g., 3-D printing). The liner may be placed into a canister (e.g., container) of a desired shape, and a body (e.g. support structure) of the fluid-handling component may be formed within the canister and about the liner (e.g., on an outer surface of the liner) via a powder compaction process (e.g., hot isostatic pressing [HIP]). Such techniques generally provide the capability to efficiently construct fluid-handling components having a particular shape without complex and/or costly forging, welding, and/or machining steps, for example.
Using such techniques, the fluid-handling components so produced may have one or more advantageous structural features or characteristics. For example, in certain embodiments, the fluid-handling component and/or the liner within the body of the fluid-handling component may be devoid of joints (e.g., welds or welded bonds), thereby eliminating weld bond defects and/or the need for weld bond inspections and/or repairs. In certain embodiments, the liner within the body of the fluid-handling component may be devoid of iron or substantially devoid of iron (e.g., iron may penetrate less than 1 or 2 microns into the liner after application of the body about the liner and the liner is otherwise devoid of iron) at least in part because the manufacturing methods disclosed herein do not cause significant amounts of iron to transfer from the body (e.g., steel body) to the liner (e.g., nickel or other corrosion-resistant material). In certain embodiments, iron may penetrate less than 1, 2, 10, 20, 30, 40, 50, 100, 200, 300, 400, 500, 1000, 5000, or 10,000 microns into the liner after application of the body about the liner and the liner is otherwise devoid of iron. In certain embodiments, iron may penetrate between about 1 to 10,000, 2 to 1000, 10 to 500, or 20 to 100 microns into the liner 30 after application of the body 28 about the liner 30 and the liner 30 is otherwise devoid of iron. In some embodiments, iron may penetrate less than 1, 5, 10, 25, or 50 percent of a thickness (e.g., between a radially-inner surface and a radially-outer surface) of the liner. Accordingly, the liner may have a relatively high resistance to corrosion (e.g., as compared to a cladding layer formed via certain other manufacturing processes, such as welding, that result in more significant iron dilution of the cladding layer). Additionally or alternatively, in some embodiments, the liner may be relatively thin (e.g., as compared to a cladding layer formed via certain other manufacturing processes, such as welding or HIP). For example, in some embodiments, a wall of the liner may have a thickness of less than about 0.35 centimeters (cm) or other dimensions as set forth below. Furthermore, in some embodiments, the liner and/or the body may each be a single integral and gaplessly continuous piece having a uniform density and/or a homogenous material structure. In some embodiments, the liner and/or the body may be formed from segments that are joined or bonded together. To facilitate discussion, certain embodiments disclosed in detail below relate generally to valves (e.g., gate valves, ball valves, choke valves, check valves, pressure regulating valves, and the like) and conduits (e.g., hangers) of a mineral extraction system. However, it should be understood that the techniques disclosed herein may be applied to and/or adapted to form any of a variety of pressure-containing components and/or fluid-handling components (e.g., components having a surface that contacts a fluid) for use in any of a variety of systems.
With the foregoing in mind,
In the illustrated embodiment, the liner 30 has a thickness 42. The thickness 42 may be uniform about the liner 30, or certain portions of the liner 30 may have varying thicknesses 42 (e.g., varying by 1, 2, 3, 4, 5, 10, or more percent). In some embodiments, the thickness 42 may be less than approximately 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, or 0.8 cm. In some embodiments, the thickness 42 may be between approximately 0.2 to 0.8, 0.25 to 0.47, or 0.3 to 0.6 cm. The thickness 42 of the liner 30 may be less than a thickness 44 of the body 28 (e.g., 10, 20, 30, 40, 50, 60, 70, 80, 90 or more percent less). In some embodiments, the liner 30 may have a porosity less than or equal to approximately 0.5, 1, 2, 3, 4, or 5 percent (e.g., where 100 percent is a baseline for a porous material). As shown, the liner 30 is a single integral and gaplessly continuous piece and is devoid of joints (e.g., welds or welded bonds). In certain embodiments, the body 28 may be a single integral and gaplessly continuous piece and/or may be devoid of joints (e.g., welds or welded bonds). In certain embodiments, the liner 30 and/or the body 28 may have a homogenous material structure and/or a uniform density. In certain embodiments, the liner 30 and/or the body 28 may be formed from multiple segments (e.g., separate portions or pieces) that are joined or bonded together (e.g., via welds, fasteners, or the like), and one or all of the multiple segments may be have any of the characteristics disclosed herein and/or be formed via the processes disclosed herein. For example, although shown as a single piece in
The liner 30 and the body 28 described herein may be manufactured from any of a variety of materials. In some embodiments, the liner 30 may be manufactured from a corrosion resistant metal alloy, such as a nickel-based alloy. More specifically, in some embodiments, the liner 30 may be manufactured from nickel alloy 625, although any suitable material, such as a chrome-based alloy (e.g., cobalt chrome) or other similar alloys, capable of being constructed and shaped by an additive manufacturing process may be utilized. In some fluid-handling components 12, the liner 30 may be formed from a ceramic or a composite material. In some embodiments, the body 28 may be manufactured from steel (e.g., 4140 steel, 22 chrome duplex, 25 chrome duplex, or the like), although any suitable material, such as other similar alloys, capable of being constructed and shaped by a powder compacting process may be utilized. Various combinations of materials are also contemplated in the structure of the liner 30 and/or the body 28.
