Not applicable
Not applicable
1. Field of the Invention
The present invention relates to the handling of oil and gas well drilling fluids, especially in an offshore or marine environment. More particularly, the present invention relates to an improved oil and gas well fluids transfer apparatus that features a first module carrying multiple supply reservoirs for holding different drilling or production fluids and a second, typically smaller supply module for holding one or more resupply modules and wherein a docking station interfaces the two modules, fluid transfer being effected with specially configured piping so that any one reservoir can be filled with a selected resupply reservoir that is docked on the docking station; and wherein a detachable perimeter frame or frames enables load to be transferred to a larger area when all reservoirs are filled or to be filled.
2. General Background of the Invention
In the drilling of oil and gas wells, a large number of different fluids are typically employed. These fluids can include various chemical formula that assist the driller. These fluids can include, for example, drilling mud, surfactance, brine solutions, thickening solutions, other oil well drilling or completions fluids and the like. In coastal, or other offshore marine environment, the drilling of oil and gas wells employs a platform that can be floating, semi-submersible, fixed, tension leg, spar or the like. Such coastal, offshore or marine oil platforms are well known in the art.
An offshore marine platform typically suffers from lack of space. These special constraints are due to the enormous expense of constructing offshore drilling platforms. A huge array of equipment is needed for the drilling and operation of oil and gas wells. Constant supply and resupply that is an ongoing procedure. Huge work boats carry drill pipe, equipment, personnel, food, drilling fluids, completion fluids, and other material to the offshore platform. Unloading and placement of these supplies is an enormous problem.
In the handling of fluids, huge volumes (with huge weight) can be required, and after they are expended, the tank or other vessel that carried the fluid must quickly be moved from the rig floor to make room for the others.
Over the years, 55 gallon drums and other like disposable containers have been used to transfer drilling and other fluids to and from an oil and gas well drilling rig. These drums and like containers create a huge storage problem for the rig operators.
U.S. Pat. No. 6,915,815 issued Jul. 12, 2005 to Ness for a fluids management system, that patent being hereby incorporated herein by reference.
The present invention provides an improved fluids transfer system that enables a rig operator to efficiently and quickly transfer fluids during normal course of operation of the offshore oil well drilling or production platform.
The present invention provides an efficient and novel system, including a method and apparatus for transferring drilling fluids to an offshore oil and gas well drilling platform and for fluid transfer once on the platform.
For a further understanding of the nature, objects, and advantages of the present invention, reference should be had to the following detailed description, read in conjunction with the following drawings, wherein like reference numerals denote like elements and wherein:
The lower module or storage reservoir 11 has a platform deck 13 that carries docking station 14. The docking station 14 can be centrally located upon platform 13 to provide a deck or walkway 15 that extends along one or more sides of the docking station 14. Walkway 15 can be provided with suitable railing 16 for protecting workers that ascend stairway 17 to gain access to platform deck 13 and walkway 15.
The upper module or resupply reservoir 12 can be a liftable structure that can be lifted using a crane or other lifting device so that it can be removed from or placed upon docking station 14. This upper module or resupply reservoir 12 is provided with one or more resupply tanks 18. Each tank 18 (see
Tank 18 can be of welded steel construction such as stainless steel, for example. Tank 18 can be of any suitable fluid containing material that is compatible with the various oil and gas well drilling fluids that will be transported to the lower module or resupply reservoir 12. Spool piece 20, valve 21 and hose coupling fitting 22 are commercially available pipe, valve, and fitting items.
In
A piping system 25 (see
In the drawings, the letters A, B, C, D, E, F are used to designate six different fluids that can be handled using the fluids management apparatus 10 and method of the present invention. In
In the drawings, the letters A, B, C, D, E, F have been placed in the appropriate location on each of the figures to indicate the particular chemical contained within a particular storage tank 34-39. These letters A, B, C, D, E, F have also been used to mark the different manifolds, pipes and hoses that transfer the selected chemical that is represented by the letter A, B, C, D, E, or F. Following are exemplary chemicals that could be handled using the method and apparatus of the present invention.
Each of the storage reservoir outlets 26-31 is provided with a discharge valve 32 and a discharge flow line 33 that can be of any selected length and that can be used to transmit the selected fluid A, B, C, D, E or F to any location on the platform during drilling operations. In
The additional tanks 36, 37, 38, 39 provide man-ways 43, 44, 45, 46 respectively, each labeled with a letter representing the chemical that is contained within that particular storage tank 36, 37, 38, or 39. The piping system 25 includes flow lines for enabling a selected fluid to be transmitted from any one of the resupply tanks 18 to any one of the storage tanks 34-39. For example, flow line 47 is a flow line that is provided on deck 13 for transmitting fluid from a selected tank 18 to the first storage tank 34. Flow line 48 can be used to transmit fluids from a selected resupply tank 18 to tank 35. Likewise, flow line 49 transfers fluid from a selected resupply tank 18 to tank 36. Flow line 50 transfers fluid from a selected resupply tank 18 to tank 37. Flow line 51 transfers fluid from a selected resupply tank 18 to tank 38. Flow line 52 transfers fluid from a selected resupply tank 18 to tank 39.