As discussed in more detail below, in certain embodiments, the liner 30 may be formed via an additive manufacturing process and the body 28 may subsequently be formed about the liner 30 via a powder compacting process. In general, additive manufacturing techniques may involve applying a source of energy, such as a laser or electron beam, to deposited powder layers in order to grow (i.e., form) a part having a particular shape and features. In general, powder compacting processes may involve placing a powder within a canister (e.g., high pressure containment vessel or container) and applying heat and/or pressure to the powder to consolidate the powder to form a compact solid object. In the disclosed embodiments, the powder compacting process may cause the body 28 to form about the liner 30 and to couple to the liner 30 (e.g., via diffusion bonds). Such processes may enable construction of the fluid-handling component 12, the liner 30, and/or the body 28 having certain features disclosed herein, which are costly, impractical, and/or cannot be made using other manufacturing techniques, such as welding techniques.
While the portion of the fluid-handling component 12 and its parts (e.g., the body 28 and liner 30) are generally cylindrical in
By way of another example,
As discussed in more detail below, the liner 30 may be constructed via an additive manufacturing technique and the choke valve 52 may be constructed by forming the body 28 about the liner 30 via a powder compacting process. After application of the body 28 about the liner 30, additional components of the choke valve 52 may be coupled to the body 28 and/or the liner 30. For example, as shown, a cage 70 having one or more openings 72 (e.g., passageways, conduits, or holes) is positioned within a cavity 74 of the liner 30. A plug 76 may extend through the opening 52 of the liner 30 and may move relative to the liner 30 and the cage 70 (e.g., via an actuator), thereby adjusting a flow of fluid between the inlet 48 and the outlet 50. The plug 76 is shown in two positions above and below an axis 80 in
With the foregoing in mind,
The method 110 may be performed by an additive manufacturing system, which may include a controller (e.g., electronic controller), a processor, a memory device, a user interface, and/or an energy source. The method 110 includes defining a particular configuration or shape for the liner 30, in step 112. The configuration may be programmed by an operator into an additive manufacturing system by using a specialized or general purpose computer having the processor, for example. The defined configuration may have any of the shapes and features described above. For example, the thickness 42 of the wall 40 of the liner 30 may be less than approximately 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, or 0.5 cm or between approximately 0.2 to 0.5, 0.25 to 0.45, or 0.3 to 0.4 cm.
In step 114, a layer of powder (e.g., a metal powder, such a nickel-based powder) is deposited into a chamber, such as a vacuum chamber. Any of a variety of materials may used in any suitable combination, including those described in detail above with respect to
With the foregoing in mind,
The method 130 includes positioning the liner 30 (e.g., a previously formed liner) within a canister, in step 132. In some embodiments, the liner 30 may be produced via an additive manufacturing process, such as the method 110 of
In step 134, a powder (e.g., a metal powder, such a steel powder) is deposited into the canister about the liner 30 (e.g., between the outer surface 32 of the liner 32 and a wall of the canister). The powder may be any of a variety of materials, including those described in detail above with respect to
As shown, the additive manufacturing system 152 includes a controller 154 (e.g., electronic controller) having a processor 156 and a memory device 158. The additive manufacturing system 152 may also include a user interface 160, an energy source 162, and a chamber 164, which may be used to carry out the steps of the method 110 of
Although shown as separate systems, in some embodiments, the additive manufacturing system 152 and the powder compacting system 180 may be communicatively coupled to one another and/or may share a common controller (e.g., electronic controller). In some such cases, the system 150 may enable construction of the fluid-handling component 12 in a series of consecutive steps and/or in a single manufacturing facility. For example, the additive manufacturing system 152 may be used to construct the liner 30. Upon completion of the liner 30, the operator may position the liner 30 in the canister 194 of the powder compacting system 180, and the operator may then cause the powder compacting system 180 (e.g., via user input to the system 180) to form the body 28 about the liner 30. In some embodiments, certain steps may be automated or performed automatically by the controller. For example, upon completion of the liner 30 by the additive manufacturing system 152, a device controlled by the controller may position the liner 30 within the canister 194 of the powder compacting system 180 and subsequently cause the powder compacting system 180 to form the body 28 about the liner 30.
In certain embodiments, an additive manufacturing system, such as the additive manufacturing system 152, may be used to construct the canister 194. For example, the steps 112-122 of the method 110 set forth in
In certain embodiments, the controllers 154, 184 are electronic controllers having electrical circuitry configured to process data from various components of the system 150, for example. In the illustrated embodiment, each of the controllers 154, 184 includes a respective processor, such as the illustrated microprocessors 156, 186, and a respective memory device 158, 188. The controllers 154, 184 may also include one or more storage devices and/or other suitable components. By way of example, the processor 184 may be used to execute software, such as software for controlling the heat source 192, and so forth. Moreover, the processors 154, 184 may include multiple microprocessors, one or more “general-purpose” microprocessors, one or more special-purpose microprocessors, and/or one or more application specific integrated circuits (ASICS), or some combination thereof. For example, the processors 154, 184 may include one or more reduced instruction set (RISC) processors.
The memory devices 156, 186 may include a volatile memory, such as random access memory (RAM), and/or a nonvolatile memory, such as ROM. The memory devices 156, 186 may store a variety of information and may be used for various purposes. For example, the memory devices 156, 186 may store processor-executable instructions (e.g., firmware or software) for the processors 154, 184 to execute, such as instructions for controlling the energy source 162 or the heat source 192. The storage device(s) (e.g., nonvolatile storage) may include read-only memory (ROM), flash memory, a hard drive, or any other suitable optical, magnetic, or solid-state storage medium, or a combination thereof.
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
This application is a continuation of U.S. application Ser. No. 14/978,435 entitled “FLUID-HANDLING COMPONENTS AND METHODS OF MANUFACTURE,” filed on Dec. 22, 2015, which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14978435 | Dec 2015 | US |
Child | 15226912 | US |