Resupply reservoir 62 carries a plurality of preferably four resupply tanks 68. Each resupply tank 68 has a pair of flow outlets 69, 70, each provided with a spool piece that can include a valve. In
Piping system 79 (
Labels 94 can be placed above the outlets 80-85 or in a selected location next to the selected storage tank 88-93 to identify the contents of the storage tank 88-93. Each storage tank 88-93 provides a man-way for enabling access to the storage tank interior. In
The piping system 79 provides a plurality of upper level flow lines 101-106. The piping system 79 also provides a plurality of lower level flow lines 107-112. These flow lines 101-112 enable a selected fluid contained in any selected resupply tank 68 to be added to any selected storage tank 88-93. By providing the two spool pieces 71, 72 and related fittings to each supply tank 68, this fluid transfer can be effective notwithstanding the orientation of a storage tank 68 when it is placed in resupply reservoir frame 78. A flexible hose 113 can be coupled to a selected spool piece 71 or 72 or a selected resupply tank 68. That flexible hose 113 can also be connected to any one of the flow lines 101-112 depending upon the storage tank 88-93 that is to be re-supplied with fluid. Each flow line section 101-112 has preferably two (2) inlets 123 for receiving fluid via a hose 113 from a resupply tank 68. Each flow line section 101-112 has at least one discharge 124 for discharging fluid to a selected one of the storage tanks 87-93.
Resupply reservoir frame 78 can be lifted using a crane that is rigged using slings 125 for example to the plurality of lifting eyes 115 at the upper end portion of resupply reservoir frame 78. Each resupply tank 68 has a plurality of lifting eyes 116 enabling each individual resupply tank 68 to be lifted using a crane or other lifting device that is rigged to the lifting eyes 116.
A plurality of discharge flow lines 117, 118, 119, 120, 121, 122 are provided for discharging fluid from a selected respective storage tank 88, 89, 90, 91, 92, 93.
Base 126 employs base extensions 127, 128 that are removably connectable to base 126 prior to use. The extensions 127, 128 can be removed to facilitate transport to or from a well drilling site, platform, rig or the like. Once added to base 126, extensions 127, 128 form with base 126 a structural under support that helps reduce load bearing per unit area (e.g. square foot) by forming a new base periphery 149 that is larger than the reservoir periphery 130.
Arrow 129 in
Each extension 127, 128 comprises at least one elongated longitudinal beam 131 and multiple transverse beams 132, 133, 134. Each transverse beam is fitted with a plate having plate openings 150 that are receptive of bolted connections 148. End beam 132 has plate 135. End beam 133 has plate 136. Beams 134 each have a plate 137.
Base 126 includes multiple longitudinal beams 138, 139, 140 that are connected together with transverse beams 141, 142, 143, 144 to provide therewith a generally rectangular, welded beam network. Base 126 can have a periphery that is equal to or larger than the periphery 130 of reservoir 11.
Arrow 145 illustrates the placement of reservoir 11 on base 126. Base extensions 127, 128 can then be bolted to base 126 using bolted connections 148. Each end beam 141, 142 has a plate that has plate openings 150. End beam 141 has a plate 146 at each of its ends. Likewise, beam 142 has plates 147 at each of its ends. Each short beam 151 has a plate 152. Upon assembly of an extension 127 or 128 to base 126, plates 135 and 146 are placed together face to face wherein the openings 150 of the plates 135, 146 align so that they can be bolted together using bolted connections 148. In like fashion, plates 137 and 152 are aligned face to face to be bolted together as shown.
The following is a list of parts and materials suitable for use in the present invention.
All measurements disclosed herein are at standard temperature and pressure, at sea level on Earth, unless indicated otherwise. All materials used or intended to be used in a human being are biocompatible, unless indicated otherwise.
The foregoing embodiments are presented by way of example only; the scope of the present invention is to be limited only by the following claims.
Priority of U.S. Provisional Patent Application Ser. No. 61/033,926, filed Mar. 5, 2008, incorporated herein by reference, is hereby claimed.
Number | Name | Date | Kind |
---|---|---|---|
1705649 | Scott | Mar 1929 | A |
2506412 | Chausse | May 1950 | A |
2566873 | Britton | Sep 1951 | A |
2683010 | Hamerslag, Jr. | Jul 1954 | A |
3323538 | Chaney | Jun 1967 | A |
3916803 | Garcia | Nov 1975 | A |
4165806 | Cayton | Aug 1979 | A |
4553880 | Byrd et al. | Nov 1985 | A |
4828311 | Hayashi | May 1989 | A |
5156233 | Olsen et al. | Oct 1992 | A |
5267792 | Schlake | Dec 1993 | A |
5292012 | Davis et al. | Mar 1994 | A |
5507237 | Barrow et al. | Apr 1996 | A |
6112760 | Scott et al. | Sep 2000 | A |
6357365 | Higgins et al. | Mar 2002 | B1 |
6371299 | Essary | Apr 2002 | B1 |
6915815 | Ness | Jul 2005 | B1 |
Number | Date | Country | |
---|---|---|---|
61033926 | Mar 2008 | US